John domain and the weak boundary Harnack principle

Similar documents
INTEGRABILITY OF SUPERHARMONIC FUNCTIONS IN A JOHN DOMAIN. Hiroaki Aikawa

Laplace s Equation. Chapter Mean Value Formulas

EXTENDED HARNACK INEQUALITIES WITH EXCEPTIONAL SETS AND A BOUNDARY HARNACK PRINCIPLE

MODULUS OF CONTINUITY OF THE DIRICHLET SOLUTIONS

Continuity of weakly monotone Sobolev functions of variable exponent

Harmonic measures on negatively curved manifolds

Hardy inequalities and thickness conditions

MODULUS AND CONTINUOUS CAPACITY

ON PARABOLIC HARNACK INEQUALITY

Bi-Lipschitz embeddings of Grushin spaces

A RELATIONSHIP BETWEEN THE DIRICHLET AND REGULARITY PROBLEMS FOR ELLIPTIC EQUATIONS. Zhongwei Shen

Richard F. Bass Krzysztof Burdzy University of Washington

Continuity of Solutions of Linear, Degenerate Elliptic Equations

NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES

Some remarks on the elliptic Harnack inequality

Heat kernels of some Schrödinger operators

ON APPROXIMATE DIFFERENTIABILITY OF THE MAXIMAL FUNCTION

Some aspects of vanishing properties of solutions to nonlinear elliptic equations

Nonlinear aspects of Calderón-Zygmund theory

Perron method for the Dirichlet problem.

Rigidity of harmonic measure

Ratios of harmonic functions

Irrationality exponent and rational approximations with prescribed growth

HARNACK S INEQUALITY FOR GENERAL SOLUTIONS WITH NONSTANDARD GROWTH

The Dirichlet problem for non-divergence parabolic equations with discontinuous in time coefficients in a wedge

THE HOT SPOTS CONJECTURE FOR NEARLY CIRCULAR PLANAR CONVEX DOMAINS

u( x) = g( y) ds y ( 1 ) U solves u = 0 in U; u = 0 on U. ( 3)

SOBOLEV S INEQUALITY FOR RIESZ POTENTIALS OF FUNCTIONS IN NON-DOUBLING MORREY SPACES

ON BOUNDEDNESS OF MAXIMAL FUNCTIONS IN SOBOLEV SPACES

ESTIMATES FOR ELLIPTIC HOMOGENIZATION PROBLEMS IN NONSMOOTH DOMAINS. Zhongwei Shen

Minimization problems on the Hardy-Sobolev inequality

ESTIMATES FOR THE MONGE-AMPERE EQUATION

ondary 31C05 Key words and phrases: Planar harmonic mappings, Quasiconformal mappings, Planar domains

Weighted norm inequalities for singular integral operators

ON THE DEFORMATION WITH CONSTANT MILNOR NUMBER AND NEWTON POLYHEDRON

Conjugate Harmonic Functions and Clifford Algebras

THE VARIABLE EXPONENT SOBOLEV CAPACITY AND QUASI-FINE PROPERTIES OF SOBOLEV FUNCTIONS IN THE CASE p = 1

Elliptic PDEs of 2nd Order, Gilbarg and Trudinger

A lower bound for the Bloch radius of K-quasiregular mappings

On the upper bounds of Green potentials. Hiroaki Aikawa

On the structure of Hardy Sobolev Maz ya inequalities

Math The Laplacian. 1 Green s Identities, Fundamental Solution

On locally Lipschitz functions

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS EXERCISES I (HARMONIC FUNCTIONS)

v( x) u( y) dy for any r > 0, B r ( x) Ω, or equivalently u( w) ds for any r > 0, B r ( x) Ω, or ( not really) equivalently if v exists, v 0.

PROPERTIES OF CAPACITIES IN VARIABLE EXPONENT SOBOLEV SPACES

RELATION BETWEEN SMALL FUNCTIONS WITH DIFFERENTIAL POLYNOMIALS GENERATED BY MEROMORPHIC SOLUTIONS OF HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

EXISTENCE OF THREE WEAK SOLUTIONS FOR A QUASILINEAR DIRICHLET PROBLEM. Saeid Shokooh and Ghasem A. Afrouzi. 1. Introduction

Partial Differential Equations

ξ,i = x nx i x 3 + δ ni + x n x = 0. x Dξ = x i ξ,i = x nx i x i x 3 Du = λ x λ 2 xh + x λ h Dξ,

A NONLINEAR OPTIMIZATION PROBLEM IN HEAT CONDUCTION

SYMMETRIC STABLE PROCESSES IN PARABOLA SHAPED REGIONS

Stationary isothermic surfaces and some characterizations of the hyperplane in the N-dimensional Euclidean space

On Estimates of Biharmonic Functions on Lipschitz and Convex Domains

LOCAL BEHAVIOR AND GLOBAL EXISTENCE OF POSITIVE SOLUTIONS OF au λ u u λ. COMPORTEMENT LOCAL ET EXISTENCE GLOBALE DES SOLUTIONS POSITIVES DE au λ u u λ

COMPOSITION SEMIGROUPS ON BMOA AND H AUSTIN ANDERSON, MIRJANA JOVOVIC, AND WAYNE SMITH

Generic section of a hyperplane arrangement and twisted Hurewicz maps

ON A LITTLEWOOD-PALEY TYPE INEQUALITY

ON APPROXIMATE DIFFERENTIABILITY OF THE MAXIMAL FUNCTION. 1. Introduction Juha Kinnunen [10] proved that the Hardy-Littlewood maximal function.

Growth estimates through scaling for quasilinear partial differential equations

On distribution functions of ξ(3/2) n mod 1

A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces

für Mathematik in den Naturwissenschaften Leipzig

COINCIDENCE SETS IN THE OBSTACLE PROBLEM FOR THE p-harmonic OPERATOR

Random Walks on Hyperbolic Groups III

ESTIMATES FOR MAXIMAL SINGULAR INTEGRALS

Gaussian Measure of Sections of convex bodies

GAUSSIAN MEASURE OF SECTIONS OF DILATES AND TRANSLATIONS OF CONVEX BODIES. 2π) n

Regularity of Weak Solution to Parabolic Fractional p-laplacian

PARTIAL REGULARITY OF BRENIER SOLUTIONS OF THE MONGE-AMPÈRE EQUATION

Propagation of Smallness and the Uniqueness of Solutions to Some Elliptic Equations in the Plane

Sobolev Spaces. Chapter Hölder spaces

ALEKSANDROV-TYPE ESTIMATES FOR A PARABOLIC MONGE-AMPÈRE EQUATION

Deng Songhai (Dept. of Math of Xiangya Med. Inst. in Mid-east Univ., Changsha , China)

Centre for Mathematics and Its Applications The Australian National University Canberra, ACT 0200 Australia. 1. Introduction

HOMEOMORPHISMS OF BOUNDED VARIATION

Harmonic Functions and Brownian motion

PHASE TRANSITIONS: REGULARITY OF FLAT LEVEL SETS

A Picard type theorem for holomorphic curves

Derivatives of Harmonic Bergman and Bloch Functions on the Ball

arxiv: v1 [math.ca] 4 Apr 2017

Course 212: Academic Year Section 1: Metric Spaces

On Lundh s percolation diffusion

Note on the Chen-Lin Result with the Li-Zhang Method

Some Remarks About the Density of Smooth Functions in Weighted Sobolev Spaces

Maths 212: Homework Solutions

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1.

Polishness of Weak Topologies Generated by Gap and Excess Functionals

J. Kinnunen and R. Korte, Characterizations of Sobolev inequalities on metric spaces, arxiv: v2 [math.ap] by authors

Vesna Manojlović. Abstract

Mapping problems and harmonic univalent mappings

SINGULAR INTEGRALS ON SIERPINSKI GASKETS

ABELIAN COVERINGS, POINCARÉ EXPONENT OF CONVERGENCE AND HOLOMORPHIC DEFORMATIONS

ERRATA: Probabilistic Techniques in Analysis

The Poisson boundary of certain Cartan-Hadamard manifolds of unbounded curvature

Regularity of flat level sets in phase transitions

SOME EXAMPLES OF NONUNIFORMLY HYPERBOLIC COCYCLES. L.-S. Young 1

CHAPTER 1. Metric Spaces. 1. Definition and examples

In: Proceedings of the Edinburgh Mathematical Society (Series 2), 53 (1), , 2010

On the second differentiability of convex surfaces

Transcription:

John domain and the weak boundary Harnack principle Hiroaki Aikawa Department of Mathematics, Hokkaido University Summer School in Conformal Geometry, Potential Theory, and Applications NUI Maynooth, Ireland 23 27 June 2009 1

Contents 1. Introduction 3 2. Weak boundary Harnack principle for a John domain 9 3. Domar s argument 18 4. Union of convex sets 24 References 28 2

1. Introduction Exposition of [AHL06]: H. Aikawa, K. Hirata, and T. Lundh, Martin boundary points of a John domain and unions of convex sets, J. Math. Soc. Japan 58 (2006), no. 1, 247 274. Let E {x = (x 1,..., x n ) : x n = 0} be closed. D = R n \ E is called a Denjoy domain. D Let P be the family of positive harmonic functions in D vanishing on D. Benedicks [Ben80] proved the following: E Contents 3

dim P = 1 or 2. i.e., 1 or 2 minimal Martin boundary points at. Criterion in terms of harmonic measure β E (x) = ω(x, K x, K x \ E). K x : cube center at x, side α x. 0 x 1 K x dim P = 1 dim P = 2 x 1 x 1 β E (x) x n 1 dx 1 dx n 1 =. β E (x) x n 1 dx 1 dx n 1 <. Monotonicity: If E E, dim P E = 2, then dim P E = 2. Contents 4

Location Topics Authors C 2 surface dim P 2 Ancona [Anc84] Hyperplane Harmonic Measure Benedicks [Ben80] Lipschitz surface dim P 2 WBHP Ancona [Anc84] Real line Lebesgue Measure Segawa [Seg88] Hyperplane Lebesgue Measure Gardiner [Gar89] C 1,1 surface Harmonic Measure Chevallier [Che89] C 1,α surface Harmonic Measure Ancona [Anc90] Lipschitz surface Non Monotonicity Ancona [Anc90] Real line Quasi-conformal Segawa [Seg90] Sectorial Harmonic Measure Cranston- Salisbury [CS93] Quasi-Sectorial Schrödinger Equation Lömker [Löm00] Contents 5

Weak boundary Harnack principle. Ancona [Anc84]. B(x, r), S (x, r) the open ball and the sphere with center at x and radius r. P ξ : kernel functions h at ξ, i.e., h > 0 harmonic on D, h = 0 q.e on D, bounded outside ξ. E S : Lipschitz surface. h 0, h 1, h 2 P ξ. Then ( h0 (y + R h 0 (x) A ) h 1 (y + R )h 1(x) + h 0(y R ) ) h 2 (y R )h 2(x) for x D B(ξ, R) \ B(ξ, R/2). y + R y R Contents 6

If h 0, h 1, h 2 P ξ, then i s.t. Hence dim P ξ 2. h i A j i h j ; Contents 7

Sectorial domain. Cranston-Salisbury [CS93]. y j R If h 0,..., h N P ξ. Then N h 0 (y j R h 0 (x) A ) h j (y j R )h j(x) j=1 for x D B(ξ, R) \ B(ξ, R/2); i s.t. h i A h j ; Hence dim P ξ N. Quasi-sectorial domain (higher dimension) Lömker [Löm00]. Contents 8 j i

2. Weak boundary Harnack principle for a John domain John domain. twisted cone condition: x D, γ : x x0 s.t. δ D (y) c J l(γ(x, y)) for all y γ, x 0 y twisted cone D x Contents 9

Denjoy domain Sectorial domain Quasi-Sectorial = John domain Theorem 1 Let D be a John domain with John constant c J. Let ξ D. Then (i) dim P ξ N(c J ) <. (ii) If c J > 3/2, then dim P ξ 2. Remark 1 c J > 3/2 is sharp for all n 2. Contents 10

x 0 ξ Quasihyperbolic metric: k D (x, y) = inf γ γ ds(z) δ D (z). where inf is taken over all curves γ connecting x to y in D. k D (x, y) length of Harnack chain. Contents 11

If h > 0 is harmonic on D, then exp( Ak D (x, y)) h(x) h(y) exp(ak D(x, y)) Local reference points: y 1 R,..., y N R S (ξ, R) D s.t. δ D(y i R ) R and min {k D R (x, y i R )} A log R i=1,...,n for x B(ξ, ηr) D, where D R = D B(ξ, AR). δ D (x) + A ξ y j R If h P ξ, then 0-extension to D c is subharmonic in R n \ {ξ}. Contents 12

Lemma 1 (Domar [Dom57]) Let u 0 be subharmonic in Ω s.t. I = (log + u) n 1+ε dx < Ω for ε > 0. Then u(x) exp(ai 1/ε dist(x, Ω) n/ε ). Lemma 2 τ > 0 s.t. D B(ξ,R) ( R δ D (x) ) τ dx AR n. Contents 13

Lemma 3 Let h P ξ for ξ D. Then h(x) A x ξ λ. By the tract argument [FH76], dim P ξ N(c J ) <. Proof. By local reference points ( ) λ R N h(x) A δ D (x) i=1 h(y i R ). Apply Domar s argument (Lemma 1) to Ω = B(ξ, AR) \ B(ξ, A 1 R) with the help of Lemma 2. Then (1) h(x) A N h(y i R ) on S (ξ, R), i=1 Contents 14

and hence on D \ B(ξ, R) by the maximum principle. Since δ D (y i R ) R, we have h(y i R ) AR λ. Hence i.e. h(x) A x ξ λ on D. h(x) AR λ on D \ B(ξ, R), Contents 15

By the box argument introduced by Bass-Burdzy [BB91] (see [Aik01, Lemma 2]) we have ω(x, D S (ξ, AR), D B(ξ, AR)) AR 2 n N G R (x, y i R ) i=1 for x D B(ξ, R), where G R is the Green function for D B(ξ, A R). Combine with (1). Then h(x) AR 2 n N N G R (x, y i R ) i=1 j=1 h(y j R ). Apply this inequality to h(x) = G R (x, y). Then G R (x, y) AR 2 n N N G R (x, y i R ) G R (y j R, y). i=1 j=1 Contents 16

Ancona s ingenious tricks [Anc84] and [Anc07] erase cross terms: N G R (x, y) AR 2 n G R (x, y i R )G R(y i R, y). Weak boundary Harnack principle Let h 0, h 1,..., h N P ξ. Then N h 0 (y i R h 0 (x) A ) h i (y i R ) h i(x) for x D. In particular, dim P ξ N. i=1 i=1 Contents 17

3. Domar s argument Lemma (Domar [Dom57]) Let u 0 be subharmonic in Ω s.t. I = (log + u) n 1+ε dx < for Ω ε > 0. Then u(x) exp(ai 1/ε dist(x, Ω) n/ε ). Lemma 4 Let L n = (e 2 / B(0, 1) ) 1/n. Let u 0 be subharmonic in B(x, R). If u(x) t > 0 and (2) R L n {y B(x, R) : e 1 t < u(y) et} 1/n, then x B(x, R) s.t. u(x ) > et. Contents 18

Proof. Observe that (2) is equivalent to {y B(x, R) : e 1 t < u(y) et} B(x, R) 1 e 2. If u et on B(x, R), then the mean value property yields 1 t u(x) u(y)dy B(x, R) B(x,R) ( ) 1 = udy + udy B(x, R) B(x,R) {u e 1 t} B(x,R) {u>e 1 t} e 1 t + 1 et < t. e2 This is a contradiction. Contents 19

Proof of Domar s Lemma. It is sufficient to show that (3) δ Ω (x) AI 1/n (log u(x)) ε/n, whenever u(x) > e 2. Fix x 1 Ω with u(x 1 ) > e 2 and let us prove (3) with x = x 1. Let R j = L n {y Ω : e j 2 u(x 1 ) < u(y) e j u(x 1 )} 1/n for j 1. Choose {x j } as follows: If δ Ω (x 1 ) < R 1, then we stop. If δ Ω (x 1 ) R 1, then B(x 1, R 1 ) Ω, so that there exists x 2 B(x 1, R 1 ) such that u(x 2 ) > eu(x 1 ) by Lemma 4. Next we consider δ Ω (x 2 ). If δ Ω (x 2 ) < R 2, then we stop. If δ Ω (x 2 ) R 2, then B(x 2, R 2 ) Ω, so that there exists x 3 B(x 2, R 2 ) such that u(x 3 ) > e 2 u(x 1 ) by Lemma 4. Repeat this procedure to obtain a finite or infinite sequence {x j }. Contents 20

We claim (4) δ Ω (x 1 ) 2 R j. Suppose first {x j } is finite. If δ Ω (x 1 ) < R 1, then (4) trivially holds. If δ Ω (x 1 ) R 1, then we have an integer J 2 such that δ Ω (x 1 ) R 1,..., δ Ω (x J 1 ) R J 1, δ Ω (x J ) < R J, x 2 B(x 1, R 1 ), x 3 B(x 2, R 2 ),..., x J B(x J 1, R J 1 ). Hence we have (4) as δ Ω (x 1 ) x 1 x 2 + + x J 1 x J + δ Ω (x J ) < R 1 + + R J 1 + R J. Suppose next {x j } is infinite. Since u(x j ) > e j u(x 1 ), the local boundedness of a subharmonic function shows that x j Ω. Hence, J 2 s.t. δω (x J ) 1 2 δ Ω(x 1 ). j=1 Contents 21

Then δ Ω (x 1 ) x 1 x 2 + + x J 1 x J + δ Ω (x J ) R 1 + + R J 1 + 1 2 δ Ω(x 1 ), so that (4) follows. In view of (4) we observe that (3) follows from (5) j=1 R j AI 1/n (log u(x 1 )) ε/n. To show (5), let j 1 be the integer such that e j 1 j 1 2 and < u(x 1 ) e j 1+1. Then R j L n {y Ω : e j 1+ j 2 < u(y) e j 1+ j+1 } 1/n. Contents 22

Since the family of intervals {(e j 1+ j 2, e j 1+ j+1 ]} j overlaps at most 3 times, it follows from Hölder s inequality that R j 3L n j=1 3L n A j ε/n 1 j= j 1 {y Ω : e j 1 < u(y) e j } 1/n 1 (n 1)/n j (n 1+ε)/(n 1) j= j 1 ( (log + u) n 1+ε dy Ω A(log u(x 1 )) ε/n I 1/n. ) 1/n Thus (5) follows. The lemma is proved. j n 1+ε {y Ω : e j 1 < u(y) e j } j= j 1 1/n Contents 23

4. Union of convex sets John const c J is close to 1 = D is better. Yet two minimal Marin boundary points. Condition for 1 minimal Marin boundary point? Ancona [Anc79, Théorème]: D is admissible: (A1) D = λ B(x λ, ρ 0 ). (A2) Let ξ D. If D B 1, B 2 with radius ρ 0 tangential at ξ, then D Γ θ (ξ, y) B(ξ, r), a truncated circular cone with aperture θ > 0, radius r > 0 and axis on the tangent hyperplane. B 1 ξ B 2 000 111 000 111 00000 11111 00000 11111 000000 111111 Γ θ (ξ,y) B(ξ,r) Contents 24

Theorem A (Ancona) If D is a bounded admissible domain, then D = D. Generalize both (A1) and (A2). (I) D = λ C λ ; C λ are open convex sets s.t. B(z λ, ρ 0 ) C λ B(z λ, A 1 ρ 0 ). 00000 11111 000000000000 111111111111 000000000000000 111111111111111 000000000000000 111111111111111 0000000000000000 1111111111111111 0000000000000000 1111111111111111 C 0000000000000000 1111111111111111 λ ρ 0 0000000000000000 1111111111111111 0000000000000000 1111111111111111 000000000000000 111111111111111 z λ 0000000000000 1111111111111 000000000000 111111111111 0000000000 1111111111 0000000 1111111 A 1 ρ 0 Contents 25

(II) For ξ D θ 1 sin 1 (1/A 1 ), ρ 1 ρ 0 cos θ 1 s.t. C (ξ) = Γ θ1 (ξ, y) B(ξ, 2ρ 1 ) is connected. y D, Γ θ1 (ξ,y) B(ξ,2ρ 1 ) D Ω 00000000 11111111 000000000000 111111111111 0000000000000 1111111111111 000000000000 111111111111 C (ξ) 0000000000 1111111111 000000000 111111111 θ 1 00000000 11111111 000000 111111 0000 1111 000 111 01 ξ Theorem 2 Let D satisfy (I) and (II). Then D = D. Contents 26

Remark 2 Denjoy domain = D = λ B(x λ, ρ 0 ). Lipschitz Denjoy domains sectorial domain = D = λ C λ with (I). Remark 3 The bounds θ 1 sin 1 (1/A 1 ) and ρ 1 ρ 0 cos θ 1 are sharp. Contents 27

References [AHL06] [Aik01] [Anc79] [Anc84] [Anc90] H. Aikawa, K. Hirata, and T. Lundh, Martin boundary points of a John domain and unions of convex sets, J. Math. Soc. Japan 58 (2006), no. 1, 247 274. [3] H. Aikawa, Boundary Harnack principle and Martin boundary for a uniform domain, J. Math. Soc. Japan 53 (2001), no. 1, 119 145. [16] A. Ancona, Une propriété de la compactification de Martin d un domaine euclidien, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, 71 90. [24], Régularité d accès des bouts et frontière de Martin d un domaine euclidien, J. Math. Pures Appl. (9) 63 (1984), no. 2, 215 260. [5, 6, 16], Sur la frontière de Martin des domaines de Denjoy, Ann. Acad. Sci. Fenn. Ser. A I Math. 15 (1990), no. 2, 259 271. [5] [Anc07], Sur la théorie du potentiel dans les domaines de John, Publ. Mat. 51 (2007), no. 2, 345 396. [16] [BB91] R. F. Bass and K. Burdzy, A boundary Harnack principle in twisted Hölder domains, Ann. of Math. (2) 134 (1991), no. 2, 253 276. [16] Contents 28

[Ben80] [Che89] [CS93] [Dom57] [FH76] [Gar89] M. Benedicks, Positive harmonic functions vanishing on the boundary of certain domains in R n, Ark. Mat. 18 (1980), no. 1, 53 72. [3, 5] N. Chevallier, Frontière de Martin d un domaine de R n dont le bord est inclus dans une hypersurface lipschitzienne, Ark. Mat. 27 (1989), no. 1, 29 48. [5] M. C. Cranston and T. S. Salisbury, Martin boundaries of sectorial domains, Ark. Mat. 31 (1993), no. 1, 27 49. [5, 8] Y. Domar, On the existence of a largest subharmonic minorant of a given function, Ark. Mat. 3 (1957), 429 440. [12, 18] S. Friedland and W. K. Hayman, Eigenvalue inequalities for the Dirichlet problem on spheres and the growth of subharmonic functions, Comment. Math. Helv. 51 (1976), no. 2, 133 161. [13] S. J. Gardiner, Minimal harmonic functions on Denjoy domains, Proc. Amer. Math. Soc. 107 (1989), no. 4, 963 970. [5] [Löm00] A. Lömker, Martin boundaries of quasi-sectorial domains, Potential Anal. 13 (2000), no. 1, 11 67. [5, 8] Contents 29

[Seg88] S. Segawa, Martin boundaries of Denjoy domains, Proc. Amer. Math. Soc. 103 (1988), no. 1, 177 183. [5] [Seg90], Martin boundaries of Denjoy domains and quasiconformal mappings, J. Math. Kyoto Univ. 30 (1990), no. 2, 297 316. [5] Contents 30