Positron Probe Microanalyzer (PPMA) facilities at AIST

Similar documents
(Positron Annihilation Lifetime Spectroscopy; PALS) 1) 4) PALS

The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf

positron source EPOS - general concept - timing system - digital lifetime measurement

EPOS an intense positron beam project at the Research Center Rossendorf

The MePS System at Helmholtz-Zentrum Dresden-Rossendorf and its special Capability for Positronium Lifetime Spectroscopy

Development status of the positron lifetime beam MePS and the first lifetime measurements of porous ultra-low-k dielectrics with MePS

The intense Positron Source EPOS at ELBE Radiation Source of Research Center Rossendorf

Study on Bose-Einstein Condensation of Positronium

GBAR Project Gravitational Behavior of Antihydrogen at Rest

New Concept of EPOS Progress of the Mono-energetic Positron Beam (MePS) Gamma-induced Positron Spectroscopy (GiPS)

The intense positron source EPOS at Research Center Rossendorf

Research Center Dresden Rossendorf

New Electron Source for Energy Recovery Linacs

? Physics with many Positrons

Outlook: Application of Positron Annihilation for defects investigations in thin films. Introduction to Positron Annihilation Methods

Department of Physics, Techno India Batanagar (Techno India Group), Kolkata , West Bengal, India.

The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun

M. Werner, E. Altstadt, M. Jungmann, G. Brauer, K. Noack, A. Rogov, R. Krause-Rehberg. Thermal Analysis of EPOS components

Development of Cs 2 Te photocathode RF gun system for compact THz SASE-FEL

Positron and positronium for the GBAR experiment

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09

Material Science using Positron Annihilation

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Waseda University. Design of High Brightness Laser-Compton Light Source for EUV Lithography Research in Shorter Wavelength Region

DESIGN AND CONSTRUCTION OF LOW ENERGY ELECTRON ACCELERATORS AT SINP MSU

Pushing the limits of laser synchrotron light sources

13th International Workshop on Slow Positron Beam Techniques and Applications

Research Laboratory for Quantum Beam Science

Status of linear collider designs:

Positron Beam Lifetime Spectroscopy at

In-Flight Fragment Separator and ISOL Cyclotron for RISP

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

Study on Positronium Bose-Einstein Condensation

Application of positrons in materials research

Chopping High-Intensity Ion Beams at FRANZ

The scanning microbeam PIXE analysis facility at NIRS

Coulomb crystal extraction from an ion trap for application to nano-beam source"

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09

The EPOS System (ELBE Positron Source) at Helmholtz Centre Dresden- Rossendorf and first experiments at photovoltaic CIGS layers

Introduction into Positron Annihilation

Accelerator Design and Construction Progress of TPS Project

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders

Eric R. Colby* SLAC National Accelerator Laboratory

Possibilities for a Bose-Einstein Condensed Positronium Annihilation Gamma Ray Laser

Precision neutron flux measurement with a neutron beam monitor

Jlab FEL Photoemission DC Guns

JAERI, JAPAN

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE*

STRESS ANALYSIS USING BREMSSTRAHLUNG RADIATION

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008

Department of Radiation Protection, Nuclear Science Research Institute, Japan Atomic Energy Agency

1.E Neutron Energy (MeV)

ASPECTS OF THE MCMASTER INTENSE POSITRON BEAM FACILITY

DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN THICK MATERIALS

The accelerators at LNS - INFN and diagnostics aspects of the radioactive beams

BALKAN PHYSICS LETTERS Bogazici University Press 15 November 2016 BPL, 24, , pp , (2016)

Recent Activities on Neutron Calibration Fields at FRS of JAERI

Radiation Protection At Synchrotron Radiation Facilities

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s

Flux and neutron spectrum measurements in fast neutron irradiation experiments

The SARAF 40 MeV Proton/Deuteron Accelerator

New Concept of DPSSL

Study on positronium Bose-Einstein condensation

The CeB6 Electron Gun for the Soft-X-ray FEL Project at SPring-8

Positron Annihilation in Material Research

An Electron Linac Photo-Fission Driver for the Rare Isotope Program at TRIUMF

Plans for CESR (or Life Without CLEO)

FREE-ELECTRON LASER FACILITY(U) NATIONAL BUREAU OF STANDARDS GAITHERSBURG NO P H DEBENHdAN ET AL UNCLASSIFIED F/G 14/2 NI

Machine Protection. Lars Fröhlich DESY. CERN Accelerator School on FELs and ERLs June 9, 2016

The VELA and CLARA Test Facilities at Daresbury Laboratory Peter McIntosh, STFC on behalf of the VELA and CLARA Development Teams

Design Status of the PEFP RCS

Intense Slow Positron Source

Diagnostics Needs for Energy Recovery Linacs

Field Emission and Channeling Radiation for High-Spectral-Brilliance X-ray Sources

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE

SPIRAL-2 FOR NEUTRON PRODUCTION

4GLS Status. Susan L Smith ASTeC Daresbury Laboratory

In Situ Observation of Damage Evolution in Polycarbonate under Ion Irradiation with Positrons

Basics and Means of Positron Annihilation

Development of Soft X-rayX using Laser Compton Scattering

The High-Power-Target System of a Muon Collider or Neutrino Factory

Research with Synchrotron Radiation. Part I

Compact Wideband THz Source

Status & Plans for the TRIUMF ISAC Facility

Experimental study of nonlinear laser-beam Thomson scattering

Using IMPACT T to perform an optimization of a DC gun system Including merger

Estimation of Radioactivity and Residual Gamma-ray Dose around a Collimator at 3-GeV Proton Synchrotron Ring of J-PARC Facility

STATUS OF THE NOVOSIBIRSK ENERGY RECOVERY LINAC

Positron and Positronium Annihilation in Polymers Studied by Age-Momentum Correlation Spectroscopy

Slow-Positron-Beam Techniques

Beam dynamics studies of H-beam chopping in a LEBT for project X

Radiation Shielding of Extraction Absorbers for a Fermilab Photoinjector

ILC Particle Sources -Electron and PositronMasao KURIKI (Hiroshima University)

X-band Experience at FEL

Pulsed-neutron 200- MeV linac

in Si by means of Positron Annihilation

China high-intensity accelerator technology developments for Neutron Sources & ADS

Positron Annihilation Spectroscopy - A non-destructive method for material testing -

Developments for the FEL user facility

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

Transcription:

Positron Probe Microanalyzer (PPMA) and other accelerator based slow positron facilities at AIST B. E. O Rourke, N. Oshima, A. Kinomura, T. Ohdaira and R. Suzuki National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan 10 th International Workshop on Positron and Positronium Chemistry Smolenice Castle, Slovakia, 7 th Sept 2011

AIST Electron Accelerator Facility 300 MeV e - LINAC (1979- ) SCA New e+ beamline (PPMA, PALS) Existing e + facilities (PALS, PPMA, PAES) Slow e + beamline (1988- )

AIST LINAC-based Slow Positron Beam PPMA PALS TOF- PAES Ta converter 70 MeV, 100mA peak, 1 s, 100 pps e - Linear Storage Section W moderator slow e+ Bremsstrahlung + Pair Production

AIST LINAC-based Slow Positron Beam PPMA PALS TOF- PAES Ta converter Positron / Ion combined Beamline 70 MeV, 100mA peak, 1 s, 100 pps e - Linear Storage Section ion positron W moderator slow e+ Bremsstrahlung + Pair Production sample

RI-based PALS 22 Na 1 GBq Counting rate ~4,000 cps Time resolution < 200 ps Time resolution ~250 ps 10 0 3m Kapton Best 通常セットアップ resolution: BaF2 50x50mm 時間分解能 250ps テスト用セットアップ BaF2 40x10mm 時間分解能 155ps 155 ps Normalized counts 10-1 10-2 10-3 =385ps 10-4 -1 0 1 2 3 4 Time (ns) 1.5 m Commercially available from FUJI IMVAC Inc.

PAES e + Pulsing Apparatus PPMA 6

Positron Probe Microanalyzer (PPMA) http://www.aist.go.jp/aist_j/press_release/pr2008/pr20080828_2/pr20080828_2.html 7

Positron Probe Microanalyzer (PPMA) N. Oshima et al., Radiat. Phys. Chem. 78, 1096 (2009) Buncher Focusing lens 8

PALS System for Positron Microbeam PAL spectra with micro beam Normalized Counts 10 0 SiO 2 un-irradiated SiO 2 H + 50 kev Kapton 10-1 10-2 10-3 0 5 10 Time(ns) Resolution < 200 ps Diameter: <30 m Counting rate: 1-3k cps for 30 um

Positron Probe Microanalyzer (PPMA) x-y stage Objective Lens Remoderator http://www.aist.go.jp/aist_j/press_release/pr2008/pr20080828_2/pr20080828_2.html10

Brightness Enhancement System ~ kev Moderator Reemission of positrons ~ ev Beam diamet ter 10mm 1mm 100μm 10μm Bi Brightness enhancement Magnetic guide(~20m) 1μm 1 10 100 1k 10k Energy(eV) Extraction Coil Focusing Lens Ni Remoderator N. Oshima, J. Appl. Phys. acceleration 103 094916 (2008) Pulsing system RF

Beam Diameter / Time Width of Bunch Pulse Width: 5-10 ns 0.3 ns 0.1 ns Beam 2-3 kcps for PALS Beam Size: ~10 mm (FWHM) ~1 mm (FWHM) ~25 m(fwhm) in solenoid at remoderator at sample Ta SiO 2 J. Appl. Phys. 103, 094916 (2008)

3-D Mapping of Defects unimplanted a-sio2 Diameter: <30 m Resolution ~200 ps Counting rate: 1-3k cps for 30 m implanted Focused e + beam Mean impl. Depth (Energy) 200 nm (4.7 kev) Appl. Phys. Lett. 94, 194104(2009) Defects created by Ar + and H + H + ion beam Ar + ion beam (50 kev 10 16 cm -2 ) (150 kev 10 15 cm -2 ) 30 mesh Scan 350 nm (6.4 kev) Depth 600 nm Rotate 45 o a-sio2 Depth 200 nm Sample 1pixel : 50 μm x 50 μm ( ~1 s/pixel) total:3500pixels 500 nm (7.8 kev) lifetime short long Defects created by H +

PPMA Ductile Fractured Iron Sample nominal strain = 0 % 0.5 % 0.5 % 2.9 % 14.7 % gauge chu uck 1 mm V4-V5V5 V7-V10 chuck (PPMA parameters) Beam energy : 25 kev Beam diameter : 50 m Scanning step : 50 m 2 (gauge area) 100 m 2 (chuck area) -ray counts : 5000 / pixel Measurement points : 10,000 / image average positron lifetime 130 ps 180 ps 14

Extraction of Slow Positrons to Air 60 I 3 (%) 50 40 30 20 10 SiO 2 (100nm)/Si in vacuum in air with SiN(30nm) 0 0 5 10 15 20 25 positron beam energy (kev) N. Oshima et al., Appl. Phys. Express 4, 066701 (2011)

Nanotechnology shared infrastructure Nano Characterization Nano Processing Facility (NPF) Manufacturing Center Research Support Technical Training HR-NMR Electron Microscope MEMS Foundary

AIST Electron Accelerator Facility 300 MeV e - LINAC (1979- ) SCA New e+ beamline (PPMA, PALS) Existing e + facilities (PALS, PPMA, PAES) Slow e + beamline (1988- )

New Positron Beamline Goal: To increase the speed and efficiency and volume of our PALS and PPMA measurements Current Situation: Under construction. Should be ready for tests with electrons soon and first positrons within this fiscal year (March 2012) PPMA PALS

New Positron Beamline PALS PPMA Positron Converter & Moderator 3 240 Linear Storage Section Concrete Shield 1240 Positron Experimental Room 5540 4325 2166 Concrete Wall Accelerator Room

New Positron Beamline φ10 PPMA RF Buncher (125MHz) Linear Storage Section Concrete Wall Positron Converter & Moderator Remoderatror RF Buncher (125 MHz)

AIST Electron Accelerator Facility 300 MeV e - LINAC (1979- ) SCA New e+ beamline (PPMA, PALS) Existing e + facilities (PALS, PPMA, PAES) Slow e + beamline (1988- )

Superconducting Accelerator (SCA) CW or high duty operation 24 h operation Energy gain 7.5 MeV High power (> 10 kw) Recondensor 40K/80K refrigerator He port 80K heat shield 40K heat shield 2905 RF Coupler Nb cavity HOM coupler 12 200 3240

Current Situation at AIST Current LINAC SCA Module 1 (Present Position) Positron Experimental Room 10 m

Initial Set-up Plan Current LINAC New Beamline Positron Convertor and Moderator SCA Module 1 (Present Position) Positron Experimental Room Positron Beamline 10 m

Monte Carlo Simulation Step 1: Calculate energy and angular emission distributions of fast e + Step 2: Calculate the depth distribution profile of e + absorbed in W

Slow Positron Production e + /10 8 e - ) N ( 100 10 1 0.1 Current Simulation x 25.6% N = 0.28(E e - 3) 1.35-0.4 N e LLNL LLNL Fit = 1.4(E e - 15) AIST Argonne Mitsubishi 0 20 40 60 80 100 120 Electron Energy, E e (MeV) s s (5 MeV) (70( MeV) ) s s B. E. O Rourke et al., Rev. Sci. Instrum. 82 (2011) 063302 (10 MeV) (70 MeV) 0.4% 3%

Maximum Slow Positron Yield Ele ectron Cu urrent, I e ( A) 550 500 450 400 350 300 250 200 150 3000 K 2500 K 2000 K 10 8 T > 3270 K 10 9 100 1500 K 50 10 7 1000 K 500 K 0 0 20 40 60 80 100 Electron Energy, E e (MeV) Y (e + /s) B. E. O Rourke et al., Rev. Sci. Instrum. 82 (2011) 063302 10 9 9.000 8.500 10 8 8.000 7.500 10 7 7.000 6.500 10 6 6.000 5.500 10 5 5.000

Beam Heating of the Converter T 0 ( T T )2 l Conduction T b w w Pw r 2 0.5 ln( r 2 / r1 ) r 1 Radiation e - T b 4 Pr 2e ( ( T ( r) T r 2 0 4 0 )2 rdr Cylindrical top-hat beam E d I e P w P r

Maximum Slow Positron Yield Ele ectron Cu urrent, I e ( A) 550 500 450 400 350 300 250 200 150 100 50 0 3000 K 2500 K 2000 K 10 7 10 8 T > 3270 K 10 9 1500 K 1000 K 500 K Y (e + /s) 0 20 40 60 80 100 SCA: 5 15 MeV Electron Energy, E e (MeV) 70 MeV LINAC B. E. O Rourke et al., Rev. Sci. Instrum. 82 (2011) 063302 10 9 9.000 8.500 10 8 8.000 7.500 10 7 7.000 6.500 10 6 6.000 5.500 10 5 5.000

Summary PPMA: PALS measurements possible with a microbeam (30 m) 2-D and 3-D defect imaging (Beam Energy 0 30 kv) Extraction of positron microbeam to air New Positron Beamline: Currently under construction (scheduled completion this fiscal year Mar 2012) Vertical beamlines for PALS and PPMA Initially operated using existing LINAC (70 MeV), in future will be synchronous with SCA Superconducting Accelerator (SCA) High pulse repetition rate, no e+ pulse stretching and chopping Low energy but high current, beam heating in the converter/moderator will be a challenge

THANK YOU and thanks to our collaborators; Positron Probe Microanalyzer M. Fujinami (Chiba Uni.) A. Uedono (Tuskuba Uni.) New Positron Beamline Vacuum Products Inc. Superconducting Accelerator N. Hayashizaki (Tokyo Inst. Tech) E. Minehara (Wakasa-WanEnergyRes Wan Res. Centre) TIME Inc.