G P P (A G ) (A G ) P (A G )

Similar documents
Breaking Symmetries in Graph Representation

From random matrices to free groups, through non-crossing partitions. Michael Anshelevich

Matrix-valued functions

Matrix-valued functions

Linear Algebra Review (Course Notes for Math 308H - Spring 2016)

Colloids transport in porous media: analysis and applications.

A fixed-point approximation accounting for link interactions in a loss network

Assignment 10. Arfken Show that Stirling s formula is an asymptotic expansion. The remainder term is. B 2n 2n(2n 1) x1 2n.

Matrix Algebra & Elementary Matrices

page 1 Total ( )

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 133 Part 2. I. Topics from linear algebra

21th. December 2007 Seminar Univ. of Toyama. D6 Family Sym. and CDM at LHC J. Kubo, Y. Kajiyama (Phys. Rev. D )

ATLANTA, GEORGIA, DECEMBER 12, No. 13. D r. M. L. B r i t t a i n T e l l s S t u d e n t s C o n t r a c t I s B r o k e n

9.5. Lines and Planes. Introduction. Prerequisites. Learning Outcomes

Generalǫ-expansionforscalar one-loopfeynmanintegrals

Lecture 9: Submatrices and Some Special Matrices

Matrix Arithmetic. j=1

RUSSELL JAY HENDEL. F i+1.

e 2 = e 1 = e 3 = v 1 (v 2 v 3 ) = det(v 1, v 2, v 3 ).

Quaternion. Hoon Kwon. March 13, 2010

PreCalculus: Chapter 9 Test Review

Marginal density. If the unknown is of the form x = (x 1, x 2 ) in which the target of investigation is x 1, a marginal posterior density

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i )

MEP123: Master Equality Polyhedron with one, two or three rows

VECTOR ALGEBRA. 3. write a linear vector in the direction of the sum of the vector a = 2i + 2j 5k and

sin(α + θ) = sin α cos θ + cos α sin θ cos(α + θ) = cos α cos θ sin α sin θ

Created by T. Madas VECTOR MOMENTS. Created by T. Madas

Math 203, Solution Set 4.

Week 15-16: Combinatorial Design

Sequential pairing of mixed integer inequalities

A PROOF OF THE GAUSS-BONNET THEOREM. Contents. 1. Introduction. 2. Regular Surfaces

c 2002 Society for Industrial and Applied Mathematics

12. Lines in R 3. through P 0 and is parallel to v is written parametrically as a function of t: Using vector notation, the same line is written

SOME INVARIANTS CONNECTED WITH EULER-LAGRANGE EQUATIONS

Comparing Two Generalized Nevanlinna-Pick Theorems

Lec 5: Factorial Experiment

Lecturer: Bengt E W Nilsson

Determinants. Chia-Ping Chen. Linear Algebra. Professor Department of Computer Science and Engineering National Sun Yat-sen University 1/40

16.21 Techniques of Structural Analysis and Design Spring 2003 Unit #5 - Constitutive Equations

EXAMPLE CFG. L = {a 2n : n 1 } L = {a 2n : n 0 } S asa aa. L = {a n b : n 0 } L = {a n b : n 1 } S asb ab S 1S00 S 1S00 100

Principal Curvatures of Surfaces

Solving PDEs Numerically on Manifolds with Arbitrary Spatial Topologies

Section Blowing Up

Distributed Computation of Minimum Time Consensus for Multi-Agent Systems

A.1 Appendix on Cartesian tensors

Dear Friends. St. John the Baptist Greek Orthodox Church Sterling Heights, Michigan. Volume 25 Issue 6 June, July & August 2018

Gröbner bases of nested configurations arxiv: v1 [math.ac] 7 Jan 2008

Linear Algebra (Review) Volker Tresp 2018

The following two problems were posed by de Caen [4] (see also [6]):

Introduction to Discrete Optimization

Part IA. Vector Calculus. Year

Computing Isomorphism [Ch.7, Kreher & Stinson] [Ch.3, Kaski & Östergård]

1 Matrices and Systems of Linear Equations

Basics of topological insulator

Math 3108: Linear Algebra

Increasing precision by partitioning the error sum of squares: Blocking: SSE (CRD) à SSB + SSE (RCBD) Contrasts: SST à (t 1) orthogonal contrasts

1 Matrices and Systems of Linear Equations. a 1n a 2n

Lecture 11. Andrei Antonenko. February 26, Last time we studied bases of vector spaces. Today we re going to give some examples of bases.

92 J.P Jarić, D.S.Kuzmanović arrangements of its indices. Therefore, any linear combination of such isomers is an isotropic tensor. It can also be pro

MAS113 CALCULUS II SPRING 2008, QUIZ 4 SOLUTIONS

Determinants - Uniqueness and Properties

Complex Numbers and Quaternions for Calc III

An Envelope for Left Alternative Algebras

Example 2: Let R be any commutative ring with 1, fix a R, and let. I = ar = {ar : r R},

Lagrangian fluid mechanics

GENERALIZED PESCAR COMPLEX NUMBERS AND OPERATIONS WITH THESE NUMBERS. Virgil Pescar

ÒÄÆÉÖÌÄ. ÐÄÒÉÏÃÖËÉ ÀÌÏÝÀÍÉÓ x = f(t, x), x(0) = x(1) ÀÌÏáÓÍÀÃÏÁÉÓ ÊÀÒÂÀÃ ÝÍÏÁÉËÉ

x k 34 k 34. x 3

1.8 Dual Spaces (non-examinable)

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

Vectors and matrices: matrices (Version 2) This is a very brief summary of my lecture notes.

Ma 227 Review for Systems of DEs

Inside! Your Impact...p 5 How You Raised Awareness...p 9 The Bigger Picture...p 14

Roundoff Analysis of Gaussian Elimination

6.003 Homework #10 Solutions

More chapter 3...linear dependence and independence... vectors

Chapter 1 Matrices and Systems of Equations

Discrete Math I Exam II (2/9/12) Page 1

Matrices BUSINESS MATHEMATICS

DUAL SPLIT QUATERNIONS AND SCREW MOTION IN MINKOWSKI 3-SPACE * L. KULA AND Y. YAYLI **

ON THE N CANONICAL FIBONACCI REPRESENTATIONS OF ORDER AT

Newman-Penrose formalism in higher dimensions

Chapter 30 Design and Analysis of

Ch 4: The Continuous-Time Fourier Transform

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length.

Lecture Note of Week 2

When Gradient Systems and Hamiltonian Systems Meet

Judge dismisses wind lawsuit

CATEGORIZATION GENERATED BY PROTOTYPES AN AXIOMATIC APPROACH

Supplementary Information for Enhancing synchronization stability in a multi-area power grid

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given.

Elementary Row Operations on Matrices

Patrick Peter w/ G. Comer & N. Andersson PRD (2010)

linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one. For further discussion, assume matrice

π(x Y ) and π(k); Semi-Direct Products

ANoteontheRepresentationandDefinitionofDualSplitSemiQuaternionsAlgebra

Freeness and the Transpose

Relating DFT to N=2 gauged supergravity

Model reduction of coupled systems

COMP 633: Parallel Computing Fall 2018 Written Assignment 1: Sample Solutions

Transcription:

1 1

1

G P P (A G ) A G G (A G ) P (A G ) P (A G ) (A G ) (A G ) A G P (A G ) (A G ) (A G ) A G G A G i, j A G i j C = {0, 1,..., k} i j c > 0 c v k k + 1 k = 4 k = 5 5 5 R(4, 3, 3) 30 n {1,..., n} true false

1 1 2 3 4 5 6 7 8 9 1 8 2 7 9 6 3 5 4 1 9 2 8 5 7 3 6 4 G 1 G 2 G 3 1 2 3 4 5 6 7 8 9 1 0 1 0 1 0 0 0 0 0 2 1 0 1 0 1 0 0 0 0 3 0 1 0 0 0 1 0 0 0 4 1 0 0 0 1 0 1 0 0 5 0 1 0 1 0 1 0 1 0 6 0 0 1 0 1 0 0 0 1 7 0 0 0 1 0 0 0 1 0 8 0 0 0 0 1 0 1 0 1 9 0 0 0 0 0 1 0 1 0 1 2 3 4 5 6 7 8 9 1 0 0 0 0 0 0 1 1 0 2 0 0 0 0 0 1 0 1 0 3 0 0 0 0 1 0 1 0 0 4 0 0 0 0 1 1 0 0 0 5 0 0 1 1 0 0 0 0 1 6 0 1 0 1 0 0 0 0 1 7 1 0 1 0 0 0 0 0 1 8 1 1 0 0 0 0 0 0 1 9 0 0 0 0 1 1 1 1 0 1 2 3 4 5 6 7 8 9 1 0 0 0 0 0 0 0 1 1 2 0 0 0 0 0 0 1 0 1 3 0 0 0 0 0 1 0 1 0 4 0 0 0 0 0 1 1 0 0 5 0 0 0 0 0 1 1 1 1 6 0 0 1 1 1 0 0 0 0 7 0 1 0 1 1 0 0 0 0 8 1 0 1 0 1 0 0 0 0 9 1 1 0 0 1 0 0 0 0 A G1 A G2 A G3 G = (V, E) V = {1,..., n} E V V (x, y) E (y, x) E A G G n n A G [x, y] (x, y) E i th A A[i] A[i, j] j th A[i] u V degree(u) = {(u, v) (u, v) E} G δ(g) (G) δ {1,..., 7} 1 G = (V, E) n A G G π {1,..., n} π(g) G π π(g) = (V, E ) E = {(π(x), π(y)) (x, y) E} π(a G ) π(g) G G π A G = π(a G ) G 1 G 2 π 1 = (2, 8, 5, 9, 4, 7, 3) G 1 G 3 π 2 = (2, 9, 4, 8, 6, 7, 3)

π = (1, 2, 3)(4, 5, 6)(7, 10, 11) A A[i]A[j] i j s s n m A B A[1]A[2] A[n] B[1]B[2]... B[m] G G A G A G G G can(g) = min {π(g) π } G G = can(g) G 3 G 1 G 2 G 3 G 2 {1, 2, 3, 4} {5, 6, 7, 8} G 3

1 A n n l (A) = n 1 i=1 A[i] A[i + 1] l (A G1 ) = false l (A G2 ) = false l (A G3 ) = true A l (A ) A A A[i] A[i+1] G A G [1] A G [2] l (can(a)) G l (can(a G )) A A l (A) i A[i] A[i + 1] j 1 j < j A[i, j ] = A[i + 1, j ] A[i, j] > A[i + 1, j] B i, i + 1 i, i + 1 B A A A[i, j] > 0 i j j < i j 1 A[i] A[i + 1] A[i, 1] A[i, j 1] = B[i, 1] B[i, j 1] A[i ] = B[i ] 1 i < j i i + 1 A A[i, i ] = A[i + 1, i ] i < j A B [j, i] A[j, i] > A[j, i + 1] A[j, i] > B[j, i] B A j > i A[i, 1] A[i, j 1] = B[i, 1] B[i, j 1] A[i ] = B[i ] 1 i < i i i + 1 i i + 1 A B [i, j] A[i, j] > B[i, j] B A l (A) A 1 l (A 1 ) = true A 1 [2] A 1 [3] 2

j < i i i+1 j > i i i+1 3 A 2 l (A 2 ) = true A 2 A 1 A 2 s I {1,..., s } (s I) s I I I max(i) s 1 I s 2 (s 1 I) (s 2 I)

1 1 4 2 3 1 4 3 2 1 2 3 4 1 0 0 0 1 2 1 3 0 4 1 1 0 0 1 2 3 4 1 0 0 0 1 2 0 3 1 4 1 0 1 0 A 1 A 2 A n n l (A) = i<j A[i] {i,j} A[j] A n n l (A) l (A) l (A) i A[i] A[i + 1] A[i] {i,i+1} A[i+1] A[i, 1] A[i, i 1] = A[i+1, 1] A[i+ 1, i 1] A[i, i + 2] A[i, n] A[i + 1, i + 2] A[i + 1, n] A[i, i] = 0 A[i, i+1] = A[i+1, i] A[i, i] < A[i+1, i] A[i, i+1] = A[i+1, i] = 0 A[i] A[i + 1] O(n 2 ) O(n) s 1 {i,j} s 2 s 2 {j,k} s 3 s 1 {i,k} s 3 A A[1] {1,2} A[2] A[2] {2,4} A[4] A[1] {1,4} A[4] A[i] {i,i+1} A[i+1] A[i+1] {i+1,i+2} A[i+2] A[i] {i,i+2} A[i + 2] i i + 1 i + 2 A[i] = S 1 0 x y T 1 A[i + 1] = S 2 x 0 z T 2 A[i + 2] = S 3 y z 0 T 3 I S 1 yt 1 S 2 zt 2 S 2 xt 2 S 3 yt 3 S 1 xt 1 S 3 zt 3

1 2 3 4 5 1 2 0 0 3 0 1 0 0 0 4 1 0 0 0 0 5 1 0 0 0 0 1 2 3 4 5 1 0 0 0 1 1 2 3 1 0 4 5 1 0 0 0 0 1 2 3 4 5 1 2 0 0 1 0 0 3 0 1 0 0 0 4 0 5 1 0 0 0 0 A[1] {1,2} A[2] A[2] {2,4} A[4] A[1] {1,4} A[4] S 1 S 2 S 2 S 3 S 1 S 3 S 1 = S 2 S 2 S 3 S 2 = S 3 xt 1 zt 3 y z x y x z y = z x y x z x = y = z T 1 T 2 T 2 T 3 i j k i j i j j k j k i k i j k A[i] = S 1 0 T 1 x U 1 y V 1 A[j] = S 2 x T 2 0 U 2 z V 2 A[k] = S 3 y T 3 z U 3 0 V 3 S 1 = S 2 = S 3 T 3 T 1 T 2 x = 0 y = 1 S 1 T 1 U 1 yv 1 S 2 T 2 U 2 zv 2 S 2 xt 2 U 2 V 2 S 3 yt 3 U 3 V 3 A[i] {i,j} A[j] A[j] {j,k} A[k] S 1 T 1 xu 1 V 1 S 3 T 3 zu 3 V 3 A[i] {i,k} A[k] O(n) l (A) = A[i] {i,j} A[j] i < j j i 2 l A l (A) A G A l (A) i j i < j A[i] {i,j} A[j] π

1 k < i i j i j G B = A π(g) A k i, j A[i] A[j] i j 1 k < k k i, j A[i, k ] = A[j, k ] A[i, k] > A[j, k] 3 k < i i < k < j k > j i j A[i, j] A[j, i] k < i k 1 A[i] A[j] A[i, 1] A[i, k 1] = B[j, 1] B[j, k 1] A[i ] = B[i ] 1 i < k i j A[i ] A A[i, i ] = A[j, i ] i < k A B [k, i] A[k, i] > B[k, i] B A i < k < j A[i, 1] A[i, k 1] = A[j, 1] A[j, k 1] i A[1, i] A[k 1, i] = B[j, 1] B[j, k 1] i i < i A[i ] = B[i ] A[i, i] = 0 A A[j, i] 0 k < k A[i, k ] = B[i, k ] A B [i, k] A[i, k] > B[i, k] k > j A[i, 1] A[i, k 1] = A[j, 1] A[j, k 1] i j A[1, i] A[k 1, i] = B[1, j] B[k 1, j] i j i < i A[i ] = B[i ] A[i, i] = 0 A A[j, i] 0 A[j, i] = A[i, j] A[j, j] = 0 i j k 1 A B [i, k] A[i, k] > B[i, k]

i < k < j i j j < k i j l (A) A G l (A) π i j G A A π(g) B = A π(g) i < j B A l (A) A[i] = S 1 0 S 2 x S 3 A[j] = T 1 x T 2 0 T 3 i j B[i] = T 1 0 T 2 x T 3 B[j] = S 1 x S 2 0 S 3 B

1 A A B A B A B S 1,, S 3 T 1,, T 3 B A k l B[k] A[k] B k l i j l = i l = j A[k, i] B[k, j] A[k, j] B[k, j] l = i k i j k = i i j A B j i A B k < i l = i k = i i < l < j k = i l > j k < i l = i B[k] A[k] B[k, i] < A[k, i] B[k, i] = A[k, j] A[k, j] < A[k, i] A[j, k] < A[i, k] k A[i] A[j] A[i] {i,j} A[j] k = i i < l < j l > j B[k] A[k] B[i, l] < A[i, l] B[i, l] = A[j, l] A[j, l] < A[i, l] l A[i] A[j] A[i] {i,j} A[j] G P = {P 1,..., P p } G 1 i < j p v i P i v j P j v i < v j

P = {P 1,..., P p } G π G P 1 i p, v i P i, π(v i ) P i G 2 P = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9}} π = (2, 3, 4) P P 1 P 1 G P can(g, P ) = min {π(g) π P } G P G = can(g, P ) A n n P = {P 1, P 2,..., P p } p l (A, P ) = A[i] {i,j} A[j] k=1 {i, j} P k, i < j j i 2 G P l (A G, P ) A G A l (A, P ) P k {i, j} P k i < j A[i] {i,j} A[j] B = A π(g) π i j π P B A G G 2 P = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9}} G P G l (A G, P ) l (A G )

1 1 i<j v. (A[i, j] = A[j, i] A[i, i] = 0) i,j,k. A[i, j] + A[j, k] + A[k, i] < 3 i,j,k,l. A[i, j] + A[j, k] + A[k, l] + A[l, i] < 4 A[i, j] = e 1 i<j v 1 i v.δ A[i], δ = min i ( A[i]) = max( A[i]) i v e F k (v) v k+1 f k (v) F k (v) F k (v) f k (v) F k (v) F k (v) f k (v) F k (v) f 4 (v) v 24 25 v 30 f 4 (v) 40 v 49 F 4 (v) v 21 f 4 (v) 31 v 200 33 v 42 f 4 (v) F 4 (v) v e A v v e i, j, k i < k x i,j,k A[i, j] A[j, k] i k j x i,k {x i,j,k j i, j k} i k i,k. A[i, k] + x i,k < 2 i,k. j x i,j,k < 2

F 4 (v) e δ v 1 v 1 + δ 1 + δ 2 δ e f 4 (v 1) 2e/v v e (δ, ) l l v = 31 e = 80 (δ, ) {(4, 6), (4, 7), (5, 6)} v = 31 e = 81 (5, 6) v < 20 l 4.7 F 4 (15) 1.8 v 60 F 4 (20) f 4 (v) f 4 (v) l l l v f 4 (v) 4 (v) 4 (v) + 1

1 l l l + 4 f 4 (v) F(v) (δ, ) (, δ 1) (m, n) S m,n m n 1 S,δ 1 5 3 4 S,δ 1 S,δ 1 δ 1 S,δ 1 S 6,4 31 31 S 6,4

S 6,4 F 4 (31) f 4 (31) f 4 (32) f 4 (31) 80 f 4 (31) = 80 f 4 (31) = 80 f 4 (32) 85 f 4 (32) 85 f 4 (32) = 85 l l F 4 (v) v v e = f 4 (v) v 15 v f 4 (v) F 4 (v) sols time

1 16 v 19 (, δ 1) 17 v 19 l l l l P k {i, j} P k i < j A[i] A[j] A[i] {i,j} A[j] (i, j) v = 17 (δ, ) = (4, 5) v 20 S m,[n1,...,n m] m n 1,..., n m v 21 (δ, ) F 4 (22) F 4 (23) F 4 (24) F 4 (25) F 4 (32) l l l F 4 (32) F 4 (v) 26 v 31 F 4 (v 1) F 4 (v) G v 20 v 27 v = 32 (δ, ) G G (δ, ) S m,[n1,...,n m] S m,[n 1,...,n m ] S m,[n1,...,n m] S m,[n 1,...,n m ]

5 32 85 4 4 l l 1249.66 430.58 0.14 F 4 (v) f 5 (v) f 5 (v) + l l

1 f 4(v) (δ, ) 41 (3, 5) S 5,[3,3,3,3,2] 44 (3, 5) S 5,[3,3,3,3,3] (4, 5) S 5,[3,3,3,3,3] 47 (3, 5) S 5,[4,3,3,3,3] (4, 5) S 5,[4,3,3,3,3] 50 (3, 5) S 5,[4,4,3,3,3] (4, 5) S 5,[4,4,3,3,3] S 5,[4,3,3,3,3] 54 (4, 5) S 5,[4,4,4,3,3] 57 (3, 5) S 5,[4,4,4,4,3] S 5,[4,4,4,3,3] (4, 5) S 5,[4,4,4,4,3] S 5,[4,4,4,3,3] (4, 6) S 6,[3,3,3,3,3,3] (4, 5) S 5,[4,4,4,4,4] (4, 5) S 5,[4,4,4,4,4] (3, 6) S 6,[4,4,4,4,3,2] (4, 5) S 5,[4,4,4,4,4] (4, 6) S 6,[4,4,4,3,3,3] (4, 6) S 6,[4,4,4,4,3,3] (4, 6) S 6,[4,4,4,4,4,3] S 6,[5,4,4,4,3,3] (4, 6) S 6,[4,4,4,4,4,4] S 6,[5,4,4,4,4,3] (5, 6) S 6,[4,4,4,4,4,4] (5, 6) S 6,[5,4,4,4,4,4] 20 v 25 v = 32 5 l + l l f 5 (v) l O(n 2 ) O(n) l k (G, κ) G = (V, E) κ: E {1,..., k} (G, κ)

1 i<j n. ( 1 A[i, j] 3 A[i, j] = A[j, i] ) 1 i n. ( A[i, i] = 0 ) 1 i<j<k n. ( ) A i,j = A j,k = A k,i (3, 3, 3; n) V = {1,..., n} n n A A[i, j] = { κ(i, j) (i, j) E 0 φ(a) A n n φ A φ A P l l 1 1 (3, 3, 3; n) K n (r 1,..., r k ; n) k K n K ri i 1 i k R(r 1,..., r k ) n > 0 (r 1,..., r k ; n) R(3, 3, 3) = 17 (3, 3, 3; n) K n n 14 n 16 (3, 3, 3; 13) (3, 3, 3; n) n 3 n K 3 (3, 3, 3; n) \

1 n \ (3, 3, 3; n) 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 1 0 2 2 3 3 1 1 2 2 3 1 1 2 3 3 1 2 0 3 2 3 2 3 1 1 2 1 2 3 1 3 1 2 3 0 3 2 1 2 1 3 2 2 3 1 3 1 1 3 2 3 0 2 3 2 2 1 1 3 1 3 2 1 1 3 3 2 2 0 2 1 3 2 1 3 3 1 1 2 2 1 2 1 3 2 0 3 3 1 1 2 3 2 1 3 2 1 3 2 2 1 3 0 1 1 3 3 2 2 3 1 2 2 1 1 2 3 3 1 0 3 1 2 1 3 3 2 2 2 1 3 1 2 1 1 3 0 3 3 2 1 2 3 2 3 2 2 1 1 1 3 1 3 0 1 3 3 2 2 3 1 1 2 3 3 2 3 2 3 1 0 2 1 2 1 3 1 2 3 1 3 3 2 1 2 3 2 0 1 1 2 3 2 3 1 3 1 2 2 3 1 3 1 1 0 2 2 3 3 1 3 2 1 1 3 3 2 2 2 1 2 0 1 3 3 3 1 1 2 3 1 2 3 2 1 2 2 1 0 R(3, 3, 3; 16) 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 1 0 2 2 3 3 1 1 2 2 3 1 1 2 3 3 1 2 0 3 2 3 1 2 1 3 2 2 3 1 1 3 1 2 3 0 3 2 2 2 3 1 1 3 1 1 3 2 1 3 2 3 0 2 2 3 1 2 1 1 3 3 2 1 1 3 3 2 2 0 3 1 2 1 2 3 2 3 1 1 2 1 1 2 2 3 0 3 3 1 1 2 3 2 3 1 2 1 2 2 3 1 3 0 1 3 1 3 2 1 2 3 2 2 1 3 1 2 3 1 0 1 3 2 1 3 2 3 2 2 3 1 2 1 1 3 1 0 3 1 2 3 3 2 2 3 2 1 1 2 1 1 3 3 0 3 3 2 1 2 3 1 2 3 1 3 2 3 2 1 3 0 2 1 1 2 3 1 3 1 3 2 3 2 1 2 3 2 0 2 1 1 3 2 1 1 3 3 2 1 3 3 2 1 2 0 2 1 3 3 1 3 2 1 3 2 2 3 1 1 1 2 0 2 3 3 3 2 1 1 1 3 3 2 2 2 1 1 2 0 (G, κ 1 ) (H, κ 2 ) k G = ([n], E 1 ) H = ([n], E 2 ) (G, κ 1 ) (H, κ 2 ) (G, κ 1 ) (H, κ 2 ) π : [n] [n] σ : [k] [k] (u, v) E 1 (π(u), π(v)) E 2 κ 1 ((u, v)) = σ(κ 2 ((π(u), π(v)))) σ (G, κ 1 ) (H, κ 2 ) (3, 3, 3; 16)

(3, 3, 3; n) 14 n 17 R(4, 3, 3) 30 30 P G P P (A G ) A G G l l k + 1 k = 4 k = 5

1 5 20 32 ν 5 40 49 ex(n; {C 3, C 4 })