Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway

Similar documents
TECTONIC PLATES. reflect

The Four Layers The Earth is composed of four different layers. The crust is the layer that you live on, and it is the most widely studied and

OBJECTIVE: For each boundary type, give an example of where they occur on Earth.

Evidence from the Surface. Chapter 02. Continental Drift. Fossil Evidence for Pangaea. Seafloor Spreading. Seafloor Spreading 1/31/2012

In order to study Plate Tectonics, we must first

Continental Drift. & Plate Tectonics

FORCES ON EARTH. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth.

PLATE TECTONICS REVIEW GAME!!!!

Plate Tectonics: A Scientific Revolution Unfolds

Plate Tectonic Theory

Earth Movement and Resultant Landforms

Continental Drift and Plate Tectonics

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE

FORCES ON EARTH UNIT 3.2. An investigation into how Newton s Laws of Motion are applied to the tectonic activity on Earth.

UNIT 6 PLATE TECTONICS

10/29/13. Plate Boundaries. 3 types of plate boundaries: Divergent (divide) Convergent (collide) Transform (slide past)

Unit Topics. Topic 1: Earth s Interior Topic 2: Continental Drift Topic 3: Crustal Activity Topic 4: Crustal Boundaries Topic 5: Earthquakes

4 Deforming the Earth s Crust

A) B) C) D) 4. Which diagram below best represents the pattern of magnetic orientation in the seafloor on the west (left) side of the ocean ridge?

Plate Tectonics. Structure of the Earth

Ch 9.1 Notes. Objective: Be able to explain the theory of plate tectonics and be able to explain evidence that supports it.

Full file at

22.4 Plate Tectonics. Africa

Unit 4 Lesson 6 Plate Tectonics

Plate Tectonics. Continental Drift Sea Floor Spreading Plate Boundaries

PLATE TECTONICS. Continental Drift. Continental Drift. Continental Drift. Continental Drift- Wegener s Evidence

Chapter 7 Plate Tectonics. Plate tectonics accounts for important features of Earth s surface and major geologic events.

Plate Tectonics. The Theory of Plate Tectonics. The Plate Tectonics Theory. 62 Plate Tectonics Reading Essentials

Refer to the map on page 173 to answer the following questions.

5. Convergent boundaries produce a relatively low number of earthquakes compared to other boundaries. a. True

1.4 Notes: Plates Converge or Scrape Past Each Other Think About Tectonic Plates Push Together at Convergent Boundaries

Why Does Oceanic Crust Sink Beneath Continental Crust At Convergent Boundaries

12. The diagram below shows the collision of an oceanic plate and a continental plate.

ANOTHER MEXICAN EARTHQUAKE! Magnitude 7.1, Tuesday Sept. 19, 2017

Plate Tectonics. Essentials of Geology, 11 th edition Chapter 15

UNIT 11 PLATE TECTONICS

SUBSURFACE CHANGES TO EARTH. Ms. Winkle

Plate Tectonics. entirely rock both and rock

Yanbu University College. General Studies Department. PHSC001 Course. Chapter9 (Basic Geology: Earthquakes and volcanoes ) Worksheet Solutions

Continental Drift. Wegener theory that the crustal plates are moving and once were a super continent called Pangaea.

Plate Tectonics. By Destiny, Jarrek, Kaidence, and Autumn

Directed Reading. Section: The Theory of Plate Tectonics. to the development of plate tectonics, developed? HOW CONTINENTS MOVE

Name Date Class. How have geologists learned about Earth s inner structure? What are the characteristics of Earth s crust, mantle, and core?

sonar seismic wave basalt granite

USU 1360 TECTONICS / PROCESSES

TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE

Shown is the supercontinent Pangaea before it broke up and the continents drifted.

Unit 11: Plate Tectonics

In the space provided, write the letter of the definition that best matches the term or phrase.

Dynamic Crust Practice

In 1912 Alfred Wegener proposed Continental Drift the continents have moved over time the continents were part of one giant landmass named Pangaea.

Continental Drift to Plate Tectonics: From Hypothesis to Theory

1. List the 3 main layers of Earth from the most dense to the least dense.

Plate Tectonics Practice Test

Chapter. Graphics by Tasa Graphic Arts. Inc.

Chapter 4: Plate Tectonics

Distribution of Continents Mid-ocean Ridges Trenches. Deformation Metamorphism Volcanism Earthquakes

12/3/2014. Plate Tectonics: A Scientific Revolution Unfolds Earth Science, 13e Chapter 7. Continental drift: an idea before its time

I. Earth s Layers a. Crust: Earth s outside layer. Made of mostly rock. i. Continental: er; made of mostly granite, forms the continents and shallow

CONTINENTAL DRIFT THEORY

The Theory of Plate Tectonics

Plate Tectonics: The New Paradigm

The map below shows the locations of earthquakes and volcanoes

Crustal Boundaries. As they move across the asthenosphere and form plate boundaries they interact in various ways. Convergent Transform Divergent

Plates & Boundaries The earth's continents are constantly moving due to the motions of the tectonic plates.

Plate Tectonics Tutoiral. Questions. Teacher: Mrs. Zimmerman. Plate Tectonics and Mountains Practice Test

Ch. 9 Review. Pgs #1-31 Write Questions and Answers

5/24/2018. Plate Tectonics. A Scientific Revolution Unfolds

12.2 Plate Tectonics

6. In the diagram below, letters A and B represent locations near the edge of a continent.

Plate Tectonics Notes

PSc 201 Chapter 3 Homework. Critical Thinking Questions

1. What is Wegener s theory of continental drift? 2. What were the 4 evidences supporting his theory? 3. Why wasn t Wegener s theory excepted?

Geologists are scientists who study Earth. They want to

Plate Tectonics. Earth has distinctive layers - Like an onion

PLATE TECTONICS 11/13/ Investigations of glaciers also indicated that the land masses on Earth were once a supercontinent.

1. I can describe evidence for continental drift theory (e.g., fossil evidence, mountain belts, paleoglaciation)

Earth s Dynamic Surface

Pangaea to the Present Lesson #2

Convergent plate boundaries. Objective to be able to explain the formation and key features of these zones.

Topic 5: The Dynamic Crust (workbook p ) Evidence that Earth s crust has shifted and changed in both the past and the present is shown by:

3. PLATE TECTONICS LAST NAME (ALL IN CAPS): FIRST NAME: PLATES

Earth and Space Science Semester 2 Exam Review. Part 1. - Convection currents circulate in the Asthenosphere located in the Upper Mantle.

1. occurs when the oceanic crust slides under the continental crust.

Earth s Changing Surface

What Are Tectonic Plates?

Outcome C&D Study Guide

4 Layers of the earth 7 main plates of the earth 3 main plate boundaries 2 types of crust 3 main features of plate tectonics 3 main theorists and

Unit 10 ~ Learning Guide

Name Date Class. Plate Tectonics

OCN 201 Seafloor Spreading and Plate Tectonics. Question

Name Date Class. continents looked as if they might fit like puzzle pieces into and.

Plate Tectonics Unit II: Plate Boundaries (3.5 pts)

Along the center of the mid-ocean ridge is a rift valley that forms when the plates separate.

Plate Tectonic Vocabulary Chapter 10 Pages

Plate Tectonics. These icons indicate that teacher s notes or useful web addresses are available in the Notes Page.

Plates Moving Apart Types of Boundaries

Layer Composition Thickness State of Matter

CHAPTER 9. Basics Of geology: earthquakes & volcanoes

Transcription:

Beneath our Feet: The 4 Layers of the Earty by Kelly Hashway

The Earth is more than a giant ball made up of dirt, rocks, and minerals. The Earth may look like a giant ball from when looking at it from the moon, and the surface may be water, dirt, and other minerals, but deep inside the Earth there are four main layers. These four layers of the Earth include the crust, mantle, outer core, and inner core. The first layer most people are quite familiar with because they walk on it every day, or maybe even dig holes into it. It is called the Earth's crust. The Earth's crust is the outer layer of the Earth and is about 5 to 25 miles thick depending on its location. It is the thinnest layer, only about 3-5 miles thick under the oceans which is called the oceanic crust. Under the continents it is about 25 miles thick, which is called the continental crust. The temperatures of the Earth's crust can be anywhere between air temperature and 1600Â F, which is hot enough to melt the rocks inside the Earth. The thin layer of the crust is also broken into pieces called plates. The plates float on top of soft mantle below the crust. The movement of these plates can cause earthquakes to occur. Reading: Theory of Plate Tectonics When the concept of seafloor spreading came along, scientists recognized that it was the mechanism to explain how continents could move around Earth s surface. Like the scientists before us, we will now merge the ideas of continental drift and seafloor spreading into the theory of plate tectonics. Earth s Tectonic Plates Seafloor and continents move around on Earth s surface, but what is actually moving? What portion of the Earth makes up the plates in plate tectonics? This question was also answered because of technology developed during war times in this case, the Cold War. The plates are made up of the lithosphere. Figure 1. Earthquakes outline the plates. During the 1950s and early 1960s, scientists set up seismograph networks to see if enemy nations were testing atomic bombs. These seismographs also recorded all of the earthquakes around the planet. The seismic records could be used to locate an earthquake s epicenter, the point on Earth s surface directly above the place where the earthquake occurs. Earthquake epicenters outline the plates. Mid-ocean ridges, trenches, and large faults mark the edges of the plates, and this is where earthquakes occur (figure 1). The lithosphere is divided into a dozen major and several minor plates (figure 2). The plates edges can be drawn by connecting the dots that mark earthquakes epicenters. A single plate can be made of all oceanic lithosphere or all continental lithosphere, but nearly all plates are made of a combination of both.

Figure 2. The lithospheric plates and their names. The arrows show whether the plates are moving apart, moving together, or sliding past each other. Movement of the plates over Earth s surface is termed plate tectonics. Plates move at a rate of a few centimeters a year, about the same rate fingernails grow. How Plates Move Figure 3. Mantle convection drives plate tectonics. Hot material rises at mid-ocean ridges and sinks at deep sea trenches, which keeps the plates moving along the Earth s surface. If seafloor spreading drives the plates, what drives seafloor spreading? Picture two convection cells side-by-side in the mantle, similar to the illustration in figure 3. 1. Hot mantle from the two adjacent cells rises at the ridge axis, creating new ocean crust. 2. The top limb of the convection cell moves horizontally away from the ridge crest, as does the new seafloor. 3. The outer limbs of the convection cells plunge down into the deeper mantle, dragging oceanic crust as well. This takes place at the deep sea trenches. 4. The material sinks to the core and moves horizontally. 5. The material heats up and reaches the zone where it rises again. Plate Boundaries Plate boundaries are the edges where two plates meet. Most geologic activities, including volcanoes, earthquakes, and mountain building, take place at plate boundaries. How can two plates move relative to each other? Divergent plate boundaries: the two plates move away from each other. Convergent plate boundaries: the two plates move towards each other. Transform plate boundaries: the two plates slip past each other. The type of plate boundary and the type of crust found on each side of the boundary determines what sort of geologic activity will be found there. Divergent Plate Boundaries Plates move apart at mid-ocean ridges where new seafloor forms. Between the two plates is a rift valley. Lava flows at the surface cool rapidly to become basalt, but deeper in the crust, magma cools more slowly to form gabbro. So the entire ridge system is

made up of igneous rock that is either extrusive or intrusive. Earthquakes are common at mid-ocean ridges since the movement of magma and oceanic crust results in crustal shaking. The vast majority of mid-ocean ridges are located deep below the sea (figure 4). Figure 4. (a) Iceland is the one location where the ridge is located on land: the Mid-Atlantic Ridge separates the North American and Eurasian plates. Convergent Plate Boundaries When two plates converge, the result depends on the type of lithosphere the plates are made of. No matter what, smashing two enormous slabs of lithosphere together results in magma generation and earthquakes. Figure 6. Subduction of an oceanic plate beneath a continental plate causes earthquakes and forms a line of volcanoes known as a continental arc. Ocean-Continent When oceanic crust converges with continental crust, the denser oceanic plate plunges beneath the continental plate. This process, called subduction, occurs at the oceanic trenches (figure 6). The entire region is known as a subduction zone. Subduction zones have a lot of intense earthquakes and volcanic eruptions. The subducting plate causes melting in the mantle. The magma rises and erupts, creating volcanoes. These coastal volcanic mountains are found in a line above the subducting plate (figure 7). The volcanoes are known as a continental arc. Figure 7. (a) At the trench lining the western margin of South America, the Nazca plate is subducting beneath the South American plate, resulting in the Andes Mountains (brown and red uplands); (b) Convergence has pushed up limestone in the Andes Mountains where volcanoes are common.

The movement of crust and magma causes earthquakes. Look at this map of earthquake epicenters at subduction zones. Figure 8. The Cascade Mountains of the Pacific Northwest are a continental arc. If the magma at a continental arc is felsic, it may be too viscous (thick) to rise through the crust. The magma will cool slowly to form granite or granodiorite. These large bodies of intrusive igneous rocks are called batholiths, which may someday be uplifted to form a mountain range (figure 9). Ocean-Ocean When two oceanic plates converge, the older, denser plate will subduct into the mantle. An ocean trench marks the location where the plate is pushed down into the mantle. The line of volcanoes that grows on the upper oceanic plate is an island arc. Do you think earthquakes are common in these regions (figure 10)? Figure 10. (a) Subduction of an ocean plate beneath an ocean plate results in a volcanic island arc, an ocean trench and many earthquakes. (b) Japan is an arc-shaped island arc composed of volcanoes off the Asian mainland, as seen in this satellite image. Continent-Continent Continental plates are too buoyant to subduct. What happens to continental material when it collides? Since it has nowhere to go but up, this creates some of the world s

largest mountains ranges (figure 11). Magma cannot penetrate this thick crust so there are no volcanoes, although the magma stays in the crust. Metamorphic rocks are common because of the stress the continental crust experiences. With enormous slabs of crust smashing together, continent-continent collisions bring on numerous and large earthquakes. Figure 11. (a) In continent-continent convergence, the plates push upward to create a high mountain range. (b) The world s highest mountains, the Himalayas, are the result of the collision of the Indian Plate with the Eurasian Plate, seen in this photo from the International Space Station. The Appalachian Mountains are the remnants of a large mountain range that was created when North America rammed into Eurasia about 250 million years ago. Transform Plate Boundaries Figure 12. At the San Andreas Fault in California, the Pacific Plate is sliding northwest relative to the North American plate, which is moving southeast. At the northern end of the picture, the transform boundary turns into a subduction zone. Transform plate boundaries are seen as transform faults, where two plates move past each other in opposite directions. Transform faults on continents bring massive earthquakes (figure 12). Earth s Changing Surface Geologists know that Wegener was right because the movements of continents explain so much about the geology we see. Most of the geologic activity that we see on the planet today is because of the interactions of the moving plates.

Figure 14. Mountain ranges of North America. In the map of North America (figure 14), where are the mountain ranges located? Using what you have learned about plate tectonics, try to answer the following questions: 1. What is the geologic origin of the Cascades Range? The Cascades are a chain of volcanoes in the Pacific Northwest. They are not labelled on the diagram but they lie between the Sierra Nevada and the Coastal Range. 2. What is the geologic origin of the Sierra Nevada? (Hint: These mountains are made of granitic intrusions.) 3. What is the geologic origin of the Appalachian Mountains along the Eastern US? Figure 15. About 200 million years ago, the Appalachian Mountains of eastern North America were probably once as high as the Himalaya, but they have been weathered and eroded significantly since the breakup of Pangaea. Remember that Wegener used the similarity of the mountains on the west and east sides of the Atlantic as evidence for his continental drift hypothesis. The Appalachian mountains formed at a convergent plate boundary as Pangaea came together (figure 15). Before Pangaea came together, the continents were separated by an ocean where the Atlantic is now. The proto-atlantic ocean shrank as the Pacific ocean grew. Currently, the Pacific is shrinking as the Atlantic is growing. This supercontinent cycle is

responsible for most of the geologic features that we see and many more that are long gone (figure 16). Figure 16. Scientists think that the creation and breakup of a supercontinent takes place about every 500 million years. The supercontinent before Pangaea was Rodinia. A new continent will form as the Pacific ocean disappears. Lesson Summary Plates of lithosphere move because of convection currents in the mantle. One type of motion is produced by seafloor spreading. Plate boundaries can be located by outlining earthquake epicenters. Plates interact at three types of plate boundaries: divergent, convergent and transform. Most of the Earth s geologic activity takes place at plate boundaries. At a divergent boundary, volcanic activity produces a mid ocean ridge and small earthquakes. At a convergent boundary with at least one oceanic plate, an ocean trench, a chain of volcanoes develops and many earthquakes occur. At a convergent boundary where both plates are continental, mountain ranges grow and earthquakes are common. At a transform boundary, there is a transform fault and massive earthquakes occur but there are no volcanoes. Processes acting over long periods of time create Earth s geographic features.