Optimal Design of Generalized Process-storage Network Applicable To Polymer Processes

Similar documents
Temperature Control in Autothermal Reforming Reactor

The Study of Structure Design for Dividing Wall Distillation Column

Missing Value Estimation and Sensor Fault Identification using Multivariate Statistical Analysis

Specimen Geometry Effects on Oxidation Behavior of Nuclear Graphite

Optimal Hydrogen Recycling Network Design of Petrochemical Complex

Problem Set 9 Solutions

A NOTE ON CES FUNCTIONS Drago Bergholt, BI Norwegian Business School 2011

Surface Reaction Modeling for Plasma Etching of SiO 2

A Simple Inventory System

수소가스화기에서석탄의메탄화반응특성. Characteristics of Coal Methanation in a Hydrogasifier

Amiri s Supply Chain Model. System Engineering b Department of Mathematics and Statistics c Odette School of Business

Global Optimization of Bilinear Generalized Disjunctive Programs

3. Be able to derive the chemical equilibrium constants from statistical mechanics.

경막형용융결정화에의한파라디옥사논과디에틸렌글리콜혼합물로부터파라디옥사논의정제. Purification of p-dioxanone from p-dioxanone and Diethylene Glycol Mixture by a Layer Melt Crystallization

An Interactive Optimisation Tool for Allocation Problems

CinChE Problem-Solving Strategy Chapter 4 Development of a Mathematical Model. formulation. procedure

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Economics 101. Lecture 4 - Equilibrium and Efficiency

Temperature Effect on the Retention Behavior of Sugars and Organic Acids on poly (4-vinylpyridine) Resin

Design Equations. ν ij r i V R. ν ij r i. Q n components. = Q f c jf Qc j + Continuous Stirred Tank Reactor (steady-state and constant phase)

10.34 Numerical Methods Applied to Chemical Engineering Fall Homework #3: Systems of Nonlinear Equations and Optimization

An Integrated OR/CP Method for Planning and Scheduling

Applied Stochastic Processes

Winter 2008 CS567 Stochastic Linear/Integer Programming Guest Lecturer: Xu, Huan

PROBLEM SET 7 GENERAL EQUILIBRIUM

History and Status of the Chum Salmon Enhancement Program in Korea

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

Suggested solutions for the exam in SF2863 Systems Engineering. June 12,

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

Probability Theory. The nth coefficient of the Taylor series of f(k), expanded around k = 0, gives the nth moment of x as ( ik) n n!

Equation of State Modeling of Phase Equilibrium in the Low-Density Polyethylene Process

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique

3.2. Cournot Model Cournot Model

ECE559VV Project Report

Notes on Kehoe Perri, Econometrica 2002

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model

Structure and Drive Paul A. Jensen Copyright July 20, 2003

How Strong Are Weak Patents? Joseph Farrell and Carl Shapiro. Supplementary Material Licensing Probabilistic Patents to Cournot Oligopolists *

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

/CO/CO 2. Eui-Sub Ahn, Seong-Cheol Jang, Do-Young Choi, Sung-Hyun Kim* and Dae-Ki Choi

Simultaneous BOP Selection and Controller Design for the FCC Process

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

VQ widely used in coding speech, image, and video

ECE 534: Elements of Information Theory. Solutions to Midterm Exam (Spring 2006)

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Seed Production from Pond Cultured Cherry Salmon, e ll, Oncorhynchus masou (Brevoort) ll ll

Integrated approach in solving parallel machine scheduling and location (ScheLoc) problem

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Portfolios with Trading Constraints and Payout Restrictions

Equilibrium with Complete Markets. Instructor: Dmytro Hryshko

Solution (1) Formulate the problem as a LP model.

Lecture. Polymer Thermodynamics 0331 L Chemical Potential

= z 20 z n. (k 20) + 4 z k = 4

EFFECTS OF JOINT REPLENISHMENT POLICY ON COMPANY COST UNDER PERMISSIBLE DELAY IN PAYMENTS

CHARACTERISTICS OF COMPLEX SEPARATION SCHEMES AND AN ERROR OF SEPARATION PRODUCTS OUTPUT DETERMINATION

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

CIE4801 Transportation and spatial modelling Trip distribution

Optimization Methods for Engineering Design. Logic-Based. John Hooker. Turkish Operational Research Society. Carnegie Mellon University

Numerical Solution of Ordinary Differential Equations

(1, T) policy for a Two-echelon Inventory System with Perishableon-the-Shelf

Journal of Physics: Conference Series. Related content PAPER OPEN ACCESS

Digital Signal Processing

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

Economics 8105 Macroeconomic Theory Recitation 1

A Hybrid Variational Iteration Method for Blasius Equation

A NOTE ON A PERIODIC REVIEW INVENTORY MODEL WITH UNCERTAIN DEMAND IN A RANDOM ENVIRONMENT. Hirotaka Matsumoto and Yoshio Tabata

Lecture 4: November 17, Part 1 Single Buffer Management


n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14

Credit Card Pricing and Impact of Adverse Selection

Which Separator? Spring 1

NUMERICAL DIFFERENTIATION

n

The Expectation-Maximization Algorithm

Absorbing Markov Chain Models to Determine Optimum Process Target Levels in Production Systems with Rework and Scrapping

ORIGIN 1. PTC_CE_BSD_3.2_us_mp.mcdx. Mathcad Enabled Content 2011 Knovel Corp.

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

Single-Facility Scheduling over Long Time Horizons by Logic-based Benders Decomposition

COEFFICIENT DIAGRAM: A NOVEL TOOL IN POLYNOMIAL CONTROLLER DESIGN

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

Chapter 2 Transformations and Expectations. , and define f

STOCHASTIC INVENTORY MODELS INVOLVING VARIABLE LEAD TIME WITH A SERVICE LEVEL CONSTRAINT * Liang-Yuh OUYANG, Bor-Ren CHUANG 1.

CHAPTER 17 Amortized Analysis

18.1 Introduction and Recap

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING

Estimation of the composition of the liquid and vapor streams exiting a flash unit with a supercritical component

Statistical tables are provided Two Hours UNIVERSITY OF MANCHESTER. Date: Wednesday 4 th June 2008 Time: 1400 to 1600

NP-Completeness : Proofs

Rao IIT Academy/ SSC - Board Exam 2018 / Mathematics Code-A / QP + Solutions JEE MEDICAL-UG BOARDS KVPY NTSE OLYMPIADS SSC - BOARD


First day August 1, Problems and Solutions

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Computing Correlated Equilibria in Multi-Player Games

1 The Sidrauski model

FIRST AND SECOND ORDER NECESSARY OPTIMALITY CONDITIONS FOR DISCRETE OPTIMAL CONTROL PROBLEMS

1 (1 + ( )) = 1 8 ( ) = (c) Carrying out the Taylor expansion, in this case, the series truncates at second order:

Transcription:

Korean Chem. Eng. Res., Vol. 45, No. 3, une, 007, pp. 49-57 m o n m m o-nmo o n m Çmm * 608-739 e n 100 * 100-715 ne t 3 6 (006 10o p r, 007 3o 9p }ˆ Optmal Desgn of Generalzed Process-storage Networ Applcable To Polymer Processes Gyeongbeom Y and Euy-Soo Lee* Department of Chemcal Engneerng, Puyong Natonal Unversty, San 100 Yongdang-dong Nam-gu, Busan 608-739, Korea *Department of Chemcal Engneerng, Donggu Unversty, 3 Ga 6 Pl-dong ung-gu, Seoul 100-715, Korea (Receved October 006; accepted 9 March 007 Ž p e r-rqs sp r l rp rn l. s q p ep q ~. l l Ž p rn o l e r l rl v. prp l l o s p r pp v l. l l p rp m l o s p r pp r lr. p rp ro ql r rr r p. o s r pp p p rp q l Ž p lr rp rn ep r. r q l rn l p on p lž q p m ˆ l. l Š rp r p p } re m. p } p rp p vr p rp ˆ v on p. rp np o p r l q l v 6/10 o. h Abstract The perodc square wave (PSW model was successfully appled to the optmal desgn of a batch-storage networ. The networ structure can cover any type of batch producton, dstrbuton and nventory system, ncludng recycle streams. Here we extend the coverage of the PSW model to multtasng sem-contnuous processes as well as pure contnuous and batch processes. n prevous solutons obtaned usng the PSW model, the feedstoc composton and product yeld were treated as nown constants. Ths constrant s relaxed n the present wor, whch treats the feedstoc composton and product yeld as free varables to be optmzed. Ths modfcaton maes t possble to deal wth the poolng problem commonly encountered n ol refnery processes. Despte the greater complexty that arses when the feedstoc composton and product yeld are free varables, the PSW model stll gves analytc lot szng equatons. The ablty of the proposed method to determne the optmal plant desgn s demonstrated through the example of a hgh densty polyethylene (HDPE plant. Based on the analytcal optmalty results, we propose a practcal process optmalty measure that can be used for and of process. Ths measure facltates drect comparson of the performance of multple processes, and hence s a useful tool for dagnosng the status of process systems. The result that the cost of a process s proportonal to the square root of average flow rate s smlar to the well-nown sx-tenths factor rule n plant desgn. Key words: Optmalty, Lot-sze, Sem-contnuous, Poolng, Multtas, Polymer 1. Ym Relats[1]l Ž p n q p pn l e r-rqs p r ep To whom correspondence should be addressed. E-mal: gby@pnu.ac.r o m. Ym Relats[]l rq l p rp e r-rqsp r l r ep o lp, q p rp s l [3]. sp l Ž p erp qrp nr n e l rp o p p. p qrp q p l q 49

50 p Ëpp l [4]. l l Ž p n p rp q s e rl p qlp l e rp ˆ q p. l rp HDPE, PP, LDPE, LLDPE, PVC, PS, ABS, CB, PBm v p n q rl rn tn rp. o o r, nr r ~ ll lt r p l. o s r pp n rom o rl n. l l p rp m l o s r pp vr l. l rp r redš l tn l trp. p r p re l p [5, 6]. l l l p rp nmp r l p r p q. n Ž p pn l p r p l rp r r e l r o p. rp r psrp r n, q ov n q p q Œ q np p. o ˆp l rl rn p r p } m tr r re p. r p o l v r p o p. p rp r r p } p ep r, v nr r p qlp r np. r r l rp r qop r q rl r Œl p q p. l l re p rs r p qp pp rp d rl q n. p rp vp p l e rp p p. n l l re p r-rqs s e, l e r r p p q l rn p. l p ˆp q l r r r re. Ym Relats[4]l l q p rp l l p v v d p q p.. n Kuhn-Tucer l l n p rpm n Ym Relats[3]m p. l p rp Fg. 1l ˆ } e l r p. p r p p q lp rp, Fg. l ˆ } p rl v r qlp v n p ˆ. q lp,,, N p v, t rp p. rl p ql l l l p Ym Relats [3]p m p. rp o rqs, p r p l rqs v. rqs p v rq r vp m p. qlp o n r p. r l p ql np o p o p F n p rp, r l p ql np r p o p G n r p. o s r pp p. r l p ql nl v vep p. o45 o3 007 6 Fg. 1. General structure of batch-storage networ. Fg.. Multtasng batch process. F n 1 G n 1 B n ------ l B n p r l ql np n nre p ˆ. rl Fg. l ˆ m p t ω m eq e `t tn nr p. ω l N p t p ˆ. v ω ω, y p, 0 1p. t p rp Kuhn-Tucer s p p. e p qlp l p v r ol qlp n l. r l ql nl o tp eqe p `t n p ˆ, r eqe p t n ' p ˆ, p ep. t n ' `t n t n ( n 1 `t n `t ω (3 n 1 l t n o tp r eqe p o tpe } e p p. t n p ppp p, m, Ym Relats[3]l t n (1 x n ' p vr l. l (`x n, x n ' (o tp r rqs nr e p 1 q. p ep rl (1

rr v d l rl rr v. rl t n p p rr. rqs l v vep p. q rl rn p p r-rqs s r 51 1 G n K( 1 D 1 F n l D o q K( v p o p, D m p q m M( l Ž v p o p. rp rep p. (, n l θ o v p (, n p, θ r v ( n, p p. o vp p o D, t ω, eq e t rqs nr e p x l p rp. p B D ω p. sr p Ž p rp o D m, t ω m, eqe, rqs nr e p p Ž B m D m ω m p v p. r l t o p qlp Ž l p l. q l p qlp e np v p Fg. 3l ˆ m p t rp qlp p v p p. qlp v l Ž p p pn l p p p qll lp p. p rp Fg. 4l ˆ } l rl rn. Ym Relats[3]m p p rqs l q V(tp p. rqs Fg. (cl ˆ m p o q m rp lm qm rp l l l p. q V(t p. M( θ F ( n θ G n, n (, ( n,, n 1, n 1 D m (4 (5 Fg. 4. Bloc operatons of sem-contnuous process. V ( t V ( 0 K( B nt t t 1 ω Ì (6 l V(0 q p. q, q q p r p vl p l v []. q m q V p. V V ( 0 ( 1 x D ω t ---------- mn 1 ----res 1 t, ---------- x ω ( G n nt t t n 1 n 1 -------------- mn 1 -------------- 1 r e s t t n, ------------ ω x n ω M( B m nt t ----------- mn 1 -----res 1 t, ----------- ω m ω m V 1 V F n ( K( 1 nt n ( 1 x n G n 1 F n t 1 n t m t t --------------- 1 mn 1, ----------------res ω x n y n M( D m t n K( 1 D t 1 G n t n n ω t t --------------- Ì (7 (8 q V V V ( 0 1 1 K( 1 ( 1 x ------------------ D ω ( 1 x n --------------------------G n ( 1 x n ------------------------------F n K( 1 1 1 D t G n t n F n t n Fg. 3. Decomposton of multple tass nto multple flows of sngle tas. M ( M( ( 1 ------------------- D mω m D m Ì (9 Korean Chem. Eng. Res., Vol. 45, No. 3, une, 007

5 p Ëpp o v p t A $/orderp, r l ql n p t A n $/batchp. rqs p l q ov H $/L/yearp. rp r np p, l np o, o t, r t, q ov m q p q n p p l p. TC 1 K( 1 A ----- a B P D ω [ H V b V ] 1 (10 l a, a n b r, r rqsp l q np, P o p. q e (8p 0 ƒ. v s V 0p rp rep. K( V ( 0 D t G n 1 1 N( ( 1 x F n n F n 1 M( n ( 1 D mω m Ì (11 rqs q V v, e (7l p r. r p t (ω m ω, eqe (t m Ít o (D, F n m G n p. ql eqe t n ' mít n e (m e (3l p Ít p l. D, F n m G n, r e (10 p m p, re p D, F n m G n l p. ω, ω m t l m p e v. r D, F n m G n t, ω, ω, t mít n l Kuhn-Tucer s p p D, F n m G n l r p. p r r lv rep ep n o rm p r p Kuhn-Tucer s p p [3]. p rp ~w r m r m e rep v p, w r m p r m e rep v p. w r r o rrl o r r o rrl. ~ w rp Kuhn-Tucer p p ( p A. A *ω ------------ D Ψ l Ψ m Ψ p p rp. M( An n 1 *ω -------------------------------------- (,, H Ψ F n G n 1 D m 1 A n ------- a n B n (1 (13 Ψ ---- b ( 1 x (14 a Ψ F n, G n, ( ω n 1 t ω 0 n 1 t n n 1 t ω n 1 e (13p s rrp qll t p n p p p p p. v A n n 1 ----------------- Ψ ( ( ω ( F n, G n, ( * ω Ψ ( F n, G n, A n * p ep l r rrl lv r ˆ. p rp r r r ˆ p p } re. r p r r r A n ω (16 l ny op r p ˆ. e (16p r m r n p p. e (16p r p nr ˆp r r p o p. rrp v p p l v l. rnr e qe p rrl p p p p s. N( D t 1 1 M( G n F n ( t ( 1 x n F n Ì (17 1 o ep q sp p t m t n p sr p. p p o l ep seˆv l q n eqe p vleˆ p. p vlp np lt n Ž oe np. p np r p p r ep r n t rp l n pp. e (17p ep eˆ p p. m, q V (0 p vp sp. p, p, s r p r 3q l l p. l v tl l p q rr pv r dv. q l e (17p l e ˆ v p v. r r p p. ----------------- Ψ ( F n, G n, ω ----------------------------------------------------------------------------- Ψ ( * F n, G, y A n n V ( 0 ( 1 D ω m D m M( n 1 ( Fn G n ω n 1 1 N( * TCD, F n, G n K( * n * n 1 ( A Ψ D P ( D 1 1 t n G n [ a n F n ( 0.5H b Ψ ( F n, G n A n 1 1 F n { ( 1 x n G n ( 1 x n }] o45 o3 007 6 (15 1 H M( ---- b D mω m ( 1 (18

e (18p p r l. r p np o p r l ep r l rp v 6/10 o [7]. rqsp r q p e (17. * V [( 1 x n F n ( 1 x n G n ]ω 1 q rl rn p p r-rqs s r 53 K( ( 1 x D ω ( 1 x m m D mω m 1 M( (19 r e (18p re e (4, e (5m o D, F n m G n l l l. p w r m r r r o rrp p q p l. qlp n p r r n l. o ql p v nl l p p rp e (1 ~ e (19 rn p rp l p p. rp n o p p r p, LDPEp n qlp p r r p er o p ql p p p n p l p mrl re tr p n n lr on. 3. m m n op r n q q l r n p r-rqs sp r r. (1 r rqs v p r o t. p p n p r l m p l. ( Fg. 5l lv } r l p ql nl l rqs p p. r p o rqs q. o s, r p, rqs nr e p, t, q ov, q n o p p q t. Fg. 5. Optmal sze of multtasng batch process connected by storage unts. Fg. 6. Optmal sze of storage unt connected by multple supply and consumpton processes. r l p ql np r p e (13l o pel p. B n ω F n F n 1 1 (0 o r p e (1l p. (3 Fg. 6l ˆ m p rqs l l r p p. v rp v p, ` rp v p q. p p q ` p. d p o sr v l. p eqe p e (17l o p ep pn l sr e rp. D t D m G n F n t r rqs e (19. A n ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- a n F n 0.5H b [ ( { F n ( 1 x n G n ( 1 x n }] 1 K( 1 M( M( 1 4. HDPE m o ω Ì (1 4-1. m m 11 p HDPE v p p p l rp q. Table 1p ll p v l p v p v np lt. p np v r p l. Table r n o (D m, t ( m q ov (H ˆ. p p l r n p t d p. r rq} m q n, o m V ( 0 ( 1 D mω m ( 1 x n F n Korean Chem. Eng. Res., Vol. 45, No. 3, une, 007

54 p Ëpp Table 1. Grade transton costs of HDPE plant($/batch F550 F607LD F6060P F50100 TR158 TR570 TR144 TR130 TR147 F5811 HX100 F550 0,040 3,570 4,080 5,610 6,10 4,080 4,590 4,080 4,590 8,160 F607LD,889 0,408 4,815 4,334 6,741 5,97 5,97 4,815 3,371 9,630 F6060P,895,413 0 4,85 4,85 6,755 5,308 5,790 4,85,895 9,650 F50100 3,06 5,954 6,870 0 3,06 4,580 4,1 4,1 4,580 5,954 6,41 TR158 3,916 4,895 5,385 3,47 0 4,895 3,916 4,406 4,406 4,895 7,83 TR570 5,63 5,63 7,168 4,096 4,608 0 4,096 4,608 4,608 5,63 7,168 TR144 4,433 5,910 5,910,463 5,418 7,388 0 3,448 4,95 6,895 6,403 TR130 5,841 7,434 7,434 3,717 6,37 7,965 3,717 0 5,310 9,558 8,496 TR147 3,51 3,951 3,951 3,51 4,390 5,68 3,51 4,89 0 3,073 7,04 F5811 3,7 3,7 3,7 3,7 4,090 4,908 4,090 4,908 3,7 0 6,544 HX100 5,750 8,050 8,050 4,600 6,900 8,65 4,600 6,35 5,750 8,050 0 Table. nput and output data of sngle reactor desgn Sequence Product Code A ' ($/Batch D (ton/day m H ($/ton/day 0.5H (1- ($/ton/day B n (ton 1 F550,040 30,587 0.110993 84.315 4.159843 1,79.499 F607LD,408,90 0.010596 85.41 0.447709 190.4467 3 F6060P,895 5,913 0.01457 86.14 0.9043 381.41 4 F5811 6,544 7,665 0.07815 87.35 1.179457 491.5 5 HX100 4,600,847 0.010331 96.75 0.494477 185.7353 6 TR144 3,448 90,885 0.39801 86.14 9.519866 4,015.5 7 TR130 3,717 33,580 0.11854 89.79 4.80407 1,943.857 8 F50100 3,06 16,571 0.060133 85.775.43853 1,06.674 9 TR158 4,895 14,454 0.0545 84.68.10468 90.83 10 TR570 4,608 11,753 0.04649 85.045 1.736197 741.7148 11 TR147 3,51 58,400 0.1191 86.14 7.19313 3,033.89 sum 4,1873 75,575 1 34.96715 vp q ov n o r p p. v Table l ˆ m p p t l v np p r l. p r 11 p e nžo rm. p t l v p. p n e (15 Ψ 0.5 H. e ( 1 1 1 (13p t l p p t. ω ( 41, 873 ---------------------------------------------------- 4 days ( 75, 575 ( 34.96715 ( p t p pr r l rqs e (18l p. sr p q l } l rq r p rqsp p. 1,79.499*(1-0.110993190.4467*(1-0.010596381.41*(1-0.01457 491.5*(1-0.07815185.7353*(1-0.0103314,015.5*(1-0.39801 1,943.857*(1-0.118541,06.674*(1-0.06013390.83*(1-0.0545 741.7148 * (1-0.04649 3,033.89 * (1-0.1191 1,136.04 tons 4-. m p p nl p r e l q. p p p n p p rq n l nr p l. r r p n o45 o3 007 6 l n n tr r pn p. r n p q TR144 p rn v p l yp p l. p p l v pv v np tp o l Table 3l ˆ } p p v TR144 n m l p TR144 p. TR144 n p q p r d y p l p. Table 3l n l p } v p p l l p p nm p v. p p r t p. (, 386 ω 1 --------------------------------------------------------- 6 days (137, 787.5 ( 31.5484 (, 90 ω 1 --------------------------------------------------------- 31 days (137, 787.5 ( 3.15767 (3 (4 t p nl p p l pp p p p t v np v p. Table 1l p n p q p o rl v l. p np p p n. l e p pr r o p p p np l ƒv. np o l r p p p er t *4 34.

q rl rn p p r-rqs s r 55 Table 3. nput and output data of two reactors desgn Process Sequence Product A ' ($/Batch H ($/ton/day 0.5H (1- ($/ton/day D (ton/day m B (ton n R1 1 TR130 3,717 0.43709 89.79 8.7481 33,580,409.768 R1 F50100 3,06 0.1065 85.755 4.53649 16,571 1,189.168 R1 3 TR158 4,895 0.104901 84.68 3.975578 14,454 1,037.48 R1 4 TR570 4,608 0.08598 85.045 3.31770 11,753 11,339.94 R1 5 TR147 3,51 0.43841 86.14 10.51769 58,400 4,190.901 R1 6 TR144 3,448 0.01987 86.14 0.96149 3,09.5 17.403 sum,386 1 31.5484 137,787.5 R 1 TR144 4,433 0.637616 86.14 9.951835 87,855.5 7,446.016 R F550,040 0.1987 84.315 7.80964 30,587,59.34 R 3 F607LD,408 0.0119 85.41 0.88588,90 47.4787 R 4 F6060P,895 0.04914 86.14 1.768984 5,913 501.1444 R 5 F5811 6,544 0.05569 87.35.9145 7,665 649.6316 R 6 HX100 4,600 0.0066 96.75 0.978631,847 41.917 sum,90 1 3.15767 137,787.5 Fg. 7. An example product dstrbuton branch. 4-3. Fg. 7p HDPE qp r m lt p. q } l p r p l. p p p n r l l Table l p np 30% r. p ttl t p. q pl l p p r 5 p p q ov rn np. rp p qlp ( N ( 1, p rqs nr e pp 0.9 r. m e p rn p e (19m e (0l p. Ψ RTC * 0.5 * 0.3 * (1-0.9(30587 * 84.315 90 * 85.41 5913 * 86.14 7665 * 87.35 847 * 96.75 90885 * 86.14 33580 * 89.79 16571 * 85.775 14454 * 84.68 11753 * 85.04558400 * 86.14 380115.51 (5 Β RTC (0.3 * 75575 50, ----------------------------------- 000, 380,115.51 11,98.49 tons (6 V DC 11,98.49 * (1 0.9 (0.3 * 75,575*7*(1-5/7 166,543.49 tons (7 5. o s r pp rp p qlp e l rp r l rp rrqs sp l o l. l p r r l o, o r, q, nr, oo m p n r p rl rn p. qlp r l r l Ž p pn o e rl p rl rnp l. l r p ql t v qlp p r rp n on. t p v r l p rp rp p qlp l l p rl. p rp t e (18p e p r r. ˆ r r n l n r p l n. l l e r rn n tr p r l HDPE qp rl rn m m. rp l rl rn p evrp r r } re m. p } rp ep r-rqs s r p o ep. p } q n n r rp r o s nqop prp l l p. p r 006 r ( oprqo p qop v q p vop l p(krf-006-311- D0038. a a b A A n A ' : annualzed captal cost of raw materal purchasng faclty, dollars per unt of tem per year : annualzed captal cost of process, dollars per unt of tem per year : annualzed captal cost of storage faclty, dollars per unt of tem per year : orderng cost of feedstoc materals, dollars per order : orderng cost of noncontnuous process, tas n, dollars per order : product change-over cost from product to product ', dollars per order Korean Chem. Eng. Res., Vol. 45, No. 3, une, 007

56 p Ëpp B B n B m D D m D f n F n g n G n : raw materal order sze, unt of tems per lot : noncontnuous process sze, unt of tems per lot : fnal product delvery sze, unt of tems per lot : average materal flow of raw materal supply, unt of tems per year : average materal flow of customer demand, unt of tems per year : average materal flow through noncontnuous processes, unt of tems per year : feedstoc composton of process, tas n : average flow rate of feedstoc materal to process, tas n, unt of tems per year : product yeld of process, tas n : average flow rate of producateral from process, tas n, unt of tems per year H : annual nventory holdng costs, dollars per unt of tem per year : noncontnuous process set : storage set K( : raw materal suppler set for storage M( : consumer set for storage N( : Tas set for process P Ít Ít n t n ' : prce of raw materal from suppler, $/unts of tem : start-up tme of customer demand, year : start-up tme of the frst tas feedstoc feedng to noncontnuous process, year : start-up tme of feedstoc feedng of tas n to noncontnuous process, year : start-up tme of product dschargng of tas n from noncontnuous process, year t : start-up tme of raw materal purchasng, year V : upper bound of nventory hold-up, unts of tem V : lower bound of nventory hold-up, unts of tem V (t : nventory hold-up, unts of tem V (0 : ntal nventory hold-up, unts of tem V : tme averaged nventory hold-up, unts of tem x Íx n x n ' Z n ' : storage operaton tme fracton of purchasng raw materals : storage operaton tme fracton of feedng to noncontnuous process, tas n : storage operaton tme fracton of dschargng from noncontnuous process, tas n : storage operaton tme fracton of customer demand : cycle tme rato, /ω ' : Z n 1 f the n-th tas on process produces a product and ' the (n1-th tas produces a product ' and otherwse, Z n 0 m m λ φ ' ω m ω ω : Lagrangan multplers : the composton of feedstoc to produce product ' : cycle tme of customer demand, year : cycle tme of raw materal purchasng, year : cycle tme of noncontnuous process, year : duraton of noncontnuous process, tas n, year o45 o3 007 6 Ψ : aggregated cost defned by Eq. 15 Ψ : aggregated cost defned by Eq. 14 lzm : storage ndex g zm : noncontnuous process ndex : raw materal vendors m : fnshed product customers n : tas ndex Specal Functons nt[.] : truncaton functon to mae nteger res[.] : postve resdual functon to be truncated X : Number of elements n set X y 1. Y, G. and Relats, G. V., Optmal Desgn of Multple Batch Unts Wth Feedstoc/product Storages, Chem. Eng. Comm., 181(1, 79-106(000.. Y, G. and Relats, G. V., Optmal Desgn of Batch-Storage Networ Usng Perodc Square Model, AChE., 48(8, 1737-1753(00. 3. Y, G. and Relats, G. V., Optmal Desgn of Batch-Storage Networ wth Recycle Streams, AChE., 49(1, 3084-3094 (003. 4. Y, G. and Relats, G. V. Optmal Desgn of Batch-Storage Networ wth Fnancal Transactons and Cash Flows, AChE., 50(11, 849-865(004. 5. Floudas, C. A. and Ln, X., Contnuous-tme Versus Dscrete-tme Approaches for Schedulng of Chemcal Processes: A Revew, Computers & Chemcal Engneerng, 8(11, 109-19(004. 6. Karm,. A. and McDonald, C. M., Plannng and Schedulng of Parallel Semcontnuous Processes.. Short-Term Schedulng, &EC Res., 36(7, 701-714(1997. 7. Peters, M. S., Tmmerhaus, K. D. and West, R. E., Plant Desgn and Economcs for Chemcal Engneers, McGraw-Hll, New Yor, NY(003. A: zs n om Kuhn-Tucer e (m e (3l p eqe Ít n m t n ' Ít. e (7 e (9l p e (10p l pep. TC ----- n 1 ----------------- ( H b D t ω A ω H ω A n H ---- b ( 1 x a D ω a n F n ---- b 1 x ( n G n ω

q rl rn p p r-rqs s r 57 ( t n G n H b L ------ H b t ( ( F n G n λ 1 1 H ---- ( 1 x n F n ω ( F n G 0 n (A6 n 1 ( H b y n ( F n G n ω n 1 ( ( F n G n Ít n H b constants (A1 constants ( V (0 H b H ---- ( 1 x m D mω m ( H b D m (A ω, ω, t m Ít n l l e (11p r l e (10p r rp Lagrange LTC 1 (A7 (A8 (A3 l λ Lagrange d p. Kuhn-Tucer s p e (A4m e (A6p ; λ H b (A9 e (A9m e (A5m e (A7p l p e (1 m e (13p o. e (A8p e (17p. L ------ ( H b D λ lb D 0 t (A4 -------- L ω A H ------------ ---- b ( 1 x ( ω a D 0 (A5 Korean Chem. Eng. Res., Vol. 45, No. 3, une, 007