Finite-Difference Methods (FDM)

Similar documents
Lecture Note on Linear Algebra 16. Eigenvalues and Eigenvectors

On the Quark model based on virtual spacetime and the origin of fractional charge

Theory of Elasticity. Chapter 9 Two-Dimensional Solution

Lecture Note on Linear Algebra 14. Linear Independence, Bases and Coordinates

The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA 报告人 : 沈胤

Type and Propositions

Capacitance Extraction. Classification (orthogonal to 3D/2D)

Galileo Galilei ( ) Title page of Galileo's Dialogue concerning the two chief world systems, published in Florence in February 1632.

Integrated Algebra. Simplified Chinese. Problem Solving

0 0 = 1 0 = 0 1 = = 1 1 = 0 0 = 1

Principia and Design of Heat Exchanger Device 热交换器原理与设计

生物統計教育訓練 - 課程. Introduction to equivalence, superior, inferior studies in RCT 謝宗成副教授慈濟大學醫學科學研究所. TEL: ext 2015

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Source mechanism solution

d) There is a Web page that includes links to both Web page A and Web page B.

通量数据质量控制的理论与方法 理加联合科技有限公司

( 选出不同类别的单词 ) ( 照样子完成填空 ) e.g. one three

Easter Traditions 复活节习俗

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

= lim(x + 1) lim x 1 x 1 (x 2 + 1) 2 (for the latter let y = x2 + 1) lim

Digital Image Processing. Point Processing( 点处理 )

ME 210 Applied Mathematics for Mechanical Engineers

USTC SNST 2014 Autumn Semester Lecture Series

Transfer Matrix Method

Lecture English Term Definition Chinese: Public

MAGNETIC FIELD AROUND TWO SEPARATED MAGNETIZING COILS

GRE 精确 完整 数学预测机经 发布适用 2015 年 10 月考试

A Tutorial on Variational Bayes

, the tangent line is an approximation of the curve (and easier to deal with than the curve).

CT reconstruction Simulation

复合功能 VZθ 执行器篇 Multi-Functional VZθActuator

Conditional expectation and prediction

三类调度问题的复合派遣算法及其在医疗运营管理中的应用

Sichuan Earthquake 四川地震

1D2G - Numerical solution of the neutron diffusion equation

國立中正大學八十一學年度應用數學研究所 碩士班研究生招生考試試題

dq 1 (5) q 1 where the previously mentioned limit has been taken.

QTM - QUALITY TOOLS' MANUAL.

Riemann s Hypothesis and Conjecture of Birch and Swinnerton-Dyer are False

3.6 Applied Optimization

ArcGIS 10.1 for Server OGC 标准支持. Esri 中国信息技术有限公司

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT

Explainable Recommendation: Theory and Applications

Chapter 4. Mobile Radio Propagation Large-Scale Path Loss

Two-Dimensional Formulation.

Review Notes on Maxwell's Equations

PISCES II : 2.5-D RF Cavity Code

Gauss-Bonnet Theorem on Moduli Spaces. 陆志勤 Zhiqin Lu, UC Irvine

Theory of Water-Proton Spin Relaxation in Complex Biological Systems

2012 AP Calculus BC 模拟试卷

Doublet structure of Alkali spectra:

Numbers and Fundamental Arithmetic

Markscheme May 2017 Calculus Higher level Paper 3

Reading Assignment. Problem Description for Homework #9. Read Chapters 29 and 30.

An Introduction to Generalized Method of Moments. Chen,Rong aronge.net

2. The lattice Boltzmann for porous flow and transport

5. Polymorphism, Selection. and Phylogenetics. 5.1 Population genetics. 5.2 Phylogenetics

Review: Electrostatics and Magnetostatics

New Newton Mechanics Taking Law of Conservation of Energy as Unique Source Law (Revised Version)

进化树构建方法的概率方法 第 4 章 : 进化树构建的概率方法 问题介绍. 部分 lid 修改自 i i f l 的 ih l i

(n 1)n(n + 1)(n + 2) + 1 = (n 1)(n + 2)n(n + 1) + 1 = ( (n 2 + n 1) 1 )( (n 2 + n 1) + 1 ) + 1 = (n 2 + n 1) 2.

Finite Interval( 有限區間 ) open interval ( a, closed interval [ ab, ] = { xa x b} half open( or half closed) interval. Infinite Interval( 無限區間 )

DonnishJournals

Service Bulletin-04 真空电容的外形尺寸

rect_patch_cavity.doc Page 1 of 12 Microstrip Antennas- Rectangular Patch Chapter 14 in Antenna Theory, Analysis and Design (4th Edition) by Balanis

Physical design of photo-neutron source based on 15 MeV Electron Linac accelerator and Its Application

Happy Niu Year 牛年快乐 1

EE 5337 Computational Electromagnetics

B da = 0. Q E da = ε. E da = E dv

Chapter 22 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Electric Potential 電位 Pearson Education, Inc.

7.2.1 Basic relations for Torsion of Circular Members

In many engineering and other applications, the. variable) will often depend on several other quantities (independent variables).

Solutions to Problem Set 8

International Workshop on Advances in Numerical Analysis and Scientific Computation

Key Topic. Body Composition Analysis (BCA) on lab animals with NMR 采用核磁共振分析实验鼠的体内组分. TD-NMR and Body Composition Analysis for Lab Animals

Chapter 2 the z-transform. 2.1 definition 2.2 properties of ROC 2.3 the inverse z-transform 2.4 z-transform properties

Ch.9 Liquids and Solids

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

Electric Charge and Field

A matrix method based on the Fibonacci polynomials to the generalized pantograph equations with functional arguments

Concurrent Engineering Pdf Ebook Download >>> DOWNLOAD

Stress State.

Conventional Paper-I (a) Explain the concept of gradient. Determine the gradient of the given field: ( )

J. Electrical Systems 1-3 (2005): Regular paper

1. Length of Daytime (7 points) 白昼长度 (7 分 )

Halloween 万圣节. Do you believe in ghosts? 你相信有鬼吗? Read the text below and do the activity that follows. 阅读下面的短文, 然后完成练习 :

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

Chapter Eight Notes N P U1C8S4-6

基因演算法 學習速成 南台科技大學電機系趙春棠講解

10.2 Parametric Calculus

Implementation of RCWA

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Physics 505 Homework No. 9 Solutions S9-1

I( x) t e. is the total mean free path in the medium, [cm] tis the total cross section in the medium, [cm ] A M

A proof of the 3x +1 conjecture

4.8 Low-Density Parity-Check Codes

Fields and Waves I Spring 2005 Homework 8. Due: 3 May 2005

Maxwell s Equations in Fourier Space

Section 8.2 Polar Coordinates

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Transcription:

Finite-Diffeence Methods (FDM) Finite-diffeence Appoimations Assuming a 1D f() as in Fig.4.14 witing f 1 and f as Talo seies epansions aound = 0 Appoimating deivatives at f f (1) () ( 0) = f h f + h 1 1 = 0 with diffeential epession (4 59a) h f ( h + h ) f + h f (0) = hh 1 h1+ h O h h = h 1 1 3 1 The eo is ( ) when (equidistant discetization); 1 1 h h h (4 59b) is O( ) when (nonequidistant discetization).

Wave Equations Vectoial Wave Equations The vectoial wave equation fo the electic field is ε E+ E + k0ε E = 0 ε The vectoial wave equation fo the magnetic ( ) ε H + H + k0ε H =0 ε Consideing a stuctue unifom in the z diection ε z and a D coss-sectional analsis = and = 0 z jβ (4 60) field is (4 61)

Vectoial Wave Equations 0 (4 6a) B using the in, electic field component 1 ( ) 1 0 s E E E E E k ε ε β ε ε ε + + + + = 0 (4 6b) 1 ( ) 1 0 E E E E E k ε ε β ε ε ε + + + + =

The can be ewitten as Vectoial Wave Equations 1 E ( εe) + + ( k 0ε β ) E ε E 1 ε + E = 0 ε 1 + εe + k0ε β ε ( ) ( ) E 1 ε + E = 0 ε (4 63a) (4 63b)

ε Vectoial Wave Equations B using the magnetic field components in, H 1 ε H H + + ( k0ε β ) H 1 ε H + = 0 ε (4 64a) H H H + + ( k0ε β ) H 1 ε ε 1 ε H + = 0 ε (4 64b)

Vectoial Wave Equations 0 (4 65a) The can be ewitten as 1 ( ) 1 0 k H H H H ε ε β ε ε ε + + + = 0 (4 65b) 1 ( ) 1 0 k H H H H ε ε β ε ε ε + + + =

Semivectoial Wave Equations In optical waveguides, the tems coesponding to the inteaction between E and E ae usuall small 1 ε 1 ε E and E ε ε 0 in the tems coesponding to the inteaction between H and H ae usuall small 1 ε H 1 ε H and 0 in ε ε (4 64,65) (4 6,63)

Semivectoial Wave Equations Neglecting the inteaction tems semivectoial wave equations semivectoial analses as in Fig.4.15 quasi-te mode analsis; ---- pincipal field component E o H ; quasi-tm mode analsis; ---- pincipal field component H o E.

The semivectoial wave equation fo the Semivectoial Wave Equations quasi-te mode E 1 ε E + ( E + + k 0ε β ) E = 0 ε 1 E ( εe ) + + ( k 0ε β ) E = 0 ε H 1 ε H H + + ε β H = ε ( k ) 0 is (4 66a) (4 66b) The semivectoial wave equation fo the quasi-tm mode is H 1 H + ε ( + k0ε β ) H = 0 ε 0 (4 67a) (4 67b)

Scala Wave Equations Assuming a stuctue unifom also in the, diection ε ε = = 0 and 0 The scala wave equation is φ φ + + ( k 0ε β ) φ = 0 φ whee is a wave function (scala field) (4 68)

Finite-diffeence Epessions Nonequidistant discetization as in Fig.4.16 D coss-sectional analsis of optical waveguides with (p, q) ---- (, ) of a node; the inteface of two mateials ---- midwa between two nodes; discetization widths e & w in and n & s in. SV-FDM The E epesentation semivectoial wave equation fo the quasi-te mode is E 1 ε E + E + + ( k0ε β ) E = 0 ε (4 66a)

pq, with the eo is O( ). Finite-diffeence Epessions B using the finite-diffeence appoimation, E = E + E E ee ( + w) we ( + w) ew e w p+ 1, q p 1, q p, q (4 69a) E = E + E E + + pq, + 1 pq, 1 pq, sn ( s) nn ( s) sn pq, s n with the eo is O( ). (4 69b)

1 ε ε E pq, with the eo is O( ). Finite-diffeence Epessions 1 ε 1 ε E e w ε E = + e w p+ 1/, q p 1/, q ε p+ 1/, q p 1/, q 1 ε 1ε( p+ 1, q) ε( p, q) hee E = ( Ep+ 1, q + Ep, q) + ε e ε( p+ 1, q) + ε ( p, q) 1 ε 1 ε ( pq, ) ε( p 1, q) E = ( Epq, + Ep 1, q) + ε w ε ( pq, ) + ε( p 1, q) e O( ) w O( )

Thus 1 ε ε E pq, Finite-diffeence Epessions 1ε( p+ 1, q) ε( p, q) = ( Ep+ 1, q + Ep, q) e + w e ε( p+ 1, q) + ε( p, q) 1 ε( pq, ) ε( p 1, q) ( Ep q + Ep q) w ε( pq, ) + ε( p 1, q), 1, (4 69c)

p 1, q e p+ 1, q n p, q 1 s p, q+ 1 pq, { p } Finite-diffeence Epessions B substituting Eqs.(4-69) into Eq.(4-66a), the finite diffeence epession α E + α E + α E + α E w + ( α + α ) E + k ε (, q) β E = 0 0 pq, (4 70) whee α α α e n w ε ( p 1, q) =, we ( + w) ε ( pq, ) + ε ( p 1, q) ε ( p+ 1, q) =, ee ( + w) ε ( p, q) + ε ( p+ 1, q) =, αs =, nn ( + s) sn ( + s) 4 α = + αe + αw, α = = αn αs. ew ns

Finite-diffeence Epessions The H epesentation wave equation fo quasi-te mode is 1 H H ε + + ( k 0ε β ) H = 0 ε B using the finite-diffeence appoimation, with the eo is O( ). (4 71) 1 H 1 H 1 H = ε e w ε ε + pq, p+ 1/, q p 1/, q e w 1 H 1 hee = ( H p+ 1, q H p, q) + ε e ε ( p+ 1, q) + ε ( p, q) p+ 1/, q p 1/, q O( ) 1 H 1 = ( H pq, H p 1, q) + w ε w ε ( pq, ) + ε ( p 1, q) e O( )

Thus 1 ε H pq, Finite-diffeence Epessions 1 = ( Hp+ 1, q H p, q) e + w eε( p+ 1, q) + ε( p, q) 1 ( H pq H p q) w ε( pq, ) + ε( p 1, q) H = H + H H sn ( + s) nn ( + s) sn, 1, (4 7a) pq, + 1 pq, 1 pq, pq, s n with the eo is O( ). (4 7b)

w p 1, q e p+ 1, q n pq, 1 s pq, + 1 { } 0 p q Finite-diffeence Epessions B substituting Eqs.(4-6) into Eq.(4-61), the finite diffeence epession α H + α H + α H + α H + ( α + α ) H + k ε (, ) β H = 0 pq, p, q (4 73) whee α α α e n w ε ( pq, ) =, we ( + w) ε ( pq, ) + ε ( p 1, q) ε ( pq, ) =, ee ( + w) ε ( p, q) + ε ( p+ 1, q) =, αs =, nn ( + s) sn ( + s) α = αe αw, α = = αn αs. ns

Finite-diffeence Epessions Fo E epesentation wave equation fo the quasi-tm mode is E 1 ε + E + + ( k ε β ) E = 0, 0 ε the finite diffeence epession is just like Eq. E (4 70) but whee α α α n s w =, αe =, we ( + w) ee ( + w) ε ( pq, 1) =, nn ( + s) ε ( pq, ) + ε ( pq, 1) = ε ( pq, + 1) sn ( + s) ε ( pq, ) + ε ( pq,, + 1) 4 α = = αe αw, α = + αn + αs. ew ns

Finite-diffeence Epessions Fo H epesentation wave equation fo the quasi-tm mode is H 1 H + ε ( k ) 0 + ε β H = 0 ε the finite diffeence epession is just like Eq. but whee α α α n s w =, αe =, we ( + w) ee ( + w) ε ( pq, ) =, nn ( + s) ε ( pq, ) + ε ( pq, 1) = ε ( pq, ) sn ( + s) ε ( pq, ) + ε ( pq, + 1) α = = αe αw, α = αn αs. ew, (4 73),

Finite-diffeence Epessions Fo φ scala wave equation fo the scala mode is whee φ φ + + ( k ε β ) φ = 0 (4 68) 0 the finite diffeence epession is α φ + α φ + α φ + α φ w p 1, q e p+ 1, q n p, q 1 s p, q+ 1 + ( α + α) φpq, + k0ε ( pq, ) β φp, q = 0 αw =, αe =, we ( + w) ee ( + w) α n { } =, αs =, nn ( + s) sn ( + s) (4 74) SC-FDM α = = αe αw, α = = αn αs. ew ns

{ α α k } 0 pq pq, Pogamming w p 1, q e p+ 1, q n pq, 1 s pq, + 1 pq, pq, whee ( pq, ) (, ); o H fo the quasi-te mode, o H fo the quasi-tm mode. SV-FDM as in (70,73) The finite diffeence epession fo SV wave equation is α φ + α φ + α φ + α φ + ( + ) + ε (, ) φ β φ = 0 φ E E A mesh model in a finite-diffeence scheme as in Fig.4.17 ---- the whole analsis aea a numbe of meshes; The nodes top-bottom & left-ight. (4 75)

[ ]{} A φ = β {} φ {} 1 Pogammin g B calcuating Eq. (4 75) fo each node in an mati, we obtain the eigenvalue mati equation β hee is an eigenvalue; φ =( φ φ φ ) M T (4 76) M M is an eigenvecto with is. M M M With the vaiable tansfomation (suppessing the ound-off eos), = k, = the eigenvalue is eff 0 n k 0 n, whee ( β / k ) is the effective inde. eff 0

no summation needed as in FEM The global mati [A] as in Fig.4.18 ---- the SV-FDM a nonsmmetic spase mati with bandwidth M +1; the SC-FDM a smmetic spase mati with bandwidth M +1. Pogammin g In actual pogamming, node numbe is used instead of ( p, q) = ( p 1) M + q p M whee 1 and 1. q M (4 77) The th ow in the eigenvalue mati equation can be as a φ + a φ + a φ + a φ, M M, 1 1,, + 1 + 1, + M + a φ β φ = 0 + M fo pogamming (4 78)

Pogamming the eigenvalue mati equation [ ]{} A φ = β {} φ φ =( φφ φ ) T {} hee. Fo simplicit, we conside the finite diffeence epession α φ + α φ + α φ + α φ w p 1, q e p+ 1, q n p, q 1 s p, q+ 1 { α } α k0ε p q + + + φ β φ = ( ) (, ) pq, pq 0 The th ow in the eigenvalue mati equation can be as a φ + a φ + a φ + a φ, M M, 1 1,, + 1 + 1, + M 1 + a φ β φ = 0 + M M (4 76), (4 75) (4 78)

Bounda conditions Diichlet conditions: A wave function outside the analsis window φ = 0 (4 79a) Neumann conditions: Nomal deivative of a wave function at the edge of the analsis window φ = 0 n (4 79b)

Analtical bounda conditions: Bounda conditions The analtical wave function outside the analsis window to be connected with a wave function at the edge is assumed to deca eponentiall ( - k n ε ) 0 eff p, q) Δ ep ( (4 79c) k n Δ ε ( pq, ) whee,, and ae wave numbe in a vacuum, 0 eff effective inde, discetization width and elative pemittivit.

Bounda conditions Fo simplicit, we conside the finite diffeence epession α φ + α φ + α φ + α φ w p 1, q e p+ 1, q n p, q 1 s p, q+ 1 { α } α k0ε p q + + + φ β φ = ( ) (, ) pq, pq 0, (4 75) Left-Hand Bounda (p = 1 and ecept at cones) as 1 in Fig.4.19 ---- the discetization width is Δ.

with = 1, 0, e p+ 1, q n pq, 1 s pq, + 1 { } L k pq Bounda conditions When assuming that ( pq, ) is a node on the bounda; the hpothetical node outside the analsis widow is ( p 1, q), φ = γ φ γ L B substituting Eq. (4 80) into Eq. (4 75), α φ + α φ + α φ p 1, q L p, q (4 80) ( ) -k n ε pq Δ ep (, 0 eff Diichlet Neumann ), Analtical αγ + ( α + α ) + ε (, ) φ β φ = 0 w 0 pq, pq, (4 81)

Bounda conditions Right-Hand Bounda (p = M and ecept at cones) as in Fig.4.19 ---- the discetization width is again Δ. When assuming that ( pq, ) is a node on the bounda; the hpothetical node outside the analsis widow is ( p + 1, q), γ with = R p+ 1, q R p, q (4 83) 0, Diichlet 1, φ = γ φ ( ) -k n ε p q Δ 0 eff Neumann ep (, ), Analtical

Bounda conditions B substituting Eq. (4 8) into Eq. (4 75), α φ + α φ + α φ e p 1, q n pq, 1 s pq, + 1 { } R k pq αγ + ( α + α ) + ε (, ) φ β φ = 0 w 0 pq, pq, (4 83) Top Bounda (q = 1 and ecept at cones) as 3 in Fig.4.19 ---- the discetization width is Δ.

with = 1, 0, pq, U pq, w p 1, q e p+ 1, q s p, q+ 1 { } U k ε pq Bounda conditions When assuming that ( pq, ) is a node on the bounda; the hpothetical node outside the analsis widow is ( pq, 1), φ = γ φ γ U B substituting Eq. (4 84) into Eq. (4 75), α φ + α φ + α φ 1 (4 84) ( ) -k n ε pq Δ ep (, 0 eff Diichlet Neumann ), Analtical αγ + ( α + α ) + (, ) φ β φ = 0 n 0 pq, pq, (4 85)

Bottom Bounda (q = M and ecept at cones) as 4 in Fig.4.19 ---- the discetization width is again Δ. with = 1, 0, pq, + D pq, Bounda conditions When assuming that ( pq, ) is a node on the bounda; the hpothetical node outside the analsis widow is ( pq, + 1), φ = γ φ γ D 1 (4 86) ( ) -k n ε pq Δ ep (, 0 eff Diichlet Neumann ), Analtical

Bounda conditions B substituting Eq. (4 86) into Eq. (4 75), α φ + α φ + α φ w p 1, q e p+ 1, q n p, q 1 { } D k ε pq αγ + ( α + α ) + (, ) φ β φ = 0 s 0 pq, pq, (4 87) Left-Top Cone (p = q =1) as 5 in Fig.4.19 ---- the discetization widths ae Δ and Δ.

with = 0, p 1, q L p, q p, q 1 p, q Bounda conditions When assuming that ( p, q) is a node at the cone; the hpothetical nodes outside the analsis widow ae ( p 1, q) to the left and ( p, q 1) to the top, φ = γ φ (4 88a) γ L 1, φ = γ U φ ( ) -k n ε p q Δ 0 eff (4 88b) Diichlet Neumann ep (, ), Analtical

Bounda conditions γ U = 1, 0, Diichlet ( ) -k n ε pq Δ ep (, ), 0 eff Neumann Analtical B substituting Eq. (4 88) into Eq. (4 75), α φ e + α φ p+ 1, q s p, q+ 1 { } w L n k0 pq αγ + αγ + ( α + α) + ε(, ) φ βφ = 0 U pq, p, q (4 89)

with = 0, 1, p 1 q L p q pq, + 1 D pq, Bounda conditions Left-Bottom Cone (p = 1, q = M ) as 6 in Fig.4.19 ---- the discetization widths ae again Δ and Δ. When assuming that ( p, q) is a node at the cone; the hpothetical nodes outside the analsis widow ae ( p 1, q) to the left and ( p, q+ 1) to the bottom, φ = γ φ γ L φ,, (4 90a) = γ φ ( ) -k n ε p q Δ ep (, ), 0 eff (4 90b) Diichlet Neumann Analtical

Bounda conditions γ D = 1, 0, Diichlet ( ) -k n ε pq Δ ep (, ), 0 eff Neumann Analtical B substituting Eq. (4 90) into Eq. (4 75), α φ e + α φ p+ 1, q n p, q 1 { } w L s k0 pq αγ + αγ + ( α + α) + ε(, ) φ βφ = 0 D pq, p, q (4 91)

with = 0, p+ 1, q R p, q pq, 1 U pq, Bounda conditions Right-Top Cone (p = M, q =1) as 7 in Fig.4.19 ---- the discetization widths ae again Δ and Δ. When assuming that ( p, q) is a node at the cone; the hpothetical nodes outside the analsis widow ae ( p+ 1, q) to the ight and ( p, q 1) to the top, φ = γ φ (4 9a) γ R 1, φ = γ φ ( ) -k n ε p q Δ 0 eff (4 9b) Diichlet Neumann ep (, ), Analtical

Bounda conditions γ U = 1, 0, Diichlet ( ) -k n ε pq Δ ep (, ), 0 eff Neumann Analtical B substituting Eq. (4 9) into Eq. (4 75), α w φ + α φ p 1, q s p, q+ 1 { } e R n k0 pq αγ + αγ + ( α + α ) + ε (, ) φ βφ = 0 U pq, p, q (4 93)

with = 0, Bounda conditions Right-Bottom Cone (p = M, q = M ) as 8 in Fig.4.19 ---- the discetization widths ae again Δ and Δ. When assuming that ( p, q) is a node at the cone; the hpothetical nodes outside the analsis widow ae ( p+ 1, q) to the ight and ( p, q+ 1 ) to the bottom, φ = γ φ γ R 1, φ p+ 1, q R p, q (4 94a) p, q+ 1 = γ D φ p, q ( ) -k n ε p q Δ ep (, ), 0 eff (4 94b) Diichlet Neumann Analtical

γ D = 1, 0, ( ) -k n ε pq Δ ep (, ), 0 eff Bounda conditions Diichlet Neumann Analtical B substituting Eq. (4 94) into Eq. (4 75), α w φ + α φ p 1, q n p, q 1 { } e R s k0 pq αγ + αγ + ( α + α ) + ε (, ) φ βφ = 0 D pq, p, q (4 95) Simila to that fo the FEM, we can calculate the even o odd mode b assuming Neumann o Diichlet conditions at the smmet plane.

Numeical Eample A calculation model (0.4 μm coe) as in Fig.4.0 and esults calculated b SV-FDM softwae n coe =3.5, n cladding =3.1693 at 1.55 μm; equidistant discetization scheme ---- the numbe of nodes M = M = 96, the discetization widths W min = 0.05 μm, W ma = 0.05 μm The calculated n eff = 3.17 fo quasi-te and quasi-tm models; A thee-dimensional plot of E calculated fo quasi-te mode as in Figue.4.8. at Page 161. Eecise Fou P.161 Poblems 3,4*.

Discussion Questions 4 1. 针对 FEM 中的一阶三角元, 如何利用面坐标 L i 来理解形状函数 N i?. FEM 中如下两个本征矩阵方程有何联系? ( [ A] λ [ B] ){ φ} = 0 (4 1) ([ K] [ M] ){ } = { 0} 3. 简述 FEM 中本征矩阵方程的全局矩阵 K 和 M 是如何构成的 4. 为什么在光波导中 E 和 E 之间的相互作用可忽略? 即 1 ε 1 ε E and E 0 in ε ε β φ (4 6,63) 5. 为什么将本征矩阵方程的变量进行如下转换后就可以降低舍入误差? = k, = 0 k 0. 6. 简述 FDM 中本征矩阵方程中的全局矩阵 A 是如何构成的, 为什么公式 (4-75) 可表示为公式 (4-78)? (4 40)

Be Be!