MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2005 FINAL EXAM FALL 2005 FINAL EXAM EXAMINATION COVER PAGE Professor Moseley

Similar documents
MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2005 EXAM-I FALL 2005 EXAM-I EXAMINATION COVER PAGE Professor Moseley

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2005 EXAM-IV FALL 2005 EXAM-IV EXAMINATION COVER PAGE Professor Moseley

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2006 EXAM-II FALL 2006 EXAM-II EXAMINATION COVER PAGE Professor Moseley

MATH 251 MATH 251: Multivariate Calculus MATH 251 SPRING 2010 EXAM-I SPRING 2010 EXAM-I EXAMINATION COVER PAGE Professor Moseley

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2005 EXAM-3 FALL 2005 EXAM-III EXAMINATION COVER PAGE Professor Moseley

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2009 EXAM-I FALL 2009 EXAM-I EXAMINATION COVER PAGE Professor Moseley

MATH 251 MATH 251: Multivariate Calculus MATH 251 SPRING 2012 EXAM-4 SPRING 2012 EXAM-4-B3 EXAMINATION COVER PAGE Professor Moseley

MATH 251 MATH 251: Multivariate Calculus MATH 251 FALL 2009 EXAM-2 FALL 2009 EXAM-2 EXAMINATION COVER PAGE Professor Moseley

EXAM-1 -B4 MATH 261: Elementary Differential Equations MATH 261 FALL 2014 EXAMINATION COVER PAGE Professor Moseley

MATH 261 MATH 261: Elementary Differential Equations MATH 261 FALL 2005 FINAL EXAM FALL 2005 FINAL EXAM EXAMINATION COVER PAGE Professor Moseley

EXAM 4 -A2 MATH 261: Elementary Differential Equations MATH 261 FALL 2010 EXAMINATION COVER PAGE Professor Moseley

EXAM 4 -B2 MATH 261: Elementary Differential Equations MATH 261 FALL 2012 EXAMINATION COVER PAGE Professor Moseley



MATH 261 MATH 261: Elementary Differential Equations MATH 261 FALL 2010 FINAL EXAM FALL 2010 FINAL EXAM -A2 EXAMINATION COVER PAGE Professor Moseley

ME201 ADVANCED CALCULUS MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions

MATH 280 Multivariate Calculus Fall Integrating a vector field over a curve

No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk of everything excepts pens, pencils and erasers.

EXAM-3 MATH 261: Elementary Differential Equations MATH 261 FALL 2006 EXAMINATION COVER PAGE Professor Moseley

Topic 2-2: Derivatives of Vector Functions. Textbook: Section 13.2, 13.4

Math 51 Second Exam May 18, 2017

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.

Without fully opening the exam, check that you have pages 1 through 11.

Worksheet 4.2: Introduction to Vector Fields and Line Integrals

SOLUTIONS TO SECOND PRACTICE EXAM Math 21a, Spring 2003

Page Problem Score Max Score a 8 12b a b 10 14c 6 6

Math 340 Final Exam December 16, 2006

Math 51 Second Exam February 28, 2013

MLC Practice Final Exam. Recitation Instructor: Page Points Score Total: 200.

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0)

Page Problem Score Max Score a 8 12b a b 10 14c 6 6

Math 106 Answers to Exam 3a Fall 2015

CALCULUS MATH*2080 SAMPLE FINAL EXAM

. CALCULUS AB. Name: Class: Date:

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3

MATH2321, Calculus III for Science and Engineering, Fall Name (Printed) Print your name, the date, and then sign the exam on the line

Course Notes Math 275 Boise State University. Shari Ultman

Math Exam 02 Review

2.3. VECTOR SPACES 25

This exam contains 9 problems. CHECK THAT YOU HAVE A COMPLETE EXAM.

Calculus is Cool. Math 160 Calculus for Physical Scientists I Exam 1 September 18, 2014, 5:00-6:50 pm. NAME: Instructor: Time your class meets:

Exercises for Multivariable Differential Calculus XM521

Math 302 Outcome Statements Winter 2013

St. Anne s Diocesan College. Form 6 Core Mathematics: Paper II September Time: 3 hours Marks: 150

Without fully opening the exam, check that you have pages 1 through 12.

F. KEEP YOUR BUBBLE SHEET COVERED AT ALL TIMES.

Math 41 Final Exam December 6, 2010

Exam 3 MATH Calculus I

MIDTERM EXAMINATION. Spring MTH301- Calculus II (Session - 3)

Major Ideas in Calc 3 / Exam Review Topics

MTH 132 Solutions to Exam 2 November 21st, Without fully opening the exam, check that you have pages 1 through 11.

Hour Exam #2 Math 3 Oct. 31, 2012

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

MATH 1241 Common Final Exam Fall 2010

Math 19 Practice Exam 2B, Winter 2011

MATH H53 : Final exam

This exam will be over material covered in class from Monday 14 February through Tuesday 8 March, corresponding to sections in the text.

MA 113 Calculus I Fall 2015 Exam 3 Tuesday, 17 November Multiple Choice Answers. Question

Name: Student ID number:

Vector Functions & Space Curves MATH 2110Q

Solutions to old Exam 3 problems

Math 41 First Exam October 12, 2010

Vector Calculus handout

AP Calculus BC - Problem Solving Drill 19: Parametric Functions and Polar Functions

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

Math 210, Final Exam, Practice Fall 2009 Problem 1 Solution AB AC AB. cosθ = AB BC AB (0)(1)+( 4)( 2)+(3)(2)

MA 113 Calculus I Fall 2016 Exam Final Wednesday, December 14, True/False 1 T F 2 T F 3 T F 4 T F 5 T F. Name: Section:

MA CALCULUS II Friday, December 09, 2011 FINAL EXAM. Closed Book - No calculators! PART I Each question is worth 4 points.

Introduction to Vector Calculus (29) SOLVED EXAMPLES. (d) B. C A. (f) a unit vector perpendicular to both B. = ˆ 2k = = 8 = = 8

Without fully opening the exam, check that you have pages 1 through 11.

Exam 2 MAS 3105 Applied Linear Algebra, Spring 2018

Math 210, Final Exam, Fall 2010 Problem 1 Solution. v cosθ = u. v Since the magnitudes of the vectors are positive, the sign of the dot product will

Without fully opening the exam, check that you have pages 1 through 11.

Test 2 - Answer Key Version A

Student s Printed Name: KEY_&_Grading Guidelines_CUID:

APPM 2350, Summer 2018: Exam 1 June 15, 2018

MTH 234 Exam 1 February 20th, Without fully opening the exam, check that you have pages 1 through 11.

SOME PROBLEMS YOU SHOULD BE ABLE TO DO

Test 3 Version A. On my honor, I have neither given nor received inappropriate or unauthorized information at any time before or during this test.

MTH 132 Exam 2 November 21st, Without fully opening the exam, check that you have pages 1 through 11.

Math 116 Second Midterm March 19, 2012

MATH 423/ Note that the algebraic operations on the right hand side are vector subtraction and scalar multiplication.

MATH 2433 Homework 1

Chapter 13: Vectors and the Geometry of Space

Chapter 13: Vectors and the Geometry of Space

Question: Total. Points:

Test 2 - Answer Key Version A

Math 41 Second Exam November 4, 2010

One side of each sheet is blank and may be used as scratch paper.

a11 a A = : a 21 a 22

Math 207 Honors Calculus III Final Exam Solutions

Dimensions = xyz dv. xyz dv as an iterated integral in rectangular coordinates.

2.20 Fall 2018 Math Review

Review problems for the final exam Calculus III Fall 2003

MTH301 Calculus II Solved Final Term Papers For Final Term Exam Preparation

Math 11 Fall 2018 Practice Final Exam

AB Calculus Diagnostic Test

Multiple Choice Answers. MA 114 Calculus II Spring 2013 Final Exam 1 May Question

Finite Mathematics Chapter 2. where a, b, c, d, h, and k are real numbers and neither a and b nor c and d are both zero.

The Calculus of Vec- tors

Transcription:

MATH 5 MATH 5: Multivariate Calculus MATH 5 FALL 5 FINAL EXAM FALL 5 FINAL EXAM EXAMINATION COVER PAGE Professor Moseley PRINT NAME ( ) Last Name, First Name MI (What you wish to be called) ID # EXAM DATE Tuesday, December 3, 5 I swear and/or affirm that all of the work presented on this exam is my own and that I have neither given nor received any help during the exam. SIGNATURE INSTRUCTIONS DATE. Besides this cover page, there are 6 pages of questions and problems on this exam. MAKE SURE YOU HAVE ALL THE PAGES. If a page is missing, you will receive a grade of zero for that page. Read through the entire exam. If you cannot read anything, raise your hand and I will come to you.. Place your I.D. on your desk during the exam. Your I.D., this exam, and a straight edge are all that you may have on your desk during the exam. NO CALCULATORS! NO SCRATCH PAPER! Use the back of the exam sheets if necessary. You may remove the staple if you wish. Print your name on all sheets. 3. Explain your solutions fully and carefully. Your entire solution will be graded, not just your final answer. SHOW YOUR WORK! Every thought you have should be expressed in your best mathematics on this paper. Partial credit will be given as deemed appropriate. Proofread your solutions and check your computations as time allows. GOOD LUCK!! page points score 4 4 7 3 9 4 5 8 6 8 7 8 8 8 9 8 4 9 3 4 4 8 5 6 7 3 5 4 8 5 8 6 Total 5 7 9 8 8 9 8

MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page Matrix algebra. Circle the correct answer from the choices below to fill in the blank.. Using the abbreviated (tensor) notation for a matrix discussed in class, let A = [a ij ], B=[b ij ], C=[c ij ], D=[d ij ], and E=[e ij ] be nxn square matrices..( pt.) If α is a scalar and C = αa, then c ij =. A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE.. ( pt.) If D = A + B, then d ij =. A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. 3. ( pts.) If E = AB, then e ij =.A. B. C. D. E. AB. AC. AD. AE. BC. Possible Answers for questions 7, 8, and 9. BD. BE. CD. CE. DE. A. αa ij, B. βa ij, C. b ij a ij, D. b ij + a ij, E.a ij /b ij, AB.= a b, AC. a b, AD. a ij b ij, AE. a ij, BC. a ij +c ij BD. b ij, BE. b ij d ij, CD. b ij + e ij, CE. b ij a ij, DE. None of the above ( pts.) True or False. Matrix Algebra. Circle True or False, but not both. If I cannot read your answer, it is WRONG. n i ij ij n k ik kj True or False True or False True or False True or False True or False 4. Matrix addition is associative. 5. Matrix addition is not commutative. 6. α,βr and AR m n, α(βa) = (αβ)a. 7. Multiplication of square matrices is associative. 8. Multiplication of square matrices is commutative. True or False 9. If A and B are invertible square matrices, then (AB) - exists and (AB) - = A - B -. True or False. If A is an invertible square matrix, then (A - ) - exists and (A - ) - = A. True or False. If A and B are square matrices, then (AB) T exists and (AB) T = A T B T. True or False. If A is a square matrix, then A T and (A T ) T exist and (A T ) T = A.

True or False 3. If A is an invertible square matrix, then (A T ) - exists and (A T ) - = (A - ) T. Possible points this page = 4. POINTS EARNED THIS PAGE = MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page On the back of the previous sheet, solve the x + x + x 3 - x 4 = system of linear algebraic equations Be sure to write you answer in the correct form. Circle the correct answer x + x + x 3 = from the possibilities below x 3 + x 4 = x - x 3 + x 4 = 4. (3 pts.) x =.A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD.CE. DE. AC. ABD. ABE BCD. BCE. CDE. 5. (3 pts.) x =.A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD.CE. DE. AC. ABD. ABE BCD. BCE. CDE. 6. (3 pts.) x 3 =.A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD.CE. DE. AC. ABD. ABE BCD. BCE. CDE. 7. (3 pts.) x 4 =.A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD.CE. DE. AC. ABD. ABE BCD. BCE. CDE. Possible answers for questions 4, 5, 6, and 7. A., B., C. 3, D. 4, E. 5, AB. 6, AC. 7, AD. 8, AE. 9, BC., BD., BE., CD.3,

CE.4, DE.5, ABC.6, ABD.7, ABE 8, BCD.9, BCE., CDE. None of the above. Possible points this page =. POINTS EARNED THIS PAGE = MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page 3 ( 5 pts.) True or false. Solution of Linear Algebraic Equations having possibly complex coefficients. Assume A is an m n matrix of possibly complex numbers, that is an n column vector of (possibly complex) unknowns, and that b A x x is an m (possibly complex valued) column vector. Now consider. (*) mxn nx b mx Under these hypotheses, determine which of the following is true and which is false. It true, circle True. It false, circle False. If I can not read your answer, it is wrong. b 8. True or False, If, then (*) always has an infinite number of solutions. 9. True or False, The vector equation (*) always has exactly one solution.. True or False, If A is square (n=m) and nonsingular, then (*) always has a unique solution.. True or False, The equation (*) can be considered as a mapping problem from one vector space to another. A i i. True or False, If then (*) has a unique solution.

Total points this page = 5. TOTAL POINTS EARNED THIS PAGE MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page 4 i x You are to solve A x b where A,, and. Be sure you write your x x x i x y b i answer according to the directions given in class (attendance is mandatory) for these kinds of problems. A b i U c U c 3. (4 pts.) If is reduced to using Gauss elimination, then =. i i i i A., B., C., D., E., AB. None of the above are possible. 4. ( 4 pts.) The general solution of can be written as. A x b x x x i i i A. No Solution, B. x, C., D., E., x y x y x i i i x y x y x y AB., AC., AD., BC. None of the above correctly describes the solution or set of solutions.

Total points this page = 8. TOTAL POINTS EARNED THIS PAGE MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page 5 4 9 a b Let A = and A =. Compute the inverse of A. Be sure to explain clearly 9 c d and completely your method. Circle the correct values of a, b, c, and d from the possiblities below: 5. ( pts.) a =.A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD.CE. DE. AC. ABD. ABE BCD. BCE. CDE.. 6. ( pts.) b =.A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD.CE. DE. AC. ABD. ABE BCD. BCE. CDE.. 7. ( pts.) c =.A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD.CE. DE. AC. ABD. ABE BCD. BCE. CDE.. 8. ( pts.) d =.A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD.CE. DE. AC. ABD. ABE BCD. BCE. CDE.. Possible answers for questions 5, 6, 7, and 8. A., B., C. 3, D. 4, E. 5, AB. 8, AC. 9, AD.!, AE., BC., BD., BE., CD. 5,

CE. 6, DE. 3, ABC. 4, ABD. 4, ABE. 4, BCD. 45, BCE. 55. CDE. None of the above. Possible points this page = 8. POINTS EARNED THIS PAGE = MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page 6 {v,v,...,v } 9. ( pts.) Let S = n V where V is a vector space. Choose the completion of the following definition of what it means for S to be linearly independent. {v,v,...,v } Definition. The set S = n V where V is a vector space is linearly independent if A. The vector equation c has an infinite number of solutions. v +cv +...+cnv n = B. The vector equation c has a solution other than the trivial solution. v +cv +...+cnv n = C. The vector equation c has only the trivial solution c = c = = c n =. v +cv +...+cnv n = D. The vector equation c has at least two solutions. v +cv +...+cnv n = E. The vector equation c has no solution. v +cv +...+cnv n = AB. The associated matrix is nonsingular. AC. The associated matrix is singular On the back of the previous sheet, determine Directly Using the Definition (DUD) if the following sets of vectors are linearly independent. As explained in class, circle the appropriate answer that gives an appropriate method to prove that your results are correct (Attendance is mandatory). Be careful. If you get them backwards, your grade is zero. 3. (4 pts.) Let S =.{[, 4, 8] T, [3, 6, ] T }. Circle the correct answer A. S is linearly independent as c [, 4, 8] T + c [3, 6, ] T = [,,] implies c = and c =. B. S is linearly independent as 3[, 4, 8] T + () [3, 6, ] T = [,,]. C. S is linearly dependent as c [, 4, 8] T + c [3, 6, ] T = [,,] implies c = and c =. D. S is linearly dependent as 3[, 4, 8] T + () [3, 6, ] T = [,,]. E. S is neither linearly independent or linearly dependent as the definition does not apply. 3. (4 pts.) Let S = {[,, 6] T, [3, 3, 9] T }. Circle the correct answer A. S is linearly independent as c [,, 6] T + c [3, 3, 9] T = [,,] implies c = and c =. B. S is linearly independent as 3[,, 6] T + () [3, 3, 9] T = [,,]. C. S is linearly dependent as c [,, 6] T + c [3, 3, 9] T = [,,] implies c = and c =. D. S is linearly dependent as 3[,, 6] T + () [3, 3, 9] T = [,,]. E. S is neither linearly independent or linearly dependent as the definition does not apply.

Total points this page =. TOTAL POINTS EARNED THIS PAGE MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page 7 3 Let A = On the back of the previous sheet, compute the determinant of A. 4 3 9 3. ( 3 pts.) The first step of the Laplace Expansion in terms of the first column yields det(a) =. 33. (3 pts.) The first step in using Gauss Elimination to find det(a) yields det(a) =.: 34. (3 pts.) The numerical value of det(a) is det(a) =. 3 3 3 3 A. () (3), B. () (3) 4, C. () 4 (), 4 4 4 9 9 4 3 3 3 D. (3) 4 (), E. () 4 (3), AB. () ( 3) 4, 9 4 9 4 4 3 3 3 AC. () () 4, AD. (3) ( 3) 4, AE. () 4 ( 3) 4, 4 3 4 3 9 3 3 3 3 3 3 BC., BD., BE., CD., CE., 4 4 4 4 4 9 3 9 3 3 3 3 DE., ABC., ABD., ABE., ACD., ACE., 4 ADE. 3, BCD. 4, BCE. 5, BDE. 8, CDE. 9, ABCD., ABCE., ABDE., ACDE.3 BCDE. None of the above.

Possible points this page = 9. POINTS EARNED THIS PAGE = MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page 8 PRINT NAME ( ) SS No. Let a and b be the vectors, a = <,-,> = (,,) = [,,] T = î ĵ + ˆk and b = <,,3> = (,,3) = [,,3] T = ĵ + 3 ˆk. 35. (3 pts.) Then the dot product is a b = ( a, b ) = a, b. A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. BCD. BCE, CDE, ABCD. 36. (5 pts.) The cross product is a b. A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. BCD. BCE, CDE, ABCD. Possible answers for questions 35 and 36. A., B., C.3, D.4, E.5 AB. AC. AD.3 AE.4 BC. 3i ˆ j ˆ k ˆ, BD. 3i ˆ j ˆ kˆ, BE. 3i ˆ j ˆ k ˆ,CD. 3i ˆ j ˆ kˆ, CE. 3i ˆ j ˆ kˆ, DE. 3i ˆ j ˆ kˆ, ABC. 3i ˆ j ˆ kˆ, ABD. 3i ˆ j ˆ kˆ,

ABE. 3i ˆ j ˆ k ˆ, BCD. 3i ˆ j ˆ kˆ, BCE. 3i ˆ j ˆ kˆ, CDE. 3i ˆ j ˆ kˆ, ABCD. None of the above. Possible points this page = 8. POINTS EARNED THIS PAGE = MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page 9 You are to find an equation for a plane and an equation for a sphere. Recall that these equations are not unique. To get the equations given in the answers below, you should use the procedures illustrated in class (attendance is mandatory). Choose the answer that best fills in the blank from the possibilities below. Then circle the appropriate letter after the question. 37. (4 pts.) Let P be the plane through the origin and parallel to the plane with equation 4x + y = 3 z +. An equation for P is.a. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. 38. (4 pts.) Let S be the sphere of radius 3 with center at (,3,). An equation for S is. A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. Possible answers for this page. A. 4x + y + 3 z = B. 4x + y = 3 z +, C. 4x + y 3 z =, D. x + 3 y = E. 4x + y = AB. 4x + y 3 z =, AC. 4x + y + 3z =, AD. x +3 y = 3 AE. (x +) + (y + 3) = 9, BC. (x ) + (y + 3) + z = 9, BD. (x +) + (y 3) + z = 9, BE. (x ) + (y 3) = 3, CD.(x ) + (y 3) + z = 9, CE. (x +) + (y 3) + z = 3,

DE. (x +) + (y + 3) = 3, ABC. None of the above. Possible points this page = 8. POINTS EARNED THIS PAGE = MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page Suppose that the position vector for a point mass M as a function of the time t is given by: r = (e t ) i + (t 3 + 3t ) j + ( 3 sin(t) ) k You are to compute the velocity and acceleration for M. Choose the answer that best fills in the blank from the possibilities below. Then circle the appropriate letter after the question.(be careful. Remember once you make a mistake, everything beyond that point is wrong.) 39. ( 5 pts.) Let the velocity vector for the point mass M be v(t). Then v(t) =. A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE..BCD. BDE. CDE. v(t) = 4. ( 5 pts.) Let the acceleration vector for the point mass M be a(t). Then a(t) =. A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE..BCD. BDE. CDE. a(t) = Possible answers for this page. A. (e t ) î + (t 3 + 3t ) ĵ + (3 sin(t)) ˆk B. (e 3 t ) î + (t 3 + 3t ) ĵ + ( 3 sin(t)) ˆk C. (4e t ) î + (6t + 6t ) ĵ + (3 cos(t) ) ˆk D. (4e 3 t ) î + (6t 3 + 6t ) ĵ + ( 3 cos(t) ) ˆk D. (e 3 t ) î + (6t 3 + 6t ) j + (3 sin(t) ) ˆk E. (e 3 t ) î + (t 3 + 3t ) ĵ + (3 sin(t) ) ˆk AB (e 3 t ) î + (6t + 6t ) ĵ + (3 cos(t) ) ˆk AC (8e t ) î + ( t + 6 ) ĵ (3 sin(t) ) ˆk AD. (8e t ) î + (6 t + 3 ) ĵ (3 sin(t) ) ˆk AE (e 3 t ) î + (t + 6t ) ĵ + (3 sin(t) ) ˆk

BC. (4e t ) î + (6t + 3t ) ĵ + (3 sin(t) ) ˆk BD. None of the above. Possible points this page =. POINTS EARNED THIS PAGE = MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page Let L and L be the two intersecting lines (check t = ) whose parametric equations are given by: L : x = 3t +, y =, z = t L : x =, y = t, z = t where t R. You are to find an equation of the plane P that contains L and L. 4. ( pts.) The point where the lines intersect is.a. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE..BCD. BCE. BDE. CDE. 4. ( pts.) A vector in the direction of L is.a. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE..BCD. BCE. BDE. CDE. 43. ( pts.) A vector in the direction of L is.a. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE..BCD. BCE. BDE. CDE. 44. (4 pts.) A normal to the plane P is. (Recall that a normal vector to a plane is not unique.) A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE..BCD. BCE. BDE. CDE. 45. (4 pts.) An equation for the plane P is.(recall that an equation for the plane is not unique.) A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE..BCD. BCE. BDE. CDE. Possible answers for this page. A. (,,) B.(,,) C.(,,) D.((,,) E. (3,,) AB..(,,) AC. î + ĵ + 3 ˆk AD. 3 î + 3 ˆk AE. ĵ + 3 ˆk BC. 3 î + ˆk BD. î + ĵ + 3 ˆk BE. ĵ ˆk CD. ĵ + 3 ˆk CE.. î + ĵ + 3 ˆk DE.. î + ĵ + 3 ˆk ABC. î + ĵ + 3 ˆk ABD. î + 3 ĵ + 3 ˆk ABE. x + 3y + 3z = 3 ACD. x + 3y + 3z = ACE. x + 3y + z = 3 ADE. x 3y + 3z = BCD. x + 3y + 3z = BCE. x +3y + z = 3 BDE x + 3y + 3z = CDE. None of the

above. Possible points this page = 4. POINTS EARNED THIS PAGE = MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page Suppose that the position vector for a point mass as a function of the time t is given by: r = 3 t i + cos(t) j + sin(t) k. (Be careful! If you make a mistake, the rest is wrong.) 46. (3 pts) The velocity v(t) at time t = is v() =. A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE..BCD. BCE. BDE. CDE. v(t) v() 47. (3 pts) The acceleration a(t) at time t = is a() =. A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE..BCD. BCE. BDE. CDE. a(t) a() 48. (4 pts) a() v() is. A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE..BCD. BCE. BDE. CDE. a() v() 49. (3 pts) v() is. A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE..BCD. BCE. BDE. CDE. v() 5. (4 pts) The curvature at t = of the curve traced out by the particle is κ =. A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE..BCD. BCE. BDE. CDE. κ = Possible answers for this page. A. 3 î B. 3 î + 4 ˆk C. 3 î + 4 ĵ + 4 ˆk D. 3 î + 3 ˆk E. 3 ĵ + 4 ˆk AB 3 î + 4 ĵ + 4 ˆk AC. 8 ĵ AD. 8 ˆk AE. 8 î BC. 8 ĵ BD. 8(4 î + 3 ˆk ) BE. 8(3 î + 4 ĵ ) CD. 8( 4 ĵ + 3 ˆk ) CE. 8(4 î 3 ˆk ) DE. ABC. 3 ABD. 4 ABE. 5 ACD. ACE. ADE. BCD. 5 6 5 3 8 5

4 5 BCD. BDE. CDE None of the above. Possible points this page = 7. POINTS EARNED THIS PAGE = MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page 3 Let S be the surface defined by the function z = f(x,y) = 4 x y. and let (x,y,z) be a point P on the surface.. 5. ( 3 pts.) Using geometric notation ( î and ĵ, or î, ĵ, and ˆk ), the gradient of f (f) is. A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BDE. CDE ABCD 5. ( pts.) A formula for the normal to the tangent plane to the surface S at the point P is. A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE..ACD. ACE. ADE. BCD. BDE. CDE ABCD 53. ( 4 pts.) The set of points on S where the tangent plane to S is horizontal is. A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BDE. CDE ABCD A. x î + y ĵ + ˆk, B.x î + y ĵ ˆk, C.x î + 3y ĵ + ˆk, D. î + ĵ + 3 ˆk E. î + ĵ 3 ˆk, AB. î + ĵ ˆk, AC. x î + y ĵ + 3 ˆk AD. î + ĵ 3 ˆk AE. î + ĵ + 3 ˆk BC. î + ĵ BD.x î + y ĵ, BE.x î + y ĵ, CD.x î + y ĵ + 3 ˆk, CE.x î + y ĵ + 3 ˆk, DE..x î + y ĵ + 3 ˆk, ABC.x î + y ĵ + 3 ˆk, ABD. {(,,4)}, ABE. {(,,4),(,,4)}, ACD. {(,,),(,,)}, ACE.{(,,4)}

ADE.{(,,4),(,,4)}, BCD. {(,,4),(,,4)}, BCE. {(,,4),(,,4)}. BDE {(,,4),(,,4)} CDE. {(,,4),(,,4)} ABCD. None of the above Possible points this page = 9. POINTS EARNED THIS PAGE = MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page 4 Let w = f(x,y) = x e y where x = g(t) and y = h(t). Hence w = f(g(t),h(t)). Assume g() =, h() =, g'() =, and h'() =3. You are to compute w x (x,y) (,) 54. (3 pts.) =. A. B. C. D. E. AB. AC. AD. AE. BC. 55. (3 pts.) w y dw dt BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BDE. t CDE ABCD ABCE. ABDE. ACDE. BCDE.. (x,y) (,) =. A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BDE. CDE ABCD ABCE. ABDE. ACDE. BCDE.. 56. (4 pts.) dw dt =. A. B. C. D. E. AB. AC. AD. AE. BC. BD. t BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BDE. CDE ABCD ABCE. ABDE. ACDE. BCDE..

A. B. C. D.3 E.4 AB.5 AC.6 AD.7 AE.8 BC.9 BD. BE. CD. CE.3 DE.4 ABC.5 ABD. ABE..ACD.3 ACE.4 ADE.5 BCD.6 BDE.7 CDE 8 ABCD 9 ABCE. ABDE. ACDE. BCDE. None of the above. Possible points this page =. POINTS EARNED THIS PAGE = MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page 5 Let P be the point in R 3 (i.e. 3-space) which has rectangular coordinates (,, ) R. Give the cylindrical and spherical coordinates of P. Begin by drawing a picture. Be sure to give the coordinates in the correct form. 57. ( 4 pts.) The cylindrical coordinates of P are..a. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE..BCD. BDE. CDE. 58. ( 4 pts.) The spherical coordinates of P are..a. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE..BCD. BDE. CDE. A.(, π/4,) C, B.(, π/4,π/4,) C, C.(, π/4,) C, D.(, π/4, ) C, E.(, π/4,π/4) C, AB.(, π/3, ) C, AC.(, π/3,) C, AD.(, π/4,) C, AE.(, π/4,) C, BC.(, π/4,) C, BD.(, π/4,) S, BE.(, π/4,π/4,) S, CD.(, π/4,) S, CE.(, π/4, ) S, DE. (, π/4,π/4) S,

ABC.(, π/3, ) S, ABD.(, π/3,) S, ABE.(, π/4,) S, BCD.(, π/4,) S, BCE.(, π/4,) S,) CDE. None of the above. Possible points this page = 8. POINTS EARNED THIS PAGE = MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page 6 Let w = f(x,y) = 5 e 3x cos(y), P be the point (,), and be a unit vector in the direction of. û v 3iˆ 4j ˆ 59. (4 pts.) Using geometric notation (i.e. î and ĵ or î, ĵ, and ˆk ), f. (x, y) (,) A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BCE. BDE. CDE ABCD, ABCE, ABDE, ACDE, BCDE. D f(p) = D f. uˆ uˆ 6. (4 pts.) A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. (x,y) (,) CD. CE. DE. ABC. ABD. ABE.. ACD. ACE. ADE. BCD. BCE. BDE. CDE ABCD, ABCE, ABDE, ACDE, BCDE. Possible answers. A. 5 î + 5 ĵ + ˆk, B. 5 î + 5 ĵ, C. î 5 ĵ ˆk, D.5 î 5 ĵ ˆk, E. 5 î 5 ĵ, AB. 5 î, AC. 5 î 5 ĵ ˆk, AD. 5 î 5 ĵ ˆk, AE. 5 î 5 ĵ ˆk, BC., BD., BE. 5, CD. 9, CE., DE., ABC.3, ABD.45, ABE. 6, ACD.

ACE. 5, ADE. 9, BCD., BCE.45, BDE. 8/5, CDE. 4/(5), ABCD. 8/5, ABCE.4/(5), ABDE. 8/ 5, ACDE 8/ 5, BCDE. None of the above. Possible points this page = 8. POINTS EARNED THIS PAGE = MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page 7 Let S be the surface which is defined by the graph of the function z = f(x,y). Suppose using geometric notation (i.e. î and ĵ or î, ĵ, and ˆk ), that 6iˆ 4ˆj. and that f(,) = f (x, y) (,) 6. (4 pts.) Using geometric notation, a normal to the surface S when x = and y = is. A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BCE. BDE. CDE ABCD. ABCE. ABDE. 6. (4 pts.)the equation of the tangent plane to the surface S at the point on the surface where x = and y = is. A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE..ACD. ACE. ADE. BCD. BCE. BDE. CDE ABCD. ABCE. ABDE. Possible answers. A. 6 î + 4 ĵ + ˆk, B. 6 î + 4 ĵ, C. 6 î 6 ĵ ˆk, D.6 î 4 ĵ ˆk, E. 6 î 4 ĵ, AB. 6 î, AC. 6 î 4 ĵ ˆk, AD. 6 î + 4 ĵ ˆk, AE. 6 î 4 ĵ ˆk, BC. 6x 4y z =, BD. 6x + 4y z =, BE. 6x + 4y z =, CD. 4x + 4y +z =, CE. 6x + 4y z =, DE. 6x + 4y z = 4, ABC.5x + 4y z = 4, ABD. 6x + 4y z =, ABE. 6x + 4y z =, ACD. 6x + 4y z = 5, ACE. 6x + 4y z = 5, ADE.6x + 4y z =,

BCD. 3x + 4y z =, BCE. 3x + 4y z =, BDE. 3x 4y z =, CDE. 3x + 7y z =, ABCD. 6x + 7y z =, ABCE. 3x + 7y z =, ABDE. None of the above. Possible points this page = 8. POINTS EARNED THIS PAGE = MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page 8 Consider the function f:r R defined by z = f(x,y) = x 3 + (3/)x + y 6. 63. (4 pts.) Using geometric notation, a formula for f is. A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BCE. BDE. CDE ABCD ABCE. ABDE. 64. ( 4 pts.) The set of critical points of this function is. A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD.. BCE BDE. CDE ABCD ABCE. ABDE Possible answers. A. (x 6x) î + y ĵ, B. (3x6) î + y ĵ, C. (3x 6) î + y ĵ, D. (3x 3x) î + y ĵ, E. (3x 3x) î + y ĵ + z ˆk, AB. (3x 3) î + (y+) ĵ, AC. (x6) î + (y+) ĵ + z ˆk, AD. (x6) î + (y+) ĵ + z ˆk, AE. (3x +3) î + y ĵ, BC. (3x 6) î + (y+) ĵ, BD. (3x3) î + (y+) ĵ + z ˆk, BE. (3x3) î + (y+) ĵ + ˆk, CD. (3x6) î + (y+) ĵ, CE., DE. {(3,,),(3,,)}, ABC.R, ABD. {(,),(,)}, ABE. {(,),(,)}, ACD. {(,),(,)}, ACE. {(3,,),(3,,)}, ADE.{(3,,),(3,,)}, BCD. {(3,,),(3,,)}, BCE. {(3,,),(3,,)},

BDE. {(3,,),(3,,)}, CDE. {(3,,),(3,,)}, ABCD. {(3,,)}, ABCE. {(3,,)}, ABDE. None of the above. Possible points this page = 8. POINTS EARNED THIS PAGE = MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page 9 3 x You are to evaluate the iterated integral I (6x y ye )dydx. 65. (4pts.) Doing the first step in the evaluation results in the single integral I =. A. B. C. D. E. AB AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BCE. BDE. CDE ABCD ABCE ABDE. ACDE. BCDE. ABCDE. 66. (4pts.) The final numerical value of I is I =.A. B. C. D. E. AB AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BCE. BDE. CDE ABCD. ABCE. ABDE. ACDE. BCDE. ABCDE. Possible answers. 3 x 3 x 3 x 3 x 3 x A. (x e )dy, B. (3x e )dx, C. (6x 4e )dy, D. (6x e )dy E. (3x e )dx, 3 x 3 x 3 x 3 x AB. (x e )dx, AC. (8x 4e )dx, AD. (6x e )dx AE. (6x 4e )dx, BC. (6x xe)dy, 3 x 3 x BD. (x e )dy, BE. (x e )dy CD., CE., DE. 5, ABC. 8, ABD., ABE.,

ACD. 7e, ACE. 7e, ADE. 73e, BCD. BCE. 5, BDE. 8, CDE.4/(5) ABCD., ABCE.7e, ABDE. 7e, ACDE. 73e, BCDE. 78e/5, ABCDE. None of the above. Possible points this page = 8. POINTS EARNED THIS PAGE = MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page 4 x x 3 3 Assume 4x y dydx g(x, y)dxdy. On the back of the previous sheet you are find g(x,y), α, β, γ, and δ, x that is, you are to reverse the order of integration in the integral. DO NOT EVALUATE EITHER INTEGRAL. Begin by drawing an appropriate picture. 67. ( pt.) g(x,y) =. A. B. C. D. E. AB AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BCE BDE. CDE ABCD ABDE. ABDE. ACDE 68. (4 pts.) α =. A. B. C. D. E. AB AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BCE BDE. CDE ABCD ABDE. ABDE. ACDE 69. (4 pts.) β =.A. B. C. D. E. AB AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BCE BDE. CDE ABCD ABDE. ABDE. ACDE 7. ( pts.) γ =.A. B. C. D. E. AB AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BCE BDE. CDE ABCD ABDE. ABDE. ACDE. 7. ( pts.) δ =.A. B. C. D. E. AB AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BCE BDE. CDE ABCD ABDE. ABDE. ACDE, Possible answers. A. 4 x 3 y 3, B. x 3 y 3, C. 4x-x, D. x, 4 6 4y 4 6 4y 4 6 4y E., AB., AC., 4 6 4y 4 6 4y 6 4y 4 6 4y 4 6 4y AD., AE., BC. BD., BE., CD. 4 6 4y 4 4, CE. x, DE. y, ABC. x/, ABD. y/, ABE. x/3, ACD. y/3, ACE.3x, 4

ADE. 3y, BCD., BCE., BDE., CDE. 3, ABCD., ABCE., ABDE. 3, ACDE. None of the above. Possible points this page =. POINTS EARNED THIS PAGE = MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page g(x, y)dydx Let A be the area of the region in the first quadrant bounded by the curves y = x, x + y =, and y =. On the back of the previous sheet, determine g(x,y), α, β, γ, and δ. Begin by drawing an appropriate sketch. DO NOT EVALUATE THE INTEGRAL. 7. ( pts.) g(x,y) =. A. B. C. D. E. AB AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BCE. BDE. CDE ABCD ABCE. ABDE 73. (4 pts.) α =. A. B. C. D. E. AB AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD..BCE BDE. CDE ABCD ABCE. ABDE 74. (4 pts.) β =.A. B. C. D. E. AB AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD..BCE BDE. CDE ABCD ABCE. ABDE 75. ( pts.) γ =.A. B. C. D. E. AB AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD..BCE BDE. CDE ABCD ABCE. ABDE 76. ( pts.) δ =.A. B. C. D. E. AB AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD..BCE BDE. CDE ABCD ABCE. ABDE Possible answers. A. 4 x 3 y 3, B. x 3 y 3, C. 4x-x, D. x, E., AB., AC., AD., AE., 3 4 x 3 x 4 x x x

BC. x, BD. x/, BE. x/3, CD. x/4, CE. x/5, DE.3x, ABC.x, ABD., ABE., ACD., ACE. 3, ADE., BCD., BCE.3, ABDE. None of the above. Possible points this page = 4. POINTS EARNED THIS PAGE = MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page x xy On the back of the previous sheet, you are to evaluate the iterated integral I 5xyz dzdydx. 77. (3pts.) Doing the first step in in the computation results in the double integral I =. A. B. C. D. E. AB AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BCE. BDE. CDE ABCD ABCE ABDE. ACDE. BCDE. 78. (3pts.) Doing the second step in the computation results in the single integral I =. A. B. C. D. E. AB AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BCE. BDE. CDE ABCD ABCE ABDE ACDE. BCDE 79. (3pts.) After the computation is complete, the numerical value of I is I =. A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BCE. BDE. CDE ABCD ABCE. ABDE ACDE. BCDE Possible answers. x x 3 3 4 4 4 4 A. 5xydydx B. 5x y dydx C. 5x y dydx D. 5x y dydx E. x x x x 4 4 5x y dydx 4 4 4 4 4 4 4 4 9 AB. 5x y dydx AC. 5x y dydx, AD. 5x y dydx, AE. 5x y dydx, BC. 8x dx, x 8 6 7 8 9 9 BD. 6x dx, BE. 6x dx, CD. 6x dx, CE. 3x dx, DE. 3x dx, ABC. 4x dx, x x

9 ABD. 6y dy, ABE. (6x dx, ACD., ACE., ADE., BCD., BCE., BDE. 8/5, CDE.6/5, ABCD.8/5, ABCE.5/3, ABDE.4/3, ACDE. 5/4, BCDE. None of the above. Possible points this page = 9. POINTS EARNED THIS PAGE = MATH 5 EXAM IV Fall 5 Prof. Moseley Page 3 ν δ β Let V = g(x,y,z) dz dy dx be the volume of the solid in the first octant bounded by µ γ α the planes x + y +3 z = 6, x =, y =, and z =. On the back of the previous sheet determine g(x,y,z), α, β, γ, δ, µ, and ν (i.e. set up an iterated integral in rectangular coordinates which gives the value of V). Begin by drawing an appropriate sketch. DO NOT EVALUATE. 8. ( pts.) g(x,y) =. A. B. C. D. E. AB AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BCE. BDE. CDE ABCD ABCE 8. ( pts.) α =. A. B. C. D. E. AB AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BCE. BDE. CDE ABCD ABCE 8. (4 pts.) β =.A. B. C. D. E. AB AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BCE. BDE. CDE ABCD ABCE 83. ( pts.) γ =.A. B. C. D. E. AB AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BCE. BDE. CDE ABCD ABCE 84. (4 pts.) δ =.A. B. C. D. E. AB AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BCE. BDE. CDE ABCD ABCE 85. ( pts.) µ =.A. B. C. D. E. AB AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BCE. BDE. CDE ABCD ABCE 86. ( pts.) ν =.A. B. C. D. E. AB AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BCE. BDE. CDE ABCD ABCE Possible answers. A. 4 x 3 y 3, B. x 3 y 3, C. 4x-x, D. 3 (x/3) (y/6), E. (x/3), AB. (y/6), AC x (y/6) AD. (x/3) y, AE. (x/3) (y/6), BC. (x/3) (y/6), BD. (x/) (y/6),

BE. (x/3) (y/6), CD. x, CE. y, DE. x/, ABC. y/, ABD. 6 x, ABE. y/3, ACD. 3x, ACE. 3y, ADE., BCD., BCE., BDE. 3, CDE., ABCD., ABCE. 3, ABDE. None of the above. Possible points this page = 4. POINTS EARNED THIS PAGE = MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page 4 Let C be the curve that is the path of a point mass whose position vector is given by: r = t i + t j, t [, ], (i.e. < x<). Also let F (x,y) = xy i + j. You are to compute I F(x, y) dr. C 87. ( pts.) A parameterization of the curve is x(t) = and y(t) =. A. x(t) = t, y(t) = t, B. x(t) =, y(t) = t, C. x(t) = t, y(t) = t, D. x(t) = t /, y(t) = t 3 /3, E. x(t) = t, y(t) = t, AB. x(t) =, y(t) = 3t, AC. x(t) = t, y(t) = 3t, AD. None of the above. 88. (3 pts.) With the above parameterization, F(x(t), y(t)) along the curve C is F(x(t), y(t)) =. A. t 3 î + j, B. t î + t ĵ, C. t î + t 3 ĵ, D. (t /) î +( t 3 /3) ĵ, E. t î +3t ĵ, AB. t 3 î + t 3 ĵ, AC. t î + 3t 3 ĵ, AD. t î + t 3 ĵ, AE. None of the above. 89. (3 pts.) The numerical value for I is I =. A., B., C. 3, D. 4, E. 5, AB. 6, AC. 7, 8 7 3 4 AD. 8, AE., ABC., ABD., ABE., ACD., ACE., ADE., BCD., 5 5 5 3 3 5 5 3 4 BCE., BDE., CDE., ABCD. None of the above. 5 5 5

Possible points this page = 8. POINTS EARNED THIS PAGE = MATH 5 FINAL EXAM Fall 5 Prof. Moseley Page 5 ( pts.) Let F (x,y) = M(x,y) i + N(x,y) j where M(x,y) = 6xy 3 and N(x,y) = 9x y M 9. ( pts.). A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. x ABD. ABE. ACD. ACE. ADE. BCD. BCE. BDE. CDE. ABCD. M 9. ( pts.). A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. y ABD. ABE. ACD. ACE. ADE. BCD. BCE. BDE. CDE. ABCD N 9. ( pts.). A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. x ABD. ABE. ACD. ACE. ADE. BCD. BCE. BDE. CDE. ABCD N y 93. ( pts.). A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BCE. BDE. CDE. ABCD 94. ( pts.) A potential function for F (x,y) = M(x,y) i + N(x,y) j is f(x,y) =. A. B. C. D. E. AB. AC. AD. AE. BC. BD. BE. CD. CE. DE. ABC. ABD. ABE. ACD. ACE. ADE. BCD. BCE. BDE. CDE. ABCD Possible answers this page A. 8y 3, B. xy 3, C. 8xy D. 8xy 3, E. xy 3, AB. 3x y 3 AC. 9x y, AD. 8x y, AE. 8x y ABC. 3x 3 y, ABD. 8x y 3, ABE. 3x y, ACD. 8x y, ACE.8x 3 y, ADE. 8x 3 y 3, BCD. 3xy, BDE. None of the above could possibly be a potential function as F (x,y) is not conservative.

CDE. F (x,y) is conservative but none of the above functions is a potential function for F (x,y). ABCD. None of the above. Possible points this page =. POINTS EARNED THIS PAGE =