T f. Geometry. R f. R i. Homogeneous transformation. y x. P f. f 000. Homogeneous transformation matrix. R (A): Orientation P : Position

Similar documents
Rigid body simulation

So far: simple (planar) geometries

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

An Algorithm to Solve the Inverse Kinematics Problem of a Robotic Manipulator Based on Rotation Vectors

Iterative General Dynamic Model for Serial-Link Manipulators

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

Geometry and Screw Theory for Robotics

MEV442 Introduction to Robotics Module 2. Dr. Santhakumar Mohan Assistant Professor Mechanical Engineering National Institute of Technology Calicut

Torsten Mayer-Gürr Institute of Geodesy, NAWI Graz Technische Universität Graz

Chapter 11 Angular Momentum

5.76 Lecture #21 2/28/94 Page 1. Lecture #21: Rotation of Polyatomic Molecules I

Spin-rotation coupling of the angularly accelerated rigid body

2010 vds-3d. Professor Kyongsu Yi. Vehicle Dynamics and Control Laboratory

Classical Mechanics ( Particles and Biparticles )

Modeling of Dynamic Systems

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

PHYS 1443 Section 003 Lecture #17

Mathematical Preparations

Week 9 Chapter 10 Section 1-5

Geometric Registration for Deformable Shapes. 2.1 ICP + Tangent Space optimization for Rigid Motions

NEWTON S LAWS. These laws only apply when viewed from an inertial coordinate system (unaccelerated system).

CHAPTER 10 ROTATIONAL MOTION

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis

Chapter 11: Angular Momentum

Chapter 3. r r. Position, Velocity, and Acceleration Revisited

Quantum Mechanics I Problem set No.1

Study Guide For Exam Two

EN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

The classical spin-rotation coupling

Teaching Spatial Kinematics for Engineers

Important Dates: Post Test: Dec during recitations. If you have taken the post test, don t come to recitation!

Elshaboury SM et al.; Sch. J. Phys. Math. Stat., 2015; Vol-2; Issue-2B (Mar-May); pp

Lie Group Formulation of Articulated Rigid Body Dynamics

10/9/2003 PHY Lecture 11 1

Dynamics of a Spatial Multibody System using Equimomental System of Point-masses

Chapter 20 Rigid Body: Translation and Rotational Motion Kinematics for Fixed Axis Rotation

Georgia Tech PHYS 6124 Mathematical Methods of Physics I

10/23/2003 PHY Lecture 14R 1

Spring 2002 Lecture #13

Physics 181. Particle Systems

SCALARS AND VECTORS All physical quantities in engineering mechanics are measured using either scalars or vectors.

LAGRANGIAN MECHANICS

Conservation of Angular Momentum = "Spin"

RIGID BODY MOTION. Next, we rotate counterclockwise about ξ by angle. Next we rotate counterclockwise about γ by angle to get the final set (x,y z ).

Angular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004

12. The Hamilton-Jacobi Equation Michael Fowler

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15

Minimal representations of orientation

Physics 111: Mechanics Lecture 11

VEKTORANALYS GAUSS THEOREM STOKES THEOREM. and. Kursvecka 3. Kapitel 6 7 Sidor 51 82

Dynamics 12e. Copyright 2010 Pearson Education South Asia Pte Ltd. Chapter 20 3D Kinematics of a Rigid Body

PHYS 705: Classical Mechanics. Newtonian Mechanics

(δr i ) 2. V i. r i 2,

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

Solution 1 for USTC class Physics of Quantum Information

Lecture 23: Newton-Euler Formulation. Vaibhav Srivastava

Dynamics of Rotational Motion

Screw and Lie group theory in multibody kinematics

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

Stereo 3D Simulation of Rigid Body Inertia Ellipsoid for The Purpose of Unmanned Helicopter Autopilot Tuning

τ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q

coordinates. Then, the position vectors are described by

VEKTORANALYS. GAUSS s THEOREM and STOKES s THEOREM. Kursvecka 3. Kapitel 6-7 Sidor 51-82

1. Review of Mechanics Newton s Laws

Rotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

EML 5223 Structural Dynamics HW 10. Gun Lee(UFID )

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)

Anglo-Chinese Junior College H2 Mathematics JC 2 PRELIM PAPER 1 Solutions

Chapter 2 Math Fundamentals

6.3.4 Modified Euler s method of integration

1 Matrix representations of canonical matrices

1 What is a conservation law?

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

Kinematics and geometry review. Based on figures from J Xiao

Lesson 5: Kinematics and Dynamics of Particles

Linear Momentum. Center of Mass.

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2011/2012 DYNAMICS ME247 DR. N.D.D. MICHÉ

11. Dynamics in Rotating Frames of Reference

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

16 Reflection and transmission, TE mode

In this section is given an overview of the common elasticity models.

C. J. PAPACHRISTOU INTRODUCTION TO

Port-Hamiltonian Modeling for Soft-Finger Manipulation

MTH 263 Practice Test #1 Spring 1999

A Hamiltonian formulation of the dynamics of spatial mechanisms using Lie Groups and Screw Theory

PY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg

Spring Force and Power

2D Motion of Rigid Bodies: Falling Stick Example, Work-Energy Principle

ENGI9496 Lecture Notes Multiport Models in Mechanics

Classical Mechanics Virtual Work & d Alembert s Principle

MEASUREMENT OF MOMENT OF INERTIA

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

Symmetric Lie Groups and Conservation Laws in Physics

EE 570: Location and Navigation: Theory & Practice

Introductory Optomechanical Engineering. 2) First order optics

Transcription:

Homogeneous transformaton Geometr T f R f R T f Homogeneous transformaton matr Unverst of Genova T f Phlppe Martnet = R f 000 P f 1 R (A): Orentaton P : Poston 123 Modelng and Control of Manpulator robots

124 Modelng and Control of Manpulator robots Phlppe Martnet Unverst of Genova Homogeneous transformaton Geometr Consder a 3D pont n space R f R 1 f T 1 = R f 1 Then f P f R R f R + =

Homogeneous transformaton Geometr T f Homogeneous transformaton matr Dfferent representatons R : Orentaton s, n, a Cosnus drectors RPY angles (Roll (), Ptch(), Yaw()) Brant angles (,,) Euler angles (,,) u.θ, u.sn(θ), u.sn(θ/2 θ/2), P : Poston Cartesan coordnates Clndrcal coordnates Sphercal coordnates Quaternon λ 1, λ 2, λ 3, λ 4 Unverst of Genova Phlppe Martnet 125 Modelng and Control of Manpulator robots

Homogeneous transformaton Geometr T f Homogeneous transformaton matr Dfferent representatons (.e) R : Orentaton s, n, a Drector Cosnus P : Poston Cartesan coordnates R s = s s n n n a a a P = P P P No rotaton No translaton P=(0,0,0) T Unverst of Genova Phlppe Martnet 126 Modelng and Control of Manpulator robots

Homogeneous transformaton Geometr T f Homogeneous transformaton matr Man propertes of the rotaton matr R : Orentaton s, n, a Drector Cosnus s = n = a = s n = 0 s 1 n = a s R= s s n n n a a a s a a n 1 T R = R = = 0 0 n a a s = = s n Unverst of Genova Phlppe Martnet 127 Modelng and Control of Manpulator robots

Geometr Homogeneous transformaton: Rotaton matr R f Rotaton matr Rot(,θ ) Matr to change the frame for one vector Unverst of Genova Phlppe Martnet 128 Modelng and Control of Manpulator robots

Geometr Homogeneous transformaton: Rotaton matr R f Rotaton matr Rot(,θ ) Unverst of Genova Phlppe Martnet 129 Modelng and Control of Manpulator robots

Geometr Homogeneous transformaton: Rotaton matr R f Rotaton matr Rot(,θ ) Unverst of Genova Phlppe Martnet 130 Modelng and Control of Manpulator robots

Homogeneous transformaton propertes Geometr T f Homogeneous transformaton matr Prop. 1) Prop. 2) Unverst of Genova Phlppe Martnet 131 Modelng and Control of Manpulator robots

Homogeneous transformaton propertes Geometr T f Homogeneous transformaton matr Prop. 3) Prop. 4) Unverst of Genova Phlppe Martnet 132 Modelng and Control of Manpulator robots

Homogeneous transformaton propertes Geometr T f Homogeneous transformaton matr Prop. 5) Prop. 6) Unverst of Genova Phlppe Martnet 133 Modelng and Control of Manpulator robots

Homogeneous transformaton propertes Geometr T f Homogeneous transformaton matr T s defned n R Prop. 7) T s defned n R j Unverst of Genova Phlppe Martnet 134 Modelng and Control of Manpulator robots

Homogeneous transformaton propertes Geometr T f Homogeneous transformaton matr Unverst of Genova Phlppe Martnet 135 Modelng and Control of Manpulator robots

Homogeneous transformaton propertes Geometr T f Homogeneous transformaton matr Prop. 8) Unverst of Genova Phlppe Martnet 136 Modelng and Control of Manpulator robots

Rgd bod pose parameteraton: poston Cartesan coordnates Unverst of Genova Phlppe Martnet 137 Modelng and Control of Manpulator robots

Rgd bod pose parameteraton: poston Clndrcal coordnates Sngulart : P=P=0 Unverst of Genova Phlppe Martnet 138 Modelng and Control of Manpulator robots

Rgd bod pose parameteraton: poston Sphercal coordnates f or f f or f Unverst of Genova Phlppe Martnet 139 Modelng and Control of Manpulator robots

Rgd bod pose parameteraton: orentaton Euler angles or Remarks: Euler angles can be defned also b (,,) Unverst of Genova Phlppe Martnet 140 Modelng and Control of Manpulator robots

Rgd bod pose parameteraton: orentaton RPY angles (,,) A RPY or Unverst of Genova Phlppe Martnet 141 Modelng and Control of Manpulator robots

Rgd bod pose parameteraton: orentaton Brant angles (,,) or Unverst of Genova Phlppe Martnet 142 Modelng and Control of Manpulator robots

Rgd bod pose parameteraton: orentaton Orentaton (u,θ) Rodrgues formula Unverst of Genova Phlppe Martnet 143 Modelng and Control of Manpulator robots

Rgd bod pose parameteraton: orentaton Orentaton (u.θ) Rodrgues formula, Unverst of Genova Phlppe Martnet 144 Modelng and Control of Manpulator robots

Orentaton (u.θ) T 2 (, θ ) = I u sθ + uˆ 3 ˆ..( 1 cθ ) T (, θ ) A( u, θ ) = 2.ˆ. u sθ A u A u 2 ( A( u, θ )) = Trace I + u sθ + uˆ 3 ˆ..( 1 cθ ) 2 ( A( u, θ )) = 3+ ( 1 cθ ). Trace( uˆ ) ( A( u, θ )) = 3 + ( 1 cθ )(. 2) ( A( u, θ )) = 1+ 2 cθ Trace Trace Trace Trace. Rgd bod pose parameteraton: orentaton ( ) [ u. sθ ] = [ u. sθ ] = (, θ ) A( u, θ ) A u 2 ( A( u, θ )) = 1+ 2 cθ Tr( A( u, θ )) 1 Tr. cosθ = 2 T s s s n n n a a a s n a n a Unverst of Genova s s n = s a s snθ = ± 1 2 0 n a n n s 0 a Phlppe Martnet a a s n 0 s - n a - s n - a ( s n ) 2 + ( a s ) 2 + ( n a ) 2 = 2 u sθ = 2 u sθ = 2 u sθ n 1 a 2.snθ s a s n 145 Modelng and Control of Manpulator robots u =

Rgd bod pose parameteraton: orentaton Quaternon (λ 1,λ 2,λ 3,λ 4 ) Unverst of Genova Phlppe Martnet 146 Modelng and Control of Manpulator robots

Case of seral manpulator robot R 0 R 1 C 0 C 1 C 2 Mult-Rgd bodes R k R k+1 C k C n Consder a robot wth n+1 rgd bodes C k We assocate n+1 frames C 0 s the base of the robot (fed) R e Unverst of Genova Phlppe Martnet 147 Modelng and Control of Manpulator robots

Case of seral manpulator robot Mult-Rgd bodes The problem to solve s to obtan the poston and orentaton of the end effector frame R e n the fed frame R 0 k k k Rk + 1 Pk + 1 Tk + 1 = 000 1 Elementar frame transform 0 T e = 0 T 1 1 T 2 2 T 3 L n 1 T n n T e Unverst of Genova Phlppe Martnet 148 Modelng and Control of Manpulator robots

Rgd bod knematcs Crcular moton v: tangental velct ω: angular veloct Unverst of Genova Phlppe Martnet 149 Modelng and Control of Manpulator robots

Rgd bod knematcs Rotatng frame R f : fed frame (orgn O fed) R m : moble frame just n rotaton w.r.t R f ω: angular veloct Unverst of Genova Phlppe Martnet 150 Modelng and Control of Manpulator robots

R f D Rgd bod knematcs R m d O m P O f R f : fed frame R m : Moble frame P : one pont n R m V ( P) d dt R f = V ( O ) + V ( P) + ω m d ( d) = D& + ( d) + ω dt R R f R m f R m d O m P ω : angular veloct of R m relatve to R f Unverst of Genova Phlppe Martnet 151 Modelng and Control of Manpulator robots

Knematc Rgd bod knematcs Usng ths relaton we can establshed The knematc evoluton of a mult-rgdbod robot See net slde Remarks : V ( P) R f = V ( O ) + V ( P) + ω m R f R m O m P If D=0 then V ( P) R f = V ( P) + ω R m O m P If D=0 and V ( P ) 0 then Unverst of Genova R = m = Om P ω 0 ω = ~ ~ ω ω d ω = ω 0 ω = [ ω] = [ ω] = [ ˆ ω AS ] ω ω 0 Phlppe Martnet V ( P) R f = ω O m 152 Modelng and Control of Manpulator robots P

Mult-Rgd bodes knematcs Angular veloct of R w.r.t R 0 epressed n R Veloct of O +1 w.r.t R epressed n R Veloct of O w.r.t R 0 epressed n R Veloct of O +1 w.r.t R 0 epressed n R Unverst of Genova Phlppe Martnet 153 Modelng and Control of Manpulator robots

Mult-Rgd bodes knematcs C -1 C C +1 = Angular veloct of R w.r.t R -1 epressed n R Angular veloct of R w.r.t R 0 epressed n R Angular veloct of R -1 w.r.t R 0 epressed n R -1 Unverst of Genova Phlppe Martnet 154 Modelng and Control of Manpulator robots

Mult-Rgd bodes knematcs C -1 C C +1 = Angular veloct of R w.r.t R -1 epressed n R Angular veloct of R w.r.t R 0 epressed n R Angular veloct of R -1 w.r.t R 0 epressed n R -1 Unverst of Genova Phlppe Martnet 155 Modelng and Control of Manpulator robots

Mult-Rgd bodes knematcs Consderng two frames R a and R b rgdl lnked (case for R n and R E ) twst Unverst of Genova Phlppe Martnet 156 Modelng and Control of Manpulator robots

Mult-Rgd bodes knematcs Consderng two frames R and R j and a twst V =(v,ω ) T epressed n O We wsh to compute the correspondng twst V j =(v j,ω j ) T epressed n O j Projecton wth Unverst of Genova Phlppe Martnet 157 Modelng and Control of Manpulator robots

Dfferental translaton and rotaton of frames Consder a dfferental translaton vector dp epressng the translaton of the orgn of frame R, and of a dfferental rotaton vector δ, equal to u.dθ, representng the rotaton of an angle dθ about an as, wth unt vector u, passng through the orgn O. The dfferental transformaton matr s defned as [Paul 81] Unverst of Genova Phlppe Martnet 158 Modelng and Control of Manpulator robots

Ra a T b = a R b Unverst of Genova a t b 000 1 R b Phlppe Martnet =a Ṙ b. a R T b R= a R b R.R T =I3 Ω b/a a T Ṙ.R T +R.Ṙ T =0 Ṙ.R T = R.ṘT = Ṙ.R T Ṙ.R T =S(t) Ṙ=S(t).R p a (t)=r(t).p b (t) ṗ a (t)=ṙ(t).p b (t) ṗ a (t)=s(t).r.p b (t) ṗ a (t)=ω p a (t) ṗ a (t)=[ω] ṗ a (t)=ω (R.p b (t)).r.p b (t) S(t)=[Ω] Ωb/a a Consderp b (t)constant Angular veloct propertes 159 Modelng and Control of Manpulator robots

b T a = b R a 000 1 Angular veloct propertes b t a b R a representstheorentaton b t a representstheposton Ra R b Ω b/a a a t b a T b = a R b 000 1 Ω a/b b Ω b/a a Ω b/a a = Ω a/b a Ω b/a a = a R b.ω b/a b Ωb/a a Ω a/b b Ω a/b b = Ω b/a b Ω a/b b = b R a.ω a/b a Ωa/b b =a Ṙ b. a Rb T =b Ṙ a. b Ra T Unverst of Genova Phlppe Martnet 160 Modelng and Control of Manpulator robots

Representaton of forces (wrench) A collecton of forces and moments actng on a bod can be reduced to a wrench F at pont O, whch s composed of a force f at O and a moment m about O: Note that the vector feld of the moments consttutes a screw where the vector of the screw s f. Thus, the wrench forms a screw. Consder a gven wrench F, epressed n frame R. For calculatng the equvalent wrench j F j, we use the transformaton matr between screws such that: Unverst of Genova Phlppe Martnet 161 Modelng and Control of Manpulator robots