THE PROBLEM of digital blind feedforward symbol

Similar documents
NEW ADVANCES IN SYMBOL TIMING SYNCHRONIZATION OF SINGLE-CARRIER, MULTI-CARRIER AND SPACE-TIME MULTIPLE-ANTENNA SYSTEMS. A Dissertation YIK CHUNG WU

Carrier frequency estimation. ELEC-E5410 Signal processing for communications

Optimal Blind Nonlinear Least-Squares Carrier Phase and Frequency Offset Estimation for General QAM Modulations

NON-DATA AIDED DIGITAL FEEDFORWARD TIMING ESTIMATORS FOR LINEAR AND NONLINEAR MODULATIONS. A Thesis PRADEEP KIRAN SARVEPALLI

Data-aided and blind synchronization

Particle Filter for Joint Blind Carrier Frequency Offset Estimation and Data Detection

TECHNICAL RESEARCH REPORT

Efficient Maximum-Likelihood Based Clock and Phase Estimators for OQPSK Signals

Internal note 9: Blind carrier frequency offset estimation for OFDM/OQAM over multipath channel

A Family of Nyquist Filters Based on Generalized Raised-Cosine Spectra

NEW ADVANCES IN SYNCHRONIZATION OF DIGITAL COMMUNICATION RECEIVERS. A Dissertation YAN WANG

EE6604 Personal & Mobile Communications. Week 15. OFDM on AWGN and ISI Channels

BLIND CYCLOSTATIONARY STATISTICS BASED CARRIER FREQUENCY OFFSET AND SYMBOL TIMING DELAY ESTIMATORS IN FLAT-FADING CHANNELS

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10

Approximate Best Linear Unbiased Channel Estimation for Frequency Selective Channels with Long Delay Spreads: Robustness to Timing and Carrier Offsets

ON THE FOURTH-ORDER CUMULANTS ESTIMATION FOR THE HO BLIND SEPARATION OF CYCLOSTATIONARY SOURCES. Anne Férréol and Pascal Chevalier

Square Root Raised Cosine Filter

CHOCS: A Framework for Estimating Compressive Higher Order Cyclostationary Statistics

Maximum Achievable Diversity for MIMO-OFDM Systems with Arbitrary. Spatial Correlation

LECTURE 16 AND 17. Digital signaling on frequency selective fading channels. Notes Prepared by: Abhishek Sood

CONTINUOUS phase modulation (CPM) is an important

Imperfect Sampling Moments and Average SINR

On the Convergence of the Inverses of Toeplitz Matrices and Its Applications

The Performance of Quaternary Amplitude Modulation with Quaternary Spreading in the Presence of Interfering Signals

Blind Carrier Frequency Offset estimation and Mean Square Error Lower bounds

Signal Design for Band-Limited Channels

Digital Phase-Locked Loop and its Realization

Data Detection for Controlled ISI. h(nt) = 1 for n=0,1 and zero otherwise.

Computation of Bit-Error Rate of Coherent and Non-Coherent Detection M-Ary PSK With Gray Code in BFWA Systems

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0

IN HIGH-SPEED digital communications, the channel often

New Expression for the Functional Transformation of the Vector Cramér-Rao Lower Bound

a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics.

The Sorted-QR Chase Detector for Multiple-Input Multiple-Output Channels

Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems

12.4 Known Channel (Water-Filling Solution)

Diffusion LMS Algorithms for Sensor Networks over Non-ideal Inter-sensor Wireless Channels

ECE538 Final Exam Fall 2017 Digital Signal Processing I 14 December Cover Sheet

arxiv:cs/ v1 [cs.it] 11 Sep 2006

Root-MUSIC Time Delay Estimation Based on Propagator Method Bin Ba, Yun Long Wang, Na E Zheng & Han Ying Hu

that efficiently utilizes the total available channel bandwidth W.

Expectation propagation for signal detection in flat-fading channels

Joint Azimuth, Elevation and Time of Arrival Estimation of 3-D Point Sources

Channel Estimation with Low-Precision Analog-to-Digital Conversion

EM Channel Estimation and Data Detection for MIMO-CDMA Systems over Slow-Fading Channels

Weiyao Lin. Shanghai Jiao Tong University. Chapter 5: Digital Transmission through Baseband slchannels Textbook: Ch

Two-Way Training: Optimal Power Allocation for Pilot and Data Transmission

EUSIPCO

On the Low-SNR Capacity of Phase-Shift Keying with Hard-Decision Detection

Digital Communications

BLIND CFO ESTIMATION USING APPROXIMATE CONJUGATE- SYMMETRY PROPERTY IN OFDM/OQAM

Decision-Point Signal to Noise Ratio (SNR)

THE problem of phase noise and its influence on oscillators

Adaptive Space-Time Shift Keying Based Multiple-Input Multiple-Output Systems

Blind Source Separation with a Time-Varying Mixing Matrix

Multicarrier transmission DMT/OFDM

Remarks on certain new methods for blind identification of FIR channels

Power Spectral Density of Digital Modulation Schemes

Digital Communications: A Discrete-Time Approach M. Rice. Errata. Page xiii, first paragraph, bare witness should be bear witness

Multi-Branch MMSE Decision Feedback Detection Algorithms. with Error Propagation Mitigation for MIMO Systems

Performance Analysis of Spread Spectrum CDMA systems

X. Zhang, G. Feng, and D. Xu Department of Electronic Engineering Nanjing University of Aeronautics & Astronautics Nanjing , China

A new class of shift-invariant operators

On the Identification of SM and Alamouti. Coded SC-FDMA Signals: A Statistical-Based Approach

Performance evaluation for ML sequence detection in ISI channels with Gauss Markov Noise

Communications and Signal Processing Spring 2017 MSE Exam

A Sparseness-Preserving Virtual MIMO Channel Model

Estimation of the Optimum Rotational Parameter for the Fractional Fourier Transform Using Domain Decomposition

Training Aided Frequency Offset Estimation for MIMO OFDM Systems via Polynomial Rooting

POWER ALLOCATION AND OPTIMAL TX/RX STRUCTURES FOR MIMO SYSTEMS

Digital Communications

Estimation of the Capacity of Multipath Infrared Channels

Constrained Detection for Multiple-Input Multiple-Output Channels

Projects in Wireless Communication Lecture 1

Direct-Sequence Spread-Spectrum

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems

On the Multivariate Nakagami-m Distribution With Exponential Correlation

Title. Author(s)Tsai, Shang-Ho. Issue Date Doc URL. Type. Note. File Information. Equal Gain Beamforming in Rayleigh Fading Channels

CONTINUOUS phase modulation (CPM) [1] is a

LOW COMPLEXITY COVARIANCE-BASED DOA ESTIMATION ALGORITHM

ANALYSIS OF A PARTIAL DECORRELATOR IN A MULTI-CELL DS/CDMA SYSTEM

MODERN wireless communication systems often require

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Optimal Receiver for MPSK Signaling with Imperfect Channel Estimation

Modulation Classification and Parameter Estimation in Wireless Networks

Diversity Performance of a Practical Non-Coherent Detect-and-Forward Receiver

BLIND DECONVOLUTION ALGORITHMS FOR MIMO-FIR SYSTEMS DRIVEN BY FOURTH-ORDER COLORED SIGNALS

MMSE DECODING FOR ANALOG JOINT SOURCE CHANNEL CODING USING MONTE CARLO IMPORTANCE SAMPLING

Code-aided ML joint delay estimation and frame synchronization

Analog Electronics 2 ICS905

Performance Analysis and Code Optimization of Low Density Parity-Check Codes on Rayleigh Fading Channels

On the Robustness of Algebraic STBCs to Coefficient Quantization

Cramer-Rao Lower Bounds for Estimation of Doppler Frequency in Emitter Location Systems

SINGLE antenna differential phase shift keying (DPSK) and

Synchronization Techniques for Burst-Mode Continuous Phase Modulation

A New SLNR-based Linear Precoding for. Downlink Multi-User Multi-Stream MIMO Systems

Parameter Estimation

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

Adaptive Bit-Interleaved Coded OFDM over Time-Varying Channels

Transcription:

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 5, NO. 4, APRIL 2006 737 Unified Analysis of a Class of Blind Feedforward Symbol Timing Estimators Employing Second-Order Statistics Yi-Chung Wu and Erchin Serpedin Abstract In this letter, all the previously proposed digital blind feedforward symbol timing estimators employing secondorder statistics are casted into a unified framewor. The finite sample mean-square error (MSE) expression for this class of estimators is established. Simulation results are also presented to corroborate the analytical results. It is found that the feedforward conditional maximum lielihood (CML) estimator and the square law nonlinearity (SLN) estimator with a properly designed prefilter perform the best and their performances coincide with the asymptotic conditional Cramer-Rao bound (CCRB), which is the performance lower bound for the class of estimators under consideration. Index Terms synchronization, timing recovery, feedforward, performance, analysis, Cramer-Rao bound. I. INTRODUCTION THE PROBLEM of digital blind feedforward symbol timing estimation assumes recovery of the timing delay of the received signal based on the oversampled and unsynchronized received samples. Many algorithms were proposed in the literature to solve this problem. The earliest one is [1], in which the well-nown square law nonlinearity (SLN) estimator is proposed. Several extensions of the SLN estimator were later reported in [2], [3] and [4], in which they consider more general second-order statistics than just squaring. Recently, the pre-filtering technique was applied to the SLN estimator to improve its performances at medium and high signal-to-noise ratios (SNRs) [5]. Other than square nonlinearity, estimators based on other types of nonlinearities were also proposed. Reference [6] proposed a logarithmic nonlinearity estimator, which is obtained by applying a low SNR approximation to the maximum lielihood (ML) method; absolute value and fourth order nonlinearities-based estimators were proposed in [7]; a combination of square and fourth order nonlinearities was proposed in [8] to tae advantage of the properties of both types of nonlinearities. While all the above estimators require at least 3 samples per symbol, there are also some estimators that require only two samples per symbol. Reference [9] proposed such an estimator based on an adhoc argument. This estimator was later modified to remove its asymptotic bias in [10], and the pre-filtering technique was also applied to this estimator in [5] to improve its performance at medium and high SNRs. Reference [11] proposed another Manuscript received August 11, 2004; revised October 9, 2004; accepted January 11, 2005. The associate editor coordinating the review of this letter and approving it for publication was A. Yener. This wor was supported by NSF Award CCR-0092901. The authors are with the Department of Electrical Engineering, Texas A&M University, College Station, TX 77843-3128, USA (e-mail: ycwu, serpedin@ee.tamu.edu. Digital Object Identifier 10.1109/TWC.2006.04007. two samples per symbol estimator based on the conditional maximum lielihood (CML) principle. With so many estimators, designed using different philosophies and their performances analyzed independently under different assumptions, one would wonder whether we can have a general framewor to analyze the performances of these estimators so that a fair and easy comparison can be made. This question was partially answered in [7], in which a technique for evaluating the jitter performance of symbol timing estimators employing a zero-memory, general type of nonlinearity was presented. In this letter, we analyze a different class of estimators (from that considered in [7]) by formulating all the blind feedforward symbol timing estimators employing second-order statistics (which include the estimatorsin[1],[2],[3],[4],[5],[9],[10]and[11])intoa single estimation framewor, and then by deriving the finite sample (as opposed to the asymptotic performance reported in [8]) mean-square error (MSE) expression for this class of estimators. The MSE expression for any individual estimator can be obtained from the general expression by setting suitable parameters. The analytical results are compared with the computer simulation results, and it is found that both sets of results match very well. Furthermore, it is found that within the class of estimators employing second-order statistics, the SLN estimator with a properly designed prefilter and the feedforward CML estimator perform the best and their performances coincide with the conditional Cramer-Rao bound (CCRB) [12], which is the performance lower bound for the class of estimators under consideration. The following notations are used throughout the letter. The symbols x, x T and x H denote the conjugate, transpose and transpose conjugate of x, respectively. Notation stands for convolution. Notations Re(x) and E[x] denote the real part and expectation of x, respectively. Matrices I N and 0 M N are the identity matrix with dimension N N and the all zero matrix with dimension M N, respectively. Matrix J N is the counter identity matrix, constructed by flipping I N from left to right. [Z] ij stands for the (i, j) th element of matrix Z. δ(.) stands for the Kronecer s delta. 1536-1276/06$20.00 c 2006 IEEE II. UNIFIED FORMULATION FOR THE CLASS OF SYMBOL TIMING ESTIMATORS EMPLOYING THE SECOND-ORDER STATISTICS For linear modulations transmitted through AWGN channels, the received signal can be written as shown in (1) at the top of the next page, where θ o is the unnown phase offset; E s is the symbol energy; d i stands for the zero-mean unit variance, independently and identically distributed (i.i.d.) complex valued symbols being transmitted; g(t) g t (t) g r (t)

738 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 5, NO. 4, APRIL 2006 r(n) r(t) t=nts = e jθo Es /T i d i g(nt s it ε o T )+η(nt s ), (1) is the combined response of the unit energy transmit filter g t (t) and the receiving filter g r (t); T is the symbol period; T s T/Q with Q being the oversampling ratio; ε o [0, 1) is the unnown symbol timing delay to be estimated and η(nt s ) stands for the samples of filtered noise. It is assumed that the noise samples before receive filtering is complex-valued circularly distributed Gaussian with power density N o. In this letter, we consider the class of estimators taing the following general form: ˆε = 1 2π arg Λ()e j2π/k, (2) =0 where Λ() =r H B r with r [r(0), r(1),..., r(l o Q 1)] T is the observation vector of length L o symbols and B is a fixed matrix of dimension L o Q L o Q. The bloc diagram of this general estimator is shown in Fig. 1. After the observation vector is formed, K samples of Λ() are calculated, then a K-point discrete Fourier transform (DFT) is taen, and the phase of the first bin (i.e., second output) of the DFT scaled by a constant is the timing estimate. Let us now consider some special cases. A. Cyclic correlation-based estimator The cyclic correlation-based estimator [3], [8] is given by ˆε = 1 LoQ τ 1 2π arg r (n)r(n + τ)e jπτ/q e j2πn/q, (3) for Q 3 and some integer lag τ 0. Note that different values of τ result in different previously proposed estimators in the literature (τ =0corresponds to the estimators proposed in [1] and [4], τ = Q corresponds to the estimator in [2]). If we decompose the summation term in (3) into Q polyphase components and define n u () (L o Q τ 1 )/Q, we have (4), as shown on the next page. It can be seen that the cyclic correlation-based estimator taes the form of (2) with K = Q. Expressing Λ CC () into matrix form, we have Λ CC () =r H B CC r, whereb CC is a L o Q L o Q matrix with its (nq +, nq + + τ) th element (n = 0, 1,..., n u ()) equal to e jπτ/q and other elements equal zero. In particular, for the well-nown SLN estimator [1] (i.e., τ =0, Q =4), we have (for i =0, 1, 2, 3) B SLN i = I Lo E (i) 4 (5) where denotes the Kronecer product and E (i) is a matrix with the (i, i) th element equals one and other elements equal zero. B. Lee s estimator and the modified estimator A two samples per symbol estimator was proposed by Lee in [9]. Later, this estimator was modified to remove its asymptotic bias [10]. The modified version of Lee s estimator can be written as (6), with Q = 2 and γ is a constant depending on the pulse shape g(t). Ifg(t) is a raised cosine pulse with roll-off factor ρ,thenγ =8sin(πρ/2)/(ρπ(4 ρ 2 )) [10]. The original Lee s estimator can be obtained by setting γ =1. Now rewrite the expression in the arg of (6) as shown in (7). Therefore, the estimator in (6) can also be expressed in the form of (2) with K =4. With the fact that Re(x) =(x+x )/2 and expressing Λ Lee () in matrix form, we have Λ Lee () = r H B Lee r, where the expression in (8) is true. C. Feedforward CML estimator The feedforward symbol timing estimator based on the conditional ML principle was proposed in [11]. Unfortunately, the results in [11] cannot be directly applied here since the original estimator was derived under the assumption that the noise samples are independent of each other, but in the signal model (1), the noise samples are correlated due to the receiver filtering. Of course, one can always start from the probability density function of r, taing into account the correlation of noise and re-derive the estimator following the idea of [11]. However, a faster but equivalent method is as follows. Since the correlations between noise samples are related to the receiving filter (which is nown), we can whiten the filtered noise samples by pre-multiplying the observation vector r with (ϕ 1/2 ) H, where ϕ is the correlation matrix of the noise vector (with its elements given by [ϕ] ij = g r (t)g r(t (i j)t/q)dt )andϕ 1/2 denotes any square root of ϕ 1 (e.g., Cholesy decomposition) such that ϕ 1/2 (ϕ 1/2 ) H = ϕ 1. Then the results of [11] can be applied readily to this transformed observation vector (ϕ 1/2 ) H r. It turns out that the resultant feedforward CML symbol timing estimator is =0 Λ CML()e,where j2π/k given by ˆε = 1 2π arg K 3 and Λ CML () =r H B CML r with variable B MCL defined in equations (9)-(11), and L g denotes the number of symbols affected by the inter-symbol interference (ISI) introduced by one side of g(t). Notice that if g(t) is bandlimited to f = ±1/T (an example of which is the raised cosine pulse), this feedforward CML estimator is valid for Q 2. Notice also that if g r (t) =δ(t), this estimator would reduce to the original proposed feedforward CML estimator in [11]. D. Estimators with pre-filter In [5], a properly designed pre-filter was applied to the SLN estimator and the modified Lee s estimator to improve their performances at medium and high SNRs. In general, the prefiltering technique can be applied to the general estimator (2). In that case, the observation vector is composed of samples from the output of pre-filter. That is, Λ PRE () =x H B x with x [x(0), x(1),..., x(l o Q 1)] T and x(n) r(n) h(n) is the further filtered (apart from the receiver filtering) received signal samples through the pre-filter h(n). Ifh(n) is of finite length L p,thenx(n) = L p 1 v=0 h(v)r(n v) and the vector x is expressed as in (12).

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 5, NO. 4, APRIL 2006 739 received signal S ampling with overs ampling ratio Q Receiving filter g r (t) Form an observation vector r Calculate ()=r H B r for =0,1,,K-1... K-point FFT... -arg(.)/2π Timing estimate Fig. 1. Bloc diagram of the general estimator. ˆε = 1 Q 1 n 2π arg u() e jπτ/q r (nq + )r(nq + + τ)e j2π(nq)/q e j2π/q. (4) =0 Λ CC() ˆε = 1 L oq 1 2π arg L oq 2 γ r(n) 2 e jnπ + Re[r (n)r(n +1)]e j(n 0.5)π, (6) r(nq) 2 L o 1 γ Λ Lee(0) Re[r (nq)r(nq +1)] L o 1 + Λ Lee(2) Λ Lee(1) e jπ/2 L o 1 L o 2 + γ r(nq +1) 2 e jπ + Re[r (nq +1)r(nQ +2)] e j3π/2. (7) Λ Lee(3) B Lee 0 = γi Lo E (0) 2, BLee 1 =0.5I Lo J 2, B Lee 2 = γi Lo E (1) 2, 0 0 1 2(Lo 1) 0 B Lee 3 = 0 2(Lo 1) 1 0.5I Lo 1 J 2 0 2(Lo 1) 1. (8) 0 0 1 2(Lo 1) 0 B CML ϕ 1 A ε (A H ε ϕ 1 A ε ) 1 A H ε ϕ 1 ε=/k, (9) A ε [a Lg (ε), a Lg+1(ε),..., a Lo+L g 1(ε)], (10) a i (ε) [g( it εt ), g(t s it εt ),..., g((l o Q 1)T s it εt )] T, (11) h(l p 1) h(l p 2)... h(0) r( L p +1) h(l p 1) h(l p 2)... h(0) r( L p +2) x =............. h(l p 1) h(l p 2)... h(0) r(l o Q 1)) H r (12)

740 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 5, NO. 4, APRIL 2006 Therefore, the general estimator with pre-filter is ˆε = 1 2π arg =0 Λ PRE()e, j2π/k where Λ PRE () = r H H H B H r r H B PRE r. For example, for the SLN estimator with pre-filter, we have B PRE = H H B SLN H. (13) Notice that, due to pre-filtering, although the observation vector x is of length L o Q, the length of effective observation r (before pre-filtering) is L o Q + L p 1. Also,B PRE is of dimension (L o Q + L p 1) (L o Q + L p 1), rather than (L o Q 1) (L o Q 1). Of course, if there is no pre-filter (i.e., h(n) =δ(n)), all the equations in this subsection would reduce to that of the original estimator. III. PERFORMANCE ANALYSIS A. Performance bound In [12], the asymptotic CCRB was introduced for symbol timing estimation problem. The asymptotic CCRB is a lower bound tighter than the modified Cramer-Rao bound (MCRB), but still a valid lower bound on the variance of any consistent estimator that is quadratic with respect to the received signal (which is the class of estimators under consideration). However, the asymptotic CCRB in [12] was derived assuming white Gaussian noise samples, therefore, the whitening technique similar to that in Section II-C has to be applied in order to include the effect of the receiving filter. Applying the results of [12] to the transformed observation vector (ϕ 1/2 ) H r, it can be shown that for fixed ε o, ( ) 1 CCRB as 1 Es (ε o )= (14) 2tr( D H ε o Ψ εo D εo ) N o 1 where D ε Q da ε /dε and Ψ ε ϕ 1 ϕ 1 A ε (A H ε ϕ 1 A ε ) 1 A H ε ϕ 1. Since the symbol timing delay ε o is assumed to be uniformly distributed in [0, 1), the average asymptotic CCRB can be calculated by numerical integration of (14). Notice that although the value of Q appears in the expression of the asymptotic CCRB, numerical computations show that the asymptotic CCRB is independent of Q as long as Q 2. This is reasonable, since the asymptotic CCRB is derived under the assumption of white noise, oversampling the signal above Nyquist rate does not provide any new information, thus the ultimate performance cannot be improved. B. MSE expression In this section, we present the MSE expression for the general estimator (2). The derivation procedures follow closely to that in [11]. The only difference is that, the MSE expression in [11] was derived under the assumption of white noise, while in this letter, the correlation of noise has to be taen into consideration. This can be easily done by modifying just a few lines of the derivations in [11]. Due to space limitation, only the results are presented. Interested readers can refer to [11]. It can be shown that for a true timing delay ε o,themse of the general estimator (2) is given by ( ) 2 MSE(ε o ) E[(ˆε ε o ) 2 ] 1 Re(φ 1 ) φ 2 =, (15) 2π Re(φ 1 )+φ 2 MSE 10 1 10 2 10 3 10 4 10 5 Asymptotic CCRB Simulated MSE - Modified Lee s estimator Analytic MSE - Modified Lee s estimator Simulated MSE - Feedforward CML estimator Analytic MSE - Feedforward CML estimator 10 6 0 5 10 15 20 25 30 E s /N o (db) Fig. 2. Analytic and simulated MSEs for modified Lee s estimator and feedforward CML estimator. where φ 1 e j4πεo φ 2 1=0 2=0 1=0 2=0 E[Λ( 1 )Λ( 2 )]e j2π1/k e j2π2/k, (16) E[Λ( 1 )Λ ( 2 )]e j2π1/k e j2π2/k. (17) In the above equations, the cross-correlation factors tae the expressions given by equations (18), (19), and (21), where tr[.] denotes the trace of a matrix, R ε Es T G ε + NoQ T ϕ, [G ε ] ij n= g (it/q nt εt )g(jt/q nt εt ), (20) with a n (ε o ) defined in (11), and m 4 = E[ d i 4 ] is the fourth order moment of the transmitted symbols, which is fixed for a specific constellation (e.g., m 4 =1for PSK and m 4 > 1 for QAM). As the symbol timing delay ε o is assumed to be uniformly distributed in [0, 1), the average MSE is calculated by numerical integration of (15). Notice that the expressions of E[Λ( 1 )Λ( 2 )] and E[Λ( 1 )Λ ( 2 )] in (18) and (19) are more compact than the corresponding expressions presented in [11], but they are equivalent. This can be easily seen by the fact that if we expand the expressions in (18) and (19) and putting ϕ = I, then we would obtain the corresponding expressions given in [11]. IV. NUMERICAL EXAMPLES AND DISCUSSIONS In this section, the general analytical MSE expression presented in the last section will be plotted as a function of E s /N o for different estimators. The analytic results are compared with the corresponding simulation results and the asymptotic CCRB. All the results are generated assuming i.i.d. QPSK data, L o = 100, both g t (t) and g r (t) are square root raised cosine pulses with ρ =0.3, L g =3,andε o is uniformly distributed in the range [0, 1). The carrier phase θ o is generated as a uniformly distributed random variable in the

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 5, NO. 4, APRIL 2006 741 E[Λ( 1 )Λ( 2 )] = tr[b T 1 R εo ]tr[b T 2 R εo ]+tr[b T 1 R εo B T 2 R εo ]+c( 1, 2 ), (18) E[Λ( 1 )Λ ( 2 )] = tr[b T 1 R εo ]tr[b 2 R εo ]+tr[b T 1 R εo B 2 R εo ]+c( 1, 2 ), (19) c( 1, 2 ) E2 s T 2 (m 4 2) n= [a n (ε o ) H B 1 a n (ε o )][a n (ε o ) H B 2 a n (ε o )], (21) TABLE I PARAMETERS OF DIFFERENT FEEDFORWARD TIMING ESTIMATION ALGORITHMS WHEN EXPRESSED IN THE FORM OF THE GENERAL ESTIMATOR Q B K remar Modified Lee s estimator [9] 2 eqn. (8) 4 Feedforward CML estimator [11] 2 eqn. (9) 4 L g =3 SLN estimator [1] 4 eqn. (5) 4 SLN estimator with pre-filter [5] 4 eqn. (13) 4 h(n) =g(nt/q)cos(2πn/q) for n = 5Q,..., 5Q MSE 10 1 10 2 10 3 10 4 10 5 Asymptotic CCRB Simulated MSE SLN estimator Analytic MSE SLN estimator Simulated MSE SLN estimator with pre-filter Analytic MSE SLN estimator with pre-filter 10 6 0 5 10 15 20 25 30 E /N (db) s o Fig. 3. Analytic and simulated MSEs for SLN estimator with and without pre-filter. range [ π, π), and assumed constant during each estimation. Each simulation point is obtained by averaging 10 4 simulation runs. The asymptotic CCRB is computed assuming Q =2. In this letter, the results of the following representative estimators are presented: 1) Modified Lee s estimator [10]. The Lee s estimator is an algorithm obtained from an ad-hoc argument. Its modified version is used since it has a better performance than the original version. 2) Feedforward CML estimator [11]. This is an algorithm derived from a well-nown statistical signal processing approach, namely the ML principle. 3) SLN estimator [1]. This estimator belongs to the class of cyclic correlation-based estimator (3). It is chosen because it was shown in [4] and [8] that the performance of (3) for τ =0appears to be the best. 4) SLN estimator with pre-filter [5]. This estimator is included to demonstrate the efficiency of pre-filter. The pre-filter used is h(n) = g(t)cos(2πt/t) t=nt/q for n = 5Q,..., 5Q (i.e., L p =10Q +1)[5]. Notice that the first two estimators assume an oversampling ratio Q = 2, while the last two estimators assume an oversampling ratio Q = 4. The parameters for these four estimators when expressed in the form of the general estimator (2) are summarized in Table I. For the computation of B CML and CCRB as (ε o ),thereisa need to calculate ϕ 1. Unfortunately, numerical calculations show that, for the g r (t) under consideration, ϕ is not full ran (at least to the accuracy of Matlab). A main reason for ran deficiency is that, due to the nature of g r (t), when i j is large, the values of [ϕ] ij are very very small but not zero. A way to get around this is to replace ϕ 1 by ϕ 1,where [ ϕ] ij =[ϕ] ij if i j <L ϕ Q and zero otherwise. In this way, the matrix ϕ can be made full ran, but at the same time, significant part of the correlation between noise samples can still be represented accurately. Since most of the correlation induced by g r (t) is confined to a duration of a few symbols, L ϕ =4is used for the rest of the letter. Notice that the matrix ϕ in R ε need not to be replaced by ϕ since no inversion is required. Fig. 2 shows the results for the modified Lee s estimator and the feedforward CML estimator. It can be seen that the analytical and simulation results match very well. Furthermore, the feedforward CML estimator performs much better than the modified Lee s estimator at high E s /N o and its performance coincides with the asymptotic CCRB, meaning that the feedforward CML estimator is the best (in terms of MSE performance) within the class of symbol timing estimators employing second-order statistics. Fig. 3 shows the results for the SLN estimator with and without pre-filter. This figure also shows that the simulation results match the analytical results very well. Moreover, the figure shows that the application of a properly designed pre-filter removes the estimation error floor at high E s /N o and maes the performance of the resultant estimator reaches the asymptotic CCRB. V. CONCLUSIONS In this letter, all the previously proposed feedforward symbol timing estimators employing second-order statistics were formulated into a unified framewor. The finite sample mean square error (MSE) expression and the asymptotic conditional

742 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 5, NO. 4, APRIL 2006 Cramer-Rao bound (CCRB) for this class of estimators were established. It was found that the analytical and simulation results match very well. Furthermore, it was found that the feedforward CML estimator [11] and the SLN estimator with a properly designed pre-filter [5] perform the best and their performances coincide with the asymptotic CCRB, which is the performance lower bound for the class of estimators under consideration. REFERENCES [1] M. Oerder and H. Meyr, Digital filter and square timing recovery, IEEE Trans. Commun., vol. 36, pp. 605-612, May 1988. [2] K.E.ScottandE.B.Olasz, Simultaneous cloc phase and frequency offset estimation, IEEE Trans. Commun., vol. 43, pp. 2263-2270, July 1995. [3] F. Gini and G. B. Giannais, Frequency offset and symbol timing recovery in flat-fading channels: A cyclostationary approach, IEEE Trans. Commun., vol. 46, pp. 400-411, Mar. 1998. [4] M. Ghogho, A. Swami, T. Durrani, On blind carrier recovery in timeselective fading channels, in 33rd Asilomar Conf. Signals, Systems and Computers, vol. 1, 1999, pp.243-247. [5] K. Shi, Y. Wang and E. Serpedin, On the Design of Digital Blind Feedforward Jitter Free Timing Recovery Schemes for Linear Modulations, IEEE Trans on Commun., vol. 52, pp. 1464-1469, Sept. 2004. [6] M. Morelli, A. N. D Andrea and U. Mengali, Feedforward ML-based timing estimation with PSK signals, IEEE Commun. Letters, vol. 1, pp. 80-82, May 1997. [7] E. Panayirci and E. Y. Bar-Ness, A new approach for evaluating the performance of a symbol timing recovery system employing a general type of nonlinearity, IEEE Trans. Commun., vol. 44, pp. 29-33, Jan. 1996. [8] Y. Wang, E. Serpedin and P. Ciblat, Blind feedforward cyclostationarity-based timing estimation for linear modulations, IEEE Trans. on Wireless Commun., vol. 3, pp. 709-715, May 2004. [9] S. J. Lee, A new non-data-aided feedforward symbol timing estimator using two samples per symbol, IEEE Commun. Letters, vol. 6, pp. 205-207, May. 2002. [10] Y. Wang, E. Serpedin and P. Ciblat, An alternative blind feedforward symbol timing estimator using two samples per symbol, IEEE Trans. on Commun., vol. 51, pp. 1451-1455, Sept. 2003. [11] Y.-C. Wu and E. Serpedin, Design and analysis of feedforward symbol timing estimators based on the conditional maximum lielihood principle, IEEE Trans. on Signal Processing, accepted for publication, May 2004. Available online: http://ee.tamu.edu/ serpedin [12] J. Riba, J. Sala and G. Vazquez, Conditional maximum lielihood timing recovery: estimators and bounds, IEEE Tran. Signal Processing, Vol. 49, pp. 835-850, Apr. 2001.