FYS-6306 QUANTUM THEORY OF MOLECULES AND NANOSTRUCTURES

Similar documents
P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

Chemistry 483 Lecture Topics Fall 2009

Chemistry 881 Lecture Topics Fall 2001

QUANTUM MECHANICS SECOND EDITION G. ARULDHAS

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

Quantum Physics II (8.05) Fall 2002 Outline

Chemistry 218 Spring Molecular Structure

LECTURES ON QUANTUM MECHANICS

CONTENTS. vii. CHAPTER 2 Operators 15

MOLECULAR SPECTROSCOPY

Quantum Mechanics: Fundamentals

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017.

Lecture Notes. Quantum Theory. Prof. Maximilian Kreuzer. Institute for Theoretical Physics Vienna University of Technology. covering the contents of

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Spectra of Atoms and Molecules. Peter F. Bernath

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

AS GRS 713 Astronomical Spectroscopy

Quantum Physics in the Nanoworld

Physics of atoms and molecules

Time part of the equation can be separated by substituting independent equation

Practical Quantum Mechanics

The Basics of Theoretical and Computational Chemistry

Quantum Mechanics for Scientists and Engineers

Chemistry Physical Chemistry II Spring 2017

Chemistry Physical Chemistry II Spring 2019

Chemistry Physical Chemistry II Spring 2018

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co.

Introduction to Modern Physics

Paradigms in Physics: Quantum Mechanics

Students are required to pass a minimum of 15 AU of PAP courses including the following courses:

St Hugh s 2 nd Year: Quantum Mechanics II. Reading. Topics. The following sources are recommended for this tutorial:

(8) Atomic Physics (1½l, 1½p)

Modern Physics for Scientists and Engineers International Edition, 4th Edition

Theory and Experiment

Lecture #1. Review. Postulates of quantum mechanics (1-3) Postulate 1

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals

CHEM3023: Spins, Atoms and Molecules

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components.

INTRODUCTION TO THE STRUCTURE OF MATTER

Lectures on Quantum Mechanics

Group Theory and Its Applications in Physics

CHEM 6343 Advanced Computational Chemistry. Elfi Kraka, 231 FOSC, ext ,

Computational Physics. J. M. Thijssen

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti

Coulson's. Valence. ROY McWEENY THIRD EDITION OXFORD UNIVERSITY PRESS

Quantum. Mechanics. Y y. A Modern Development. 2nd Edition. Leslie E Ballentine. World Scientific. Simon Fraser University, Canada TAIPEI BEIJING

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont

The Oxford Solid State Basics

Computational Methods. Chem 561

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation

NERS 311 Current Old notes notes Chapter Chapter 1: Introduction to the course 1 - Chapter 1.1: About the course 2 - Chapter 1.

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

PHYSICS. Course Syllabus. Section 1: Mathematical Physics. Subject Code: PH. Course Structure. Electromagnetic Theory

Physics 622: Quantum Mechanics -- Part II --

FACULTY OF SCIENCES SYLLABUS FOR. B.Sc. (Non-Medical) PHYSICS PART-II. (Semester: III, IV) Session: , MATA GUJRI COLLEGE

PHYS-UA 124: Quantum Mechanics II Course Information - Spring 2018

Lecture 9 Electronic Spectroscopy

Quantum Mechanics: Foundations and Applications

Quantum mechanics (QM) deals with systems on atomic scale level, whose behaviours cannot be described by classical mechanics.

Lecture 4 Quantum mechanics in more than one-dimension

QUANTUM MECHANICS. Yehuda B. Band. and Yshai Avishai WITH APPLICATIONS TO NANOTECHNOLOGY AND INFORMATION SCIENCE

Quantum Mechanics CHEM/ENCH 313

3: Many electrons. Orbital symmetries. l =2 1. m l

0 belonging to the unperturbed Hamiltonian H 0 are known

CHAPTER 8 The Quantum Theory of Motion

Quantum Chemical Simulations and Descriptors. Dr. Antonio Chana, Dr. Mosè Casalegno

Study Plan for Ph.D in Physics (2011/2012)

The relativistic quantum force equation.

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

List of Comprehensive Exams Topics

Molecular Aggregation

Density Functional Theory

ADVANCED QUANTUM MECHANICS

Preface Introduction to the electron liquid

Electron Correlation

Density Functional Theory

Symmetries in Quantum Physics

Handbook of Computational Quantum Chemistry. DAVID B. COOK The Department of Chemistry, University of Sheffield

DFT calculations of NMR indirect spin spin coupling constants

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle:

Introductory Physical Chemistry Final Exam Points of Focus

Old and new quantum theory

Energy Level Energy Level Diagrams for Diagrams for Simple Hydrogen Model

(1/2) M α 2 α, ˆTe = i. 1 r i r j, ˆV NN = α>β

Chm 331 Fall 2015, Exercise Set 4 NMR Review Problems

Introduction to Density Functional Theory

Announcements. Please check for errors now

Chapter 9. Atomic structure and atomic spectra

Chemistry 334 Part 2: Computational Quantum Chemistry

Introduction to Computational Chemistry

Department of Physics

Shigeji Fujita and Salvador V Godoy. Mathematical Physics WILEY- VCH. WILEY-VCH Verlag GmbH & Co. KGaA

M.Sc. Physics

Chem 442 Review of Spectroscopy

QUANTUM MECHANICS OF ONE- AND TWO-ELECTRON ATOMS

Modern Optical Spectroscopy

5.80 Small-Molecule Spectroscopy and Dynamics

Transcription:

i FYS-6306 QUANTUM THEORY OF MOLECULES AND NANOSTRUCTURES Credit units: 6 ECTS Lectures: 48 h Tapio Rantala, prof. Tue 10 12 SC203 SG219 8 10 SG312 FirstName.LastName@tut.fi http://www.tut.fi/~trantala/opetus/ --> FYS6306... Exercises: 12 x 2 h Hossein Gholizade, SG312 Fri 8 10 SG312 hossein.gholizadehkalkhoran@tut.fi Text book: Prerequisites: P.W. Atkins and R.S. Friedman: Molecular Quantum Mechanics, Chapters 1 9 (Fifth edition, OXFORD University Press) Basics of physics and chemistry, quantum mechanics helps Examination: Dec 15 2017, Feb 8 2018, Mar 22 2018 December November October September August SCHEDULE 2017 WEEK Lecture Exercise Note! 35 Tue 36 Tue 37 Tue 38 Tue 39 Tue 40 Tue 41 Tue 42 43 Tue 44 Tue 45 Tue 46 Tue 47 Tue 48 Tue 49 Tue 50 51 1 2 3 4 Fr i 5 6 7 8 Fr i 1 9 10 11 12 Fr i 2 13 14 15 16 Fr i 3 17 18 Fr i 4 19 20 21 22 Fr i 5 23 24 Fr i 6 25 26 27 28 Fr i 29 30 31 32 Fr i 7 33 34 35 36 Fr i 8 37 38 39 40 Fr i 9 41 42 43 44 Fr i 10 45 46 Fr i 47 48 Fr i Exam 15.12.2017 11 12 Exam week Exam week Exam week ii

CONTENTS iii Introduction and orientation... 1 0.1. Black-body radiation... 2 0.2. Heat capacities... 4 0.3. Photoelectric and Compton effects... 4 0.4. Atomic spectra... 5 0.5. Duality of matter... 6 1. Foundations of quantum mechanics... 7 Operators in quantum mechanics... 7 1.1. Linear operators... 7 1.2. Eigenfunctions and eigenvalues... 7 1.3. Representations... 9 1.4. Commutation and non-commutation... 9 1.5. Construction of operators... 10 1.6. Integrals over operators... 11 1.7. Dirac bracket and matrix notation... 12 1.8. Hermitian operators... 15 Postulates of quantum mechanics... 17 1.9. States and wavefunctions... 17 1.10. Fundamental prescription... 17 1.11. Outcome of measurements... 17 1.12. Interpretation of the wavefunction... 18 1.13. Equation for the wavefunction... 19 1.14. Separation of the Schrödinger equation... 19 Complementarity and time evolution... 21 1.15. Simultaneous observables... 21 1.16. Uncertainty principle... 21 1.17. Consequences of uncertainty principle... 21 1.18. Uncertainty in energy and time... 22 1.19. Time-evolution and conservation laws... 22 iv 2. Linear motion and harmonic oscillator... 23 Charateristics of the wavefunction... 23 2.1. "Well-behaving" wavefunctions... 23 2.2. Some general remarks on the Schrödinger equation... 23 Translational motion... 24 2.3. Energy and momentum... 25 2.4. Traveling waves and standing waves... 25 2.5. Flux density... 26 2.6. Wavepackets... 26 Penetration into and through barriers... 26 2.7 2.9. Potential barriers and tunneling... 26 Particle in a box... 27 2.10 2.13. 1D and 2D confinements... 27 Harmonic oscillator... 28 2.14. Solutions... 28 2.15. Properties of solutions... 29 2.16. Classical limit... 30

v 3. Rotational motion and hydrogen atom... 31 Particle on a ring and in a circle... 31 3.1. Hamiltonian and Schrödinger equation (particle on a ring)... 31 3.2. Angular momentum... 32 3.3. Shape of the wavefunction... 33 3.4. Classical limit... 33 3.5. Circular square well (particle in a circle)... 34 Particle on a sphere... 35 3.6. Schrödinger equation and its solution... 35 3.7. Angular momentum of the particle... 37 3.8. Properties of the solutions... 37 3.9. Rigid rotor... 38 3.10. Particle on a spherical well... 39 Motion in a Coulombic field... 40 3.11. Schrödinger equation for hydrogenic atoms... 40 3.12. Separation of radial and angular coordinates... 41 3.13. Solutions of the radial equations... 42 3.14. Probabilities and radial distribution function... 44 3.15. Atomic orbitals... 44 Further information vi 4. Angular momentum... 47 Angular momentum operators... 47 4.1. Operators and their commutation relations... 47 4.2. Angular momentum observables... 49 4.3. Shift operators... 49 Definition of states... 49 4.4. Effect of shift operators... 50 4.5. Eigenvalues of angular momentum... 50 4.6. Matrix elements of angular momentum... 51 4.7. Orbital angular momentum eigenfunctions... 52 4.8. Spin... 53 Coupling of angular momenta of composite systems... 54 4.9. Uncoupled and coupled states... 54 4.10. Permitted values of total angular momentum... 55 4.11. Vector model of coupled angular momenta... 56 4.12. Clebsh Gordan coefficients... 58 4.13. Coupling of several angular momenta... 60

vii 5. Group theory... 61 Symmetries of objects... 62 5.1. Symmetry operations and elements... 62 5.2. Classification of molecules... 64 Calculus of symmetry... 67 5.3. Definition of group... 67 5.4. Group multiplication tables... 67 5.5. Matrix representations... 68 5.6. Properties of matrix representations... 71 5.7. Characters of representations... 73 5.8. Characters of classes... 73 5.9. Irreducible representations... 74 5.10. Orthogonality theorems... 75 Reduced representations... 76 5.11. Reduction of representations... 76 5.12. Symmetry-adapted bases... 78 Symmetry properties of functions... 80 5.13. Transformation of p-orbitals... 80 5.14. Direct-product bases and atomic d-orbitals... 81 5.15. Direct-product groups... 82 5.16. Vanishing integrals... 83 5.17. Symmetry and degeneracy... 85 Full rotational groups... 85 5.16. Generators of rotations... 85 5.17. Point group of sphere... 86 viii 6. Techniques of approximation... 87 Semiclassical approximation... 87 Time-independent perturbation theory... 89 6.1. Perturbation of two-level system... 89 6.2. Many-level systems... 92 6.3. Comments on perturbation expressions... 94 6.4. Perturbation theory for degenerate states... 95 Variation theory... 97 6.5. Variation theorem... 97 6.6. Rayleigh Ritz method... 99 Hellmann Feynman theorem... 100 Time-dependent perturbation theory... 101 6.7. Time-dependence of two-level system... 101 6.8. Many-level systems... 104 6.9. Fermi's golden rule... 105 6.10. Einstein transition probabilities (A and B coefficients)... 106 6.11. Lifetime and spectral linewidth (energy uncertainty)... 107 7. Atomic spectra and atomic structure... 109 Spectrum of atomic hydrogen... 109 7.1. Transition energies... 110 7.2. Selection rules... 111 7.3. Orbital and spin magnetic moments... 113 7.4. Spin orbit coupling... 114 7.5. Fine-structure of spectra... 115 7.6. Term symbols... 115 7.7. Detailed spectrum of hydrogen... 116

ix Structure of helium... 117 7.8. Helium atom... 117 7.9. Excited states of helium... 119 7.10. Spectrum of helium... 122 7.11. The Pauli principle... 123 Many-electron atoms... 125 7.12. Central-field and orbital approximations... 125 7.13. Periodic table of elements... 126 7.14. Slater atomic orbitals... 127 7.15. Slater determinants... 129 7.16. Self-consistent fields... 130 7.17. Restricted and unrestricted Hartree Fock approach... 133 7.18. Density functionals... 134 7.19. Term symbols of many-electron atoms... 135 7.20. Hund's rules... 135 7.21. LS- and jj-coupling... 136 Atoms in external fields... 136 7.22. Normal Zeeman effect... 136 7.23. Anomalous Zeeman effect... 137 7.24. Stark effect... 138 x 8. Introduction to molecular structure... 139 Born Oppenheimer approximation... 139 8.1. Formulation of Born Oppenheimer approximation... 140 8.2. Hydrogen molecule ion... 140 Molecular orbital theory... 142 8.3. Linear combination of atomic orbitals (LCAO)... 142 8.4. Hydrogen molecule... 146 8.5. Configuration interaction... 147 8.6. Diatomic molecules... 151 Polyatomic molecules... 154 8.7. Symmetry-adapted basis sets... 155 8.8. Conjugated π-systems and Hückel MO method... 160 8.9. Ligand field theory... 163 Band theory of solids... 164 8.10. "Tight-binding"-approximation... 164 8.11. Electrons in periodic crystal... 165 8.12. Brillouin zones... 166

xi 9. First-principles methods... 167 Hartree Fock SCF method... 171 9.1. One-electron picture... 171 9.2. Hartree Fock approach... 171 9.3. Roothaan equations... 173 9.4. STO and GTO basis sets... 175 Electron correlation... 178 9.5. Configuration state functions (CSF)... 178 9.6. Configuration interaction (CI)... 179 9.7. CI calcualtions... 180 9.8. MCSCF and MRCI... 180 9.9. Møller Plesset many-body perturbation theory... 181 9.10. Coupled-cluster method... 182 Density functional theory (DFT)... 183 9.11. Hohenberg Kohn existence theorem... 183 9.12. Hohenberg Kohn variational theorem... 184 9.13. Kohn Sham equations... 184 9.14. Local-density approximation (LDA)... 186 "Evolution of Quantum Theory" and other issues... C1 OTHER LITERATURE M. Weissbluth: Atoms and Molecules (Academic Press, New York, 1983) R.G. Parr and W. Yang: Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, New York, 1989) T.T. Rantala: Local-Density Electronic Structure Calculations on the Spectra and Reactivity of Metals Acta Univ. Ouluensis A 184 (1987) Jean Louis Calais: Quantum Chemistry Workbook (John Wiley & Sons,New York, 1994) I. Lindgren och S. Svanberg: Atomfysik (Universitetsförlaget Uppsala, LiberTryck Stockholm, 1974) A. Hinchliffe: Computational Quantum Chemistry (John Wiley & Sons,Chichester, New York, 1989) S.V. Gaponenko: Optical Properties of Semiconductor Nanocrystals Cambridge Studies in Modern Optics (Cambridge University Press, Cambridge, 1998) xii