Silver-catalyzed decarboxylative acylfluorination of styrenes in aqueous media

Similar documents
Palladium-Catalyzed Alkylarylation of Acrylamides with

N-Hydroxyphthalimide: a new photoredox catalyst for [4+1] radical cyclization of N-methylanilines with isocyanides

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

Domino reactions of 2-methyl chromones containing an electron withdrawing group with chromone-fused dienes

Supporting Information

Supporting Information

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids

Supporting Information

Supporting Information

Supplementary Information. Direct difunctionalization of alkynes with sulfinic acids and

Supporting Information

Supporting Information

Supporting Information

Photooxidations of 2-(γ,ε-dihydroxyalkyl) furans in Water: Synthesis of DE-Bicycles of the Pectenotoxins

Supporting Information

Supporting information for A simple copper-catalyzed two-step one-pot synthesis of indolo[1,2-a]quinazoline

Supplementary Information

Enantioselectivity switch in copper-catalyzed conjugate addition. reaction under influence of a chiral N-heterocyclic carbene-silver complex

Iridium-catalyzed regioselective decarboxylative allylation of. β-ketoacids: efficient construction of γ, δ-unsaturated ketones

Supporting Information. Cells. Mian Wang, Yanglei Yuan, Hongmei Wang* and Zhaohai Qin*

Supporting Information

Supporting Information

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure

Supporting Information

Supporting Information

SUPPORTING INFORMATION. Fathi Elwrfalli, Yannick J. Esvan, Craig M. Robertson and Christophe Aïssa

Suzuki-Miyaura Coupling of Heteroaryl Boronic Acids and Vinyl Chlorides

Curtius-Like Rearrangement of Iron-Nitrenoid Complex and. Application in Biomimetic Synthesis of Bisindolylmethanes

Efficient Syntheses of the Keto-carotenoids Canthaxanthin, Astaxanthin, and Astacene

Supporting Information. DBU-Mediated Metal-Free Oxidative Cyanation of α-amino. Carbonyl Compounds: Using Molecular Oxygen as the Oxidant

Supporting Information 1. Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosufenylation of diphenylphosphinylallenes

Efficient Pd-Catalyzed Amination of Heteroaryl Halides

Supporting Information

SYNTHESIS OF A 3-THIOMANNOSIDE

Aluminum Foil: A Highly Efficient and Environment- Friendly Tea Bag Style Catalyst with High TON

Anion recognition in water by a rotaxane containing a secondary rim functionalised cyclodextrin stoppered axle

Solvent-controlled selective synthesis of biphenols and quinones via oxidative coupling of phenols

Electronic Supplementary Information

Cu-Catalyzed Synthesis of 3-Formyl imidazo[1,2-a]pyridines. and Imidazo[1,2-a]pyrimidines by Employing Ethyl Tertiary

Supporting Information

Supporting Information

Palladium(0)-Catalyzed C(sp 3 )-Si Bond Formation via Formal Carbene Insertion into Si-H Bond

Fluorescent Chemosensor for Selective Detection of Ag + in an. Aqueous Medium

Dual role of Allylsamarium Bromide as Grignard Reagent and a. Single Electron Transfer Reagent in the One-Pot Synthesis of.

Qile Wang, and Nan Zheng* Department of Chemistry and Biochemistry, University of Arkansas. Fayetteville, Arkansas,

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry Supplementary data

Hai-Bin Yang, Xing Fan, Yin Wei,* Min Shi*

Supporting Information

Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts by Co-Polymerisation

Copper-Catalyzed Oxidative Cyclization of Carboxylic Acids

Supporting Information. Expeditious Construction of the DEF Ring System of Thiersinine B

Silver-Catalyzed Cascade Reaction of β-enaminones and Isocyanoacetates to Construct Functionalized Pyrroles

Poly(4-vinylimidazolium)s: A Highly Recyclable Organocatalyst Precursor for. Benzoin Condensation Reaction

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

Supporting Information

Ruthenium-catalyzed highly regio- and stereoselective hydroarylation of aromatic sulfoxides with alkynes via C-H bond activation

How to build and race a fast nanocar Synthesis Information

Supporting Information

Supporting Information

Supporting Information. for

Supporting Information

SUPPLEMENTARY INFORMATION

Indium Triflate-Assisted Nucleophilic Aromatic Substitution Reactions of. Nitrosobezene-Derived Cycloadducts with Alcohols

Dual Catalyst System provides the Shortest Pathway for l-menthol Synthesis

[(NHC)Au I ]-Catalyzed Acid Free Hydration of Alkynes at Part-Per-Million Catalyst Loadings

X-ray single-crystal structure of 2d. 31 P NMR study of the reaction mixture. S11-S14. 1 H and 13 C NMR spectra of all new compounds.

Supporting Information

Supporting Information

Supporting Information

Divergent Synthesis of CF 3 -Substituted Polycyclic Skeletons Based on Control of Activation Site of Acid Catalysts

Supporting Information. Cu(I)-Catalyzed Three-Component Reaction of Diazo. Compound with Terminal Alkyne and Nitrosobenzene for

The all-photochemical Synthesis an. OGP (10-14) Precursor

An efficient one pot ipso-nitration: Structural transformation of a dipeptide by N-terminus modification

Supporting Information

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

Amide Directed Cross-Coupling between Alkenes and Alkynes: A Regio- and Stereoselective Approach to Substituted (2Z,4Z)-Dienamides

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

SUPPORTING INFORMATION

Supporting Information:

Supporting Text Synthesis of (2 S ,3 S )-2,3-bis(3-bromophenoxy)butane (3). Synthesis of (2 S ,3 S

Supporting Information

Supporting Information for. A New Method for the Cleavage of Nitrobenzyl Amides and Ethers

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine

Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl. α-iminoesters through Auto-Tandem Catalysis

Supporting Information

C(sp)-C(sp 3 ) Bond Formation through Cu-Catalyzed Cross-Coupling of N-Tosylhydrazones and Trialkylsilylethyne

Supporting Information. A rapid and efficient synthetic route to terminal. arylacetylenes by tetrabutylammonium hydroxide- and

A Sumanene-based Aryne, Sumanyne

Formal Total Synthesis of Optically Active Ingenol via Ring-Closing Olefin Metathesis

Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3

Supporting Information:

Nanocrystalline Magnesium Oxide-Stabilized Palladium(0): An Efficient and Reusable Catalyst for the Synthesis of N-(2- pyridyl)indoles

Synthesis of Glaucogenin D, a Structurally Unique. Disecopregnane Steroid with Potential Antiviral Activity

Supplementary Information. Table of Contents

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A

Supporting Information

Supporting Information for. An Approach to Tetraphenylenes via Pd-Catalyzed C H Functionalization

Electronic Supplementary Information (12 pages)

Supplementary Material for: Unexpected Decarbonylation during an Acid- Mediated Cyclization to Access the Carbocyclic Core of Zoanthenol.

Transcription:

Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Silver-catalyzed decarboxylative acylfluorination of styrenes in aqueous media Hua Wang, Li-Na Guo and Xin-Hua Duan* Department of Chemistry, School of Science and ME Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi an Jiaotong University, Xi an 710049, China duanxh@mail.xjtu.edu.cn Table of Contents General Information S2 Starting Materials S2 General Procedure for the Decarboxylative Acylfluorination of Styrenes S3 with -xocarboxylic Acids Characterization of Products 3 S4 Characterization of Products 4 S8 Investigation of the Reaction chanism S12 Reference S14 1 H NMR and 13 C NMR Spectra of the Products 3 S15 1 H NMR and 13 C NMR Spectra of the Products 4 S33 S1

General Information All reactions were carried out under an atmosphere of nitrogen with strict exclusion of air. Column chromatography was carried out on silica gel. 1 H NMR and 13 C NMR spectra were recorded on a Bruker Advance III-400 in solvents as indicated. Chemical shift are reported in ppm from CDCl 3 using TMS as internal standard. IR spectra were recorded on a Bruker Tensor 27 spectrometer and only major peaks are reported in cm -1. HRMS were obtained on a Q-T micro spectrometer. Starting Materials Styrenes 1 were purchased from TCI, Alfa or Acros. Phenylglyoxylic acid 2a was purchased from Sigma-Aldrich. ther -oxocarboxylic acids 2 were prepared from the corresponding methyl ketones according to the reported procedure. 1 All of other commercially available compounds were used without further purification. S2

General Procedure for the Decarboxylative Acylfluorination of Styrenes with -xocarboxylic Acids Ar R 1 + R H AgN 3 (20 mol%) Selectfluor (1.5 equiv.) Na 2 S 4 (1 equiv.) acetone/h 2 (1:1), rt 1 2 3 or 4 A 10 ml oven-dried Schlenk-tube was charged with AgN 3 (6.8 mg, 20 mol %), - xocarboxylic Acids (2, 0.3 mmol, 1.5 equiv.), Selectfluor (0.3 mmol, 1.5 equiv.), and Na 2 S 4 (0.2 mmol, 1.0 equiv.). The tube was evacuated and backfilled with nitrogen (three times). Styrenes (1, 0.2 mmol, 1.0 equiv.) in acetone/h 2 (1:1, 1 ml) were added by syringe under nitrogen. The tube was then sealed and the mixture was stirred for 12 h at room temperature. The resulting mixture was diluted with EtAc (15 ml). The organic layers were washed with H 2 and brine, dried over anhydrous Na 2 S 4 and the solvent was then removed under vacuo. The residue was purified with chromatography column on silica gel (gradient eluent of EtAc/petroleum ether: 1/100 to 1/50) to give the corresponding products 3 or 4 in yields listed in Table 2 and Table 3. Ar R 1 R S3

Characterization of Products 3 3a: R f 0.4 (EtAc/petroleum ether = 1:50); 1 H NMR (400 MHz, CDCl 3 ): δ 7.98-7.96 (d, J = 7.6 Hz, 2H), 7.61-7.57 (m, 1H), 7.50-7.36 (m, 7H), 6.27-6.12 (ddd, J = 46.8, 8.4, 4.4 Hz, 1H), 3.87-3.77 (ddd, J = 16.8, 14.8, 8.0 Hz, 1H), 3.39-3.27 (ddd, J = 30.0, 17.2, 4.4 Hz, 1H); 13 C NMR (100 MHz, CDCl 3 ): δ 196.1 (d, J = 3.6 Hz), 139.5 (d, J = 19.6 Hz), 136.7, 133.5, 128.7, 128.6, 128.2, 125.6 (d, J = 6.6 Hz), 90.3 (d, J = 169.8 Hz), 45.9 (d, J = 25.9 Hz); 19 NMR (376 MHz, CDCl 3 ): δ -174.5 (ddd, J = 45.2, 30.1, 18.8 Hz, 1); IR (KBr): υmax 1686, 1449, 1205 cm -1 ; HRMS(ESI) calcd for C 15 H 13 Na [M+Na] + 251.0843, found 251.0840. 3b: R f 0.4 (EtAc/petroleum ether = 1:50); 1 H NMR (400 MHz, CDCl 3 ): δ 7.88-7.86 (d, J = 8.4 Hz, 2H), 7.45-7.35 (m, 5H), 7.28-7.26 (m, 2H), 6.26-6.11 (ddd, J = 46.4, 8.0, 4.0 Hz, 1H), 3.84-3.74 (ddd, J = 17.2, 15.2, 8.4 Hz, 1H), 3.36-3.23 (ddd, J = 30.2, 17.2, 4.4 Hz, 1H), 2.42 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ): δ 195.7, 144.4, 139.6 (d, J = 19.6 Hz), 134.2, 129.4, 128.6, 128.3, 125.6 (d, J = 6.8 Hz), 90.4 (d, J = 169.7 Hz), 45.8 (d, J = 26.0 Hz), 21.7; 19 NMR (376 MHz, CDCl 3 ): δ -174.1 (ddd, J = 48.9, 30.1, 15.0 Hz, 1); IR (KBr): υmax 1683, 1004 cm -1 ; HRMS(ESI) calcd for C 16 H 15 Na [M+Na] + 265.0999, found 265.0999. 3c: R f 0.3 (EtAc/petroleum ether = 1:20); 1 H NMR (400 MHz, CDCl 3 ): δ 7.96-7.94 (m, 2H), 7.45-7.33 (m, 5H), 6.96-6.92 (m, 2H), 6.25-6.10 (ddd, J = 46.8, 8.4, 4.0 Hz, 1H), 3.90 (s, 3H), 3.81-3.71 (ddd, J = 16.8, 14.8, 8.4 Hz, 1H), 3.33-3.20 (ddd, J = 30.0, 16.8, 4.0 Hz, 1H); 13 C NMR (100 MHz, CDCl 3 ): δ 194.6 (d, J = 3.6 Hz), 163.8, 139.6 (d, J = 19.6 Hz), 130.5, 129.8, 128.6, 125.6 (d, J = 6.8 Hz), 113.8, 90.5 (d, J = S4

169.8 Hz), 55.5, 45.6 (d, J = 26.1 Hz); 19 NMR (376 MHz, CDCl 3 ): δ -174.1 (ddd, J = 45.1, 30.1, 15.0 Hz, 1); IR (KBr): υmax 1676, 1600, 1261, 1169 cm -1 ; HRMS(ESI) calcd for C 16 H 15 Na 2 [M+Na] + 281.0948, found 281.0949. 3d: R f 0.4 (EtAc/petroleum ether = 1:50); 1 H NMR (400 MHz, CDCl 3 ): δ 8.01-7.98 (m, 2H), 7.44-7.36 (m, 5H), 7.17-7.12 (m, 2H), 6.24-6.09 (ddd, J = 46.4, 8.0, 4.0 Hz, 1H), 3.83-3.73 (ddd, J = 16.8, 14.8, 8.4 Hz, 1H), 3.35-3.22 (ddd, J = 30.0, 16.8, 4.0 Hz, 1H); 13 C NMR (100 MHz, CDCl 3 ): δ 194.5 (d, J = 3.6 Hz), 160.0 (d, J = 254.0 Hz), 139.3 (d, J = 19.6 Hz), 133.2, 130.9 (d, J = 9.4 Hz), 128.7, 128.5, 125.6 (d, J = 6.6 Hz), 115.8 (d, J = 21.8 Hz), 90.3 (d, J = 170.1 Hz), 45.9 (d, J = 26.2 Hz); 19 NMR (376 MHz, CDCl 3 ): δ -104.3 (m, 1), -174.1 (ddd, J = 45.1, 30.1, 15.0 Hz, 1); IR (KBr): υmax 1687, 1597, 1206, 1156 cm -1 ; HRMS(ESI) calcd for C 15 H 12 2 Na [M+Na] + 269.0748, found 269.0751. Cl 3e: R f 0.4 (EtAc/petroleum ether = 1:50); 1 H NMR (400 MHz, CDCl 3 ): δ 7.90-7.89 (d, J = 8.8 Hz, 2H), 7.46-7.36 (m, 7H), 6.23-6.09 (ddd, J = 46.8, 8.4, 4.0 Hz, 1H), 3.82-3.72 (ddd, J = 16.8, 14.8, 8.4 Hz, 1H), 3.35-3.22 (ddd, J = 30.2, 16.8, 4.0 Hz, 1H); 13 C NMR (100 MHz, CDCl 3 ): δ 194.9 (d, J = 3.6 Hz), 140.0, 139.2 (d, J = 19.6 Hz), 135.0, 129.6, 129.0, 128.7, 128.6, 125.6 (d, J = 6.6 Hz), 90.2 (d, J = 170.1 Hz), 45.9 (d, J = 26.2 Hz); 19 NMR (376 MHz, CDCl 3 ): δ -174.1 (ddd, J = 45.1, 30.1, 15.0 Hz, 1); IR (KBr): υmax 1687, 1589, 911, 740 cm -1 ; HRMS(ESI) calcd for C 15 H 12 ClNa [M+Na] + 285.0453, found 285.0450. Br 3f: R f 0.4 (EtAc/petroleum ether = 1:50); 1 H NMR (400 MHz, CDCl 3 ): δ 7.83-7.81 S5

(d, J = 8.8 Hz, 2H), 7.63-7.60 (d, J = 8.8 Hz, 2H), 7.41-7.36 (m, 5H), 6.23-6.09 (ddd, J = 46.8, 8.4, 4.0 Hz, 1H), 3.82-3.72 (ddd, J = 16.8, 14.4, 8.0 Hz, 1H), 3.34-3.21 (ddd, J = 30.0, 16.8, 4.0 Hz, 1H); 13 C NMR (100 MHz, CDCl 3 ): δ 195.1 (d, J = 3.6 Hz), 145.4, 139.2 (d, J = 19.6 Hz), 135.4, 132.0, 131.9, 129.7, 128.8, 128.7, 125.6 (d, J = 6.6 Hz), 90.2 (d, J = 170.3 Hz), 45.9 (d, J = 26.2 Hz); 19 NMR (376 MHz, CDCl 3 ): δ -174.1 (ddd, J = 45.1, 30.1, 15.0 Hz, 1); IR (KBr): υmax 1688, 1584, 1397, 1069, 1008 cm -1 ; HRMS(ESI) calcd for C 15 H 12 BrNa [M+Na] + 328.9948, found 328.9963. I 3g: R f 0.4 (EtAc/petroleum ether = 1:50); 1 H NMR (400 MHz, CDCl 3 ): δ 7.85-7.83 (d, J = 8.4 Hz, 2H), 7.68-7.65 (d, J = 8.4 Hz, 2H), 7.43-7.36 (m, 5H), 6.23-6.08 (ddd, J = 46.4, 8.4, 4.0 Hz, 1H), 3.81-3.71 (ddd, J = 16.8, 14.8, 8.4 Hz, 1H), 3.33-3.20 (ddd, J = 30.0, 16.8, 4.0 Hz, 1H); 13 C NMR (100 MHz, CDCl 3 ): δ 195.4, 139.2 (d, J = 19.7 Hz), 138.0, 135.9, 129.6, 128.7, 125.6 (d, J = 6.6 Hz), 101.7, 90.1 (d, J = 170.4 Hz), 45.8 (d, J = 26.1 Hz); 19 NMR (376 MHz, CDCl 3 ): δ -174.1 (ddd, J = 45.1, 30.1, 15.0 Hz, 1); IR (KBr): υmax 1680, 1603, 1004 cm -1 ; HRMS(ESI) calcd for C 15 H 12 INa [M+Na] + 376.9809, found 376.9824. S 3h: R f 0.4 (EtAc/petroleum ether = 1:50); 1 H NMR (400 MHz, CDCl 3 ): δ 7.73 (d, J = 3.2 Hz, 1H), 7.69-7.67 (d, J = 4.8 Hz, 1H), 7.44-7.36 (m, 5H), 7.15-7.13 (dd, J = 4.0, 4.4 Hz, 1H), 6.22-6.07 (ddd, J = 46.8, 8.4, 4.0 Hz, 1H), 3.78-3.68 (ddd, J = 23.2, 14.8, 4.8Hz, 1H), 3.31-3.18 (ddd, J = 31.2, 16.4, 4.0 Hz, 1H); 13 C NMR (100 MHz, CDCl 3 ): δ 188.8 (d, J = 3.6 Hz), 144.0, 139.2 (d, J = 19.6 Hz), 134.5, 132.6, 128.7, 128.6, 128.2, 125.5 (d, J = 6.6 Hz), 90.2 (d, J = 171.1 Hz), 46.7 (d, J = 26.1 Hz); 19 NMR (376 MHz, CDCl 3 ): δ -174.0 (ddd, J = 45.1, 30.1, 15.0 Hz, 1); IR (KBr): υmax 1658, 1415, 1212 cm -1 ; HRMS(ESI) calcd for C 13 H 11 NaS [M+Na] + 257.0407, found 257.0416. S6

3i: R f 0.4 (EtAc/petroleum ether = 1:50); 1 H NMR (400 MHz, CDCl 3 ): δ 8.46 (s, 1H), 8.06-7.87 (m, 4H), 7.64-7.37 (m, 7H), 6.33-6.19 (ddd, J = 46.4, 8.0, 4.0 Hz, 1H), 4.02-3.91 (ddd, J = 16.8, 14.8, 8.4 Hz, 1H), 3.52-3.40 (ddd, J = 30.0, 16.8, 4.0 Hz, 1H); 13 C NMR (100 MHz, CDCl 3 ): δ 196.0, 139.5 (d, J = 19.5 Hz), 135.7, 134.0, 132.4, 130.1, 129.6, 128.7, 128.6, 127.8, 126.9, 125.6 (d, J = 6.6 Hz), 123.7, 90.4 (d, J = 169.9 Hz), 46.0 (d, J = 26.1 Hz); 19 NMR (376 MHz, CDCl 3 ): δ -174.1 (ddd, J = 45.1, 30.1, 15.0 Hz, 1); IR (KBr): υmax 1681, 1374, 1283, 1183 cm -1 ; HRMS(ESI) calcd for C 19 H 15 Na [M+Na] + 301.0999, found 301.1011. S7

Characterization of Products 4 4a: R f 0.4 (EtAc/petroleum ether = 1:50); 1 H NMR (400 MHz, CDCl 3 ): δ 7.98-7.96 (d, J = 7.6 Hz, 2H), 7.59-7.57 (m, 1H), 7.50-7.46 (m, 2H), 7.34-7.33 (d, J = 7.6 Hz, 2H), 7.22-7.20 (d, J = 8.0 Hz, 2H), 6.22-6.07 (ddd, J = 46.4, 8.0, 4.0 Hz, 1H), 3.86-3.76 (ddd, J = 16.8, 14.4, 8.0 Hz, 1H), 3.38-3.25 (ddd, J = 29.2, 16.8, 4.0 Hz, 1H), 2.37 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ): δ 196.2, 138.5, 136.7, 136.4 (d, J = 19.8 Hz), 133.4, 129.3, 128.7, 128.2, 125.7 (d, J = 6.4 Hz), 90.3 (d, J = 169.1 Hz), 45.8 (d, J = 26.4 Hz), 21.2; 19 NMR (376 MHz, CDCl 3 ): δ -172.1 (ddd, J = 45.1, 30.1, 15.0 Hz, 1); IR (KBr): υmax 1687, 1598, 1208, 1014 cm -1 ; HRMS(ESI) calcd for C 16 H 15 Na [M+Na] + 265.0999, found 265.1003. Bu t 4b: R f 0.4 (EtAc/petroleum ether = 1:50); 1 H NMR (400 MHz, CDCl 3 ): δ 7.98-7.96 (d, J = 8.4 Hz, 2H), 7.61-7.57 (t, J = 7.6 Hz, 1H), 7.50-7.37 (m, 6H), 6.24-6.09 (ddd, J = 46.4, 8.0, 4.0 Hz, 1H), 3.88-3.78 (ddd, J = 16.8, 14.4, 8.4 Hz, 1H), 3.39-3.26 (ddd, J = 30.0, 17.2, 4.0 Hz, 1H), 1.33 (s, 9H); 13 C NMR (100 MHz, CDCl 3 ): δ 196.2 (d, J = 3.6 Hz), 151.8, 136.7, 136.4 (d, J = 19.5 Hz), 133.5, 128.7, 128.2, 125.6, 125.5 (d, J = 6.4 Hz), 90.2 (d, J = 168.7 Hz), 45.8 (d, J = 26.3 Hz), 34.6, 31.3; 19 NMR (376 MHz, CDCl 3 ): δ -172.4 (ddd, J = 45.1, 30.1, 15.0 Hz, 1); IR (KBr): υmax 1688, 1445, 1207, 1017 cm -1 ; HRMS(ESI) calcd for C 19 H 21 Na [M+Na] + 307.1469, found 307.1477. Br 4c: R f 0.4 (EtAc/petroleum ether = 1:50); 1 H NMR (400 MHz, CDCl 3 ): δ 7.96-7.94 (m, 2H), 7.60-7.46 (m, 5H), 7.33-7.31 (d, J = 8.0 Hz, 2H), 6.22-6.08 (ddd, J = 46.4, S8

8.0, 4.8 Hz, 1H), 3.83-3.73 (ddd, J = 17.2, 14.8, 8.0 Hz, 1H), 3.38-3.26 (ddd, J = 27.6, 16.8, 4.4 Hz, 1H); 13 C NMR (100 MHz, CDCl 3 ): δ 195.8, 138.5 (d, J = 20.0 Hz), 136.5, 133.6, 131.8, 129.8, 128.7, 128.5, 128.2, 127.4 (d, J = 6.6 Hz), 122.6, 89.7 (d, J = 170.1 Hz), 45.8 (d, J = 26.1 Hz); 19 NMR (376 MHz, CDCl 3 ): δ -175.0 (m, 1); IR (KBr): υmax 1685, 1208, 1008 cm -1 ; HRMS(ESI) calcd for C 15 H 12 BrNa [M+Na] + 328.9948, found 328.9954. 4d: R f 0.4 (EtAc/petroleum ether = 1:50); 1 H NMR (400 MHz, CDCl 3 ): δ 7.98-7.96 (m, 2H), 7.61-7.46 (m, 3H), 7.31-7.16 (m, 4H), 6.23-6.09 (ddd, J = 46.8, 8.4, 4.0 Hz, 1H), 3.86-3.76 (ddd, J = 17.2, 15.2, 8.4 Hz, 1H), 3.37-3.24 (ddd, J = 30.4, 17.2, 4.0 Hz, 1H), 2.38 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ): δ 196.2, 139.3, 138.4, 136.7, 133.5, 129.4, 128.7, 128.5, 128.2, 126.3 (d, J = 6.5 Hz), 122.7 (d, J = 6.8 Hz), 90.3 (d, J = 169.6 Hz), 45.9 (d, J = 26.1 Hz), 21.4; 19 NMR (376 MHz, CDCl 3 ): δ -173.7 (ddd, J = 45.1, 30.1, 15.0 Hz, 1); IR (KBr): υmax 1688, 1370, 1001 cm -1 ; HRMS(ESI) calcd for C 16 H 15 Na [M+Na] + 265.0999, found 265.1010. Br 4e: R f 0.4 (EtAc/petroleum ether = 1:50); 1 H NMR (400 MHz, CDCl 3 ): δ 7.97-7.95 (d, J = 7.2 Hz, 2H), 7.62-7.58 (m, 2H), 7.50-7.46 (m, 3H), 7.37-7.35 (d, J = 7.6 Hz, 1H), 7.29-7.25 (t, J = 7.6 Hz, 1H), 6.23-6.09 (ddd, J = 46.0, 8.0, 4.4 Hz, 1H), 3.84-3.74 (ddd, J = 17.2, 15.2, 8.0 Hz, 1H), 3.37-3.25 (ddd, J = 28.8, 17.2, 4.4 Hz, 1H); 13 C NMR (100 MHz, CDCl 3 ): δ 195.6 (d, J = 3.6 Hz), 141.8 (d, J = 19.9 Hz), 136.4, 133.7, 131.7, 130.2, 128.7, 128.6 (d, J = 7.2 Hz), 128.2, 124.3 (d, J = 6.6 Hz), 122.7, 89.4 (d, J = 171.5 Hz), 45.8 (d, J = 25.7 Hz); 19 NMR (376 MHz, CDCl 3 ): δ -175.8 (ddd, J = 45.1, 30.1, 15.0 Hz, 1); IR (KBr): υmax 1686, 1207, 689 cm -1 ; HRMS(ESI) calcd for C 15 H 12 BrNa [M+Na] + 328.9948, found 328.9953. S9

Cl 4f: R f 0.4 (EtAc/petroleum ether = 1:50); 1 H NMR (400 MHz, CDCl 3 ): δ 8.00-7.98 (d, J = 7.2 Hz, 2H), 7.60-7.58 (d, J = 7.6 Hz, 2H), 7.50-7.47 (m, 2H), 7.40-7.28 (m, 3H), 6.60-6.46 (ddd, J = 46.4, 9.2, 2.4 Hz, 1H), 3.67-3.76 (m, 1H), 3.49-3.35 (ddd, J = 31.6, 17.2, 2.8 Hz, 1H); 13 C NMR (100 MHz, CDCl 3 ): δ 195.5, 137.4 (d, J = 21.1 Hz), 136.5, 133.5, 130.7 (d, J = 5.6 Hz), 129.6, 129.5, 128.7, 128.2, 127.2, 126.6 (d, J = 10.4 Hz), 87.3 (d, J = 172.8 Hz), 44.5 (d, J = 25.0 Hz); 19 NMR (376 MHz, CDCl 3 ): δ -182.9 (m, 1); IR (KBr): υmax 1688, 1367, 1207, 1017 cm -1 ; HRMS(ESI) calcd for C 15 H 12 ClNa [M+Na] + 285.0453, found 285.0456. 4g: R f 0.4 (EtAc/petroleum ether = 1:50); 1 H NMR (400 MHz, CDCl 3 ): δ 7.92-7.90 (d, J = 7.6 Hz, 2H), 7.56-7.53 (t, J = 7.6 Hz, 1H), 7.45-7.43 (m, 4H), 7.38-7.34 (m, 2H), 7.31-7.29 (d, J = 7.6 Hz, 1H), 3.72-3.65 (t, J = 14.8 Hz, 1H), 3.54-3.44 (dd, J = 23.6, 14.8 Hz, 1H), 1.91-1.85 (d, J = 23.2 Hz, 3H); 13 C NMR (100 MHz, CDCl 3 ): δ 196.6 (d, J = 4.9 Hz), 144.1 (d, J = 21.8 Hz), 137.5, 133.2, 128.6, 128.5, 128.3, 127.7, 124.1 (d, J = 9.1 Hz), 95.9 (d, J = 173.5 Hz), 49.9 (d, J = 25.2 Hz), 26.7 (d, J = 24.2 Hz); 19 NMR (376 MHz, CDCl 3 ): δ -139.7 (m, 1); IR (KBr): υmax 1677, 1448, 1216 cm -1 ; HRMS(ESI) calcd for C 16 H 15 Na [M+Na] + 265.0999, found 265.0998. 4h: R f 0.4 (EtAc/petroleum ether = 1:50); 1 H NMR (400 MHz, CDCl 3 ): δ 7.93-7.91 (d, J = 7.6 Hz, 2H), 7.57-7.53 (t, J = 7.6 Hz, 1H), 7.45-7.41 (m, 2H), 7.33-7.31 (d, J = 8.4 Hz, 2H), 7.18-7.16 (d, J = 8.0 Hz, 2H), 3.71-3.63 (t, J = 14.8 Hz, 1H), 3.53-3.44 (dd, J = 23.2, 15.2 Hz, 1H), 2.34 (s, 3H), 1.89-1.83 (d, J = 23.2 Hz, 3H); 13 C NMR (100 MHz, CDCl 3 ): δ 196.6 (d, J = 4.6 Hz), 141.1 (d, J = 21.7 Hz), 137.4 (d, J = 9.8 Hz), 133.1, 129.1, 129.0, 128.6, 128.4, 125.7, 124.1 (d, J = 8.7 Hz), 96.0 (d, J = 172.6 S10

Hz), 49.9 (d, J = 25.3 Hz), 26.7 (d, J = 24.1 Hz), 21.0; 19 NMR (376 MHz, CDCl 3 ): δ -138.7 (m, 1); IR (KBr): υmax 1678, 1213, 1079, 1005 cm -1 ; HRMS(ESI) calcd for C 17 H 17 Na [M+Na] + 279.1156, found 279.1166. Cl 4i: R f 0.4 (EtAc/petroleum ether = 1:50); 1 H NMR (400 MHz, CDCl 3 ): δ 7.90-7.88 (d, J = 7.6 Hz, 2H), 7.58-7.54 (t, J = 7.6 Hz, 1H), 7.46-7.42 (t, J = 8.0 Hz, 2H), 7.38-7.31 (m, 4H), 3.68-3.49 (m, 2H), 1.89-1.83 (d, J = 23.2 Hz, 3H); 13 C NMR (100 MHz, CDCl 3 ): δ 196.1 (d, J = 5.5 Hz), 142.4 (d, J = 21.9 Hz), 137.2, 133.6, 133.3, 128.5, 128.4, 125.8 (d, J = 9.2 Hz), 95.6 (d, J = 173.6 Hz), 49.7 (d, J = 25.1 Hz), 26.8 (d, J = 24.1 Hz); 19 NMR (376 MHz, CDCl 3 ): δ -138.9 (m, 1); IR (KBr): υmax 1677, 1089, 1008, 746 cm -1 ; HRMS(ESI) calcd for C 16 H 14 ClNa [M+Na] + 299.0609, found 299.0619. 4j: R f 0.4 (EtAc/petroleum ether = 1:50); 1 H NMR (400 MHz, CDCl 3 ): δ 7.90-7.88 (d, J = 7.6 Hz, 2H), 7.57-7.54 (t, J = 7.6 Hz, 1H), 7.45-7.38 (m, 4H), 7.05-7.01 (t, J = 8.8 Hz, 2H), 3.68-3.49 (m, 2H), 1.90-1.84 (d, J = 23.2 Hz, 3H); 13 C NMR (100 MHz, CDCl 3 ): δ 196.3 (d, J = 5.9 Hz), 162.1 (d, J = 244.9 Hz), 139.7 (d, J = 22.0 Hz), 137.3, 133.3, 128.5, 126.2, 126.1, 115.1 (d, J = 21.3 Hz), 95.7 (d, J = 172.9 Hz), 49.9 (d, J = 25.6 Hz), 26.8 (d, J = 23.9 Hz); 19 NMR (376 MHz, CDCl 3 ): δ -114.9 (m, 1), - 137.3 (m, 1); IR (KBr): υmax 1679, 1511, 1219 cm -1 ; HRMS(ESI) calcd for C 16 H 14 2 Na [M+Na] + 283.0905, found 283.0914. S11

Investigation of the Reaction chanism Ph 1a + Ph 2a H standard conditions TEMP (1 equiv.) Ph Ph 3a, trace When the TEMP was added to the reaction of 1a and 2a with Selectfluor under the standard conditions, only trace amount of the desired product 3a was detected. The result indicates that the radical intermediate should be involved in the catalytic cycle of the reaction. standard + H conditions Ph Ph BHT (1 equiv.) Ph Ph 1a 2a 3a, 27% When the BHT was added to the reaction of 1a and 2a with Selectfluor under the standard conditions, the desired product 3a was only isolated in 27% yield. The result indicates that the radical intermediate should be involved in the catalytic cycle of the reaction. S12

Investigation of the Reaction chanism AgN 3 (20 mol%) + H K 2 S 2 8, K Ph Ph Na Ph 2 S 4 (1 equiv.) acetone/h 1a 2a 2 (1:1), rt 3a, 0% R ( When the reaction of 1a and 2a was conducted with AgN 3 (20 mol%), K 2 S 2 8 (2 equiv.), Na 2 S 4 (1 equiv.) and K (2 equiv.) in acetone/h 2 at room temperature for 12 h, no desired product 3a was detected, suggesting that a reaction pathway other than a common Ag(II) intermediate might also be involved. AgN 3 (20 mol%) + H K 2 S 2 8, Ag Ph Ph Na Ph 2 S 4 (1 equiv.) acetone/h 1a 2a 2 (1:1), rt 3a, 0% R (3) When the reaction of 1a and 2a was conducted with AgN 3 (20 mol%), K 2 S 2 8 (2 equiv.), Na 2 S 4 (1 equiv.) and Ag (2 equiv.) in acetone/h 2 at room temperature for 12 h, no desired product 3a was detected, suggesting that a reaction pathway other than a common Ag(II) intermediate might also be involved. S13

References (1) K. Wadhwa, C.Yang, P. R. West, K. C. Deming, S. R. Chemburkar and R. E. Reddy, Synth. Commun., 2008, 38, 4434. S14

1 H NMR and 13 C NMR Spectra of the Products 3 3a S15

3a 3a S16

S17

3b S18

3b S19

3c S20

3c S21

S22

3d 3d S23

3d S24

3e Cl 3e Cl S25

3e Cl S26

3f Br 3f Br S27

3f Br S28

3g I 3g I S29

3g I S30

3h S 3h S S31

3h S S32

3i S33

3i 3i S34

1 H NMR and 13 C NMR Spectra of the Products 4 4a 4a S35

4a S36

S37

Bu t 4b Bu t 4b S38

Bu t 4b S39

Br 4c Br 4c S40

Br 4c S41

4d 4d S42

4d S43

Br 4e S44

Br 4e Br 4e S45

S46

Cl 4f Cl 4f S47

Cl 4f S48

4g 4g S49

S50

4g S51

4h 4h S52

4h S53

Cl 4i Cl 4i S54

Cl 4i S55

4j 4j S56

4j S57