A 1,3 Strain and the Anomeric Effect. Michael Shaghafi Chem. Topics Feb. 6, 2012

Similar documents
Asymmetric Catalysis by Lewis Acids and Amines

Ynolate Chemistry. Jeff Kallemeyn October 22, 2002

Total synthesis of Spongistatin

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Stereoselective Organic Synthesis

Problem session (3) Daiki Kuwana. Please fill in the blank and explain reaction mechanisms and stereoselectivities.

A Modular Approach to Polyketide Building Blocks: Cycloadditions of Nitrile Oxides and Homoallylic Alcohols

Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2009, 131, Daniel Tzvi Cohen Short Literature Feb. 23, MeO HO OH. COOH ( )-Plicatic Acid OH OH

H H H OH OH H OH H O 1 CH 2 OH

Use of Cp 2 TiCl in Synthesis

Diastereoselective Diels Alder Reactions: Chiral Dienes. Diastereoselective Attack of Electrophiles on Chiral Olefins. 01-Diels-Alder 3/19/02 2:03 PM

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

Asymmetric Radical Reactions. Zhen Liu 08/30/2018

PhD research with Prof. Lutz H. Gade at the Univ. of Strasbourg. Postdoc in 2003 with Andreas Pfaltz (Basel Switzerland)

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

A New Strategy for Efficient Synthesis of Medium and Large Ring Lactones without High Dilution or Slow Addition

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc

Highlights of Schmidt Reaction in the Last Ten Years

Additions to Metal-Alkene and -Alkyne Complexes

Only five of the molecules below may be prepared as the sole product of allylic halogenation of the respective alkene. Circle those five.

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H

Chapter 5 Three and Four-Membered Ring Systems

11-Step Enantioselective Synthesis of ( )-Lomaiviticin Aglycon

Asymmetric Lewis Base Strategies for Heterocycle Synthesis

"-Amino Acids: Function and Synthesis

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005

Zr-Catalyzed Carbometallation

Electrophilic Carbenes

Epoxidation with Peroxy Acids

Rhodium Catalyzed Alkyl C-H Insertion Reactions

Memory of Chirality: A Strategy for Asymmetric Synthesis

Methods to Spiroketals: Classic and Modern Approaches

Back to Sugars: Enzymatic Synthesis

STEREOELECTRONIC EFFECTS (S.E.) IN ORGANIC CHEMISTRY

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored

VI. Metal alkyls from oxidative addition / insertion

Stereoselective Organic Synthesis

Chemistry of the Double Bond

SECTION 4. Stereoelectronic Effects (S.E.) and Reactivity of Acetals and Related Functions

Strained Molecules in Organic Synthesis

Denmark Group Meeting. & Electrophilic rearrangement of amides

Chiral Brønsted Acid Catalysis

Enantioselective Synthesis of Pactamycin, a Complex Antitumor Antibiotic

Scope: 1. S N 2' Displacements. 2. Michael additions. Not Covered:

Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University)

Recent Development in. Tandem Radical Reactions (TRR)

Chapter 11 Stereoselectivity

Large-Scale Synthesis of the Anti-Cancer Marine Natural Product (+)-Discodermolide

Total Synthesis of (+/-)-Goniomitine via a Formal Nitrile/Donor-Acceptor Cyclopropane [3 + 2] Cyclization

Stereoselective reactions of the carbonyl group

Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang!

Mild Cobalt-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide

Carbonyl Ylide Cycloadditions

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

Journal Club Presentation by Remond Moningka 04/17/2006

MECHANISMS. Croomine. Key reaction is the vinylogous Mannich reaction. (CH 2 ) 4 Br H N P. CO 2 Me. Iminium ion formation via decarboxylation

II. Special Topics IIA. Enolate Chemistry & the Aldol Reaction

Synthesis of Polyfluorinated and Polychlorinated Hydrocarbons

Disulfonimide-Catalyzed Asymmetric Vinylogous and Bisvinylogous Mukaiyama Aldol Reactions

1.MsCl,Et 3 N CH 2 Cl 2,-10 C,97% 2.KOAc,H 2 O acetone, reflux, 82% 3.NaOH(1eq.) MeOH,-20 C,75% H H

UNIVERSITY OF MANITOBA DEPARTMENT OF CHEMISTRY

Towards Maoecrystal V: A Comparison of Recent Strategies

s-buli (1.2 eq.), ( )-sparteine (1.2 eq.) Et 2 O, 78 ºC ; 1-2 (1.2 eq.), 78 ºC ; solvent switch to CHCl 3 *, reflux

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives

Organocopper Reagents

When something goes wrong. Goya: Mother showing her derformed child to two women Louvre, Paris

2,3-Sigmatropic Rearrangements in Organic Synthesis

SECTION 12. «POT-POURRI» in Organic Synthesis (2018)

Chap. 3 Conformational Analysis and Molecular Mechanics

Final Exam /415 ( CHEM 6352 Fall %) Name

Asymmetric Nucleophilic Catalysis

Strategies for Stereocontrolled Synthesis

Chemistry of Oxaziridines

Molybdenum-Catalyzed Asymmetric Allylic Alkylation

Lewis Base Catalysis: the Aldol Reaction (Scott Denmark) Tom Blaisdell Friday, January 17 th 2014 Topic Talk

Short Literature Presentation 10/4/2010 Erika A. Crane

Synthetic Efforts Towards Anthracyclines Using the Asymmetric Diels-Alder Reaction

Total Synthesis of ( )-Virginiamycin M2

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

Hydroboration. Carreira: Chapter 7

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College

mcpba e.g. mcpba (major) Section 7: Oxidation of C=X bonds

Denmark s Base Catalyzed Aldol/Allylation

Synthetic Organic Chemistry Final Exam Resit (6KM33) Thursday, 26th June, 2014, 9:00 12:00 (3 h)

Rhenium-Catalyzed Synthesis of Multisubstituted Aromatic Compounds via C-C Single-Bond Cleavage

Brominations and Non-Halogens. Evans Group Seminar p November 23, 2009 Pascal Bindschädler

o-palladated cat. [Chem. Comm (1999)] [Org. Lett. 2, 1826 (2000)] [Org. Lett. 2, 2881 (2000)] [JACS 41, 9550 (1999)]

Lewis Base Activation of Lewis Acids: Development of a Lewis Base Catalyzed Selenolactonization

Stereoselective Organic Synthesis

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group.

Glendale Community College Chemistry 105 Exam. 3 Lecture Notes Chapters 6 & 7

Carbenes and Carbene Complexes I Introduction

ANSWER GUIDE APRIL/MAY 2006 EXAMINATIONS CHEMISTRY 249H

Organocopper Chemistry

JACS ASAP Article: Published 3/12/08. Lei Jiao, Changxia Yuan and Zhi-Xiang Yu. Current Literature: 3/29/08. David Arnold

CHEM 330. Final Exam December 5, 2014 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed

Synthesis of the Stenine Ring System from Pyrrole

Stereoselective reactions of enolates: auxiliaries

Transcription:

A 1,3 Strain and the Anomeric Effect Michael Shaghafi Chem. Topics Feb. 6, 2012

Introduction: Definition of A 1,3 Strain m L L m m 3 L 3 1 1 otation about σ-bond between α-stereocenter and olefin is associated with an energetic cost (steric/van der Waals interaction). m 3 L 1 L m 3 1 otation about allylic stereocenter to a lower energy confirmation = A 1,3 strain minimization. L 1 3 m E + E + Confirmational preferences based upon minimization of A 1,3 strain can differentiate diastereofacial faces of pro-chiral nucleophiles and electrophiles (i.e. π-bonds). - Can lead to diastereoselective reactions if significant differences in steric bulk are realized between, m, and L.

Energy Differences Upon Sigma-Bond otation ab initio calculations: MP2-6-31G (ouk) Mono-substituted olefins: C 3 C 3 C 3 C 3 C 3 C 3 0 kcal/mol + 0.73 kcal/mol > + 2.0 kcal/mol Z-substituted olefins: C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 C 3 0 kcal/mol + > 4.0 kcal/mol > + 3.44 kcal/mol offmann,. W. Chem. ev. 1989, 89, 1841 1880.

A Warm-Up: ydroboration Ph 2 Si C 3 1. B 3 2. [] Ph 2 Si C 3 ds = 50 % Ph 2 Si 1. B 3 Ph 2 Si ds = 95 % C 3 2. [] C 3 3 C = C 3 (C 2 ) 7 1. B 3 2. [] 3 C C 3 ds = 90 % offmann,. W. Chem. ev. 1989, 89, 1841 1880.

Diastereoselective Epoxidation of lefins: A Classical Case Bn m-cpba Bn ds = > 97 % Bn m-cpba Bn ds = > 96 % Ph Cl Bn m-cpba Bn ds = 60 % Bn m-cpba Bn ds = > 95 % Si 3 Si 3 offmann,. W. Chem. ev. 1989, 89, 1841 1880.

Diastereoselective Epoxidation of lefins: Allylic Silanes and Siloxyethers Si 2 Ph m-cpba Ph 2 Si + Ph 2 Si Ph 2 Si m-cpba Ph 2 Si 61 : 39 Ph 2 Si + 3 Si Ar > 95 : 5 t-bu 2 Si m-cpba t-bu 2 Si t-bu 2 Si Ar mcpba Coordination Ti(i-Pr) 4 t-bu ds = > 94 % t-bu 2 Si ds = > 90 % Minimized A 1,3 Strain No Coordination: Attack from less hindered face offmann,. W. Chem. ev. 1989, 89, 1841 1880.

Classical Synthetic Example: Kishi s Total Synthesis of Monensin Ar Et 2 C C 3 5 mcpba, NaC 3 DCM, rt quant., sole product Ar Et 2 C C 3 5 steps Ar Et Ar Et NBS, CN rt 57 % Ar Et Br Single Diastereomer Ar Et Br Schmid, G.; Fukuyama, T.; Kishi, Y. J. Am. Chem. Soc. 1979, 101, 260 262.

Diastereoselective Epoxidation of lefins: A ecent Application to Library Synthesis Ar N Ar 1,3-diaxial minimization N A 1,3 minimization Coombs, T.C.; Lushington, G..; Douglas, J.; Aube, J. Angew. Chem. Int. Ed. 2011, 50, 2734 2737.

Diastereoselective Epoxidation of lefins: A ecent Application to Library Synthesis Coombs, T.C.; Lushington, G..; Douglas, J.; Aube, J. Angew. Chem. Int. Ed. 2011, 50, 2734 2737.

A 1,3 Control in Cycloadditions: A Classical Example offmann,. W. Chem. ev. 1989, 89, 1841 1880.

oush: Total Synthesis of Spinosyn A Winbush, S. M.; rgott, D.J.; oush, W.. J. rg. Chem. 2008, 73, 1818 1829.

A 1,3 Control in Cycloadditions: oush Synthesis of Spinosyn A Winbush, S. M.; rgott, D.J.; oush, W.. J. rg. Chem. 2008, 73, 1818 1829.

A 1,3 and Control in Addition to Nitrones t-bu 2 Si C 3 C N 5 11 Ac TF, 100 ºC t-bu 2 Si C 3 C N 5 11 ds = > 95 % C 5 11 Li C 3 N Ac TF, 100 ºC C 5 11 C 3 N ds = 80 % PhSe C 3 N Ac TF, 100 ºC PhSe C 3 N =, ds = 91 % = n-bu, ds = 95 % = Ph, ds = 80 % 3 C N Intramolecular [3+2] 3 C N nly product 55 % offmann,. W. Chem. ev. 1989, 89, 1841 1880.

Barbas Carbohydrate Synthesis: Asymmetric rganocatalytic Michael-enry eactions d.r. (6 + 5:7) = usually > 10:1; 36 % to 76 % yield (2 steps)! Uehara,.; Imashiro,.; ernandez-torres, G.; Barbas III, C. F. PNAS, 2010, 107, 20672 20677.

Barbas Carbohydrate Synthesis: Model for Diastereoselectivity Uehara,.; Imashiro,.; ernandez-torres, G.; Barbas III, C. F. PNAS, 2010, 107, 20672 20677.

Introduction: The Anomeric Effect Steric Preference: = alkyl Contra-Steric Preference: Anomeric Effect = Electrostatic Effect = polar group - i.e., alogen, Ac, etc. β β-glucopyranose α α-glucopyranose = 64 : 36 = 33 : 67 Kirby, A. J. xford Chemistry Primers: Stereoelectronic Effects 1996, xford University Press.!

Introduction: The Anomeric Effect Ac Ac Ac β Ac β-glucopyranose Ac Ac Ac α Ac α-glucopyranose = Ac 14 : 86 = Cl 6 : 94 Bz Bz X Bz X = F, Cl, Br X Bz Bz Bz Bz = Ph Kirby, A. J. xford Chemistry Primers: Stereoelectronic Effects 1996, xford University Press.!

Explaining the Anomeric Effect: Electrostatics n σ* C X X X σ C C σ* C X Just considering electrostatics: σ* C Br σ* C X ΔΕ σ* C Cl σ* C F ΔΕ n σ C C

2 C The Anomeric Effect is General and Predictable: Kishi s Monesin Total Synthesis Aldol eaction Et Spiroketalization Monensin C 2 1 2 From Degradation Studies followed by X-ray n-c 6 13 Bn 2 C 10% Pd/C C 3, Ac rt Et Bn Kishi, Y. et. al. J. Am. Chem. Soc. 1979, 101, 262 263. n-c 6 13 X Y 1 X =, Y = C 2 2 X = C 2, Y = 1:1 ratio of anomers 1:2 C 2 CSA DCM, rt as above 53 % Y n-c 6 13 X nly 1 (anomeric) Monensin

oush: Toward the Total Synthesis of Integramycin TIPS TIPS TIPS NIS TIPS Iodoketalization I - A 1,3 minimization controls π-bond facial selectivity! in the iodonium formation.! - Also formation of the doubly anomeric conformation! should drive the equilibrium! Sun,.; Abbott, J..; oush, W.. rg. Lett. 2011, 13, 2734 2737.

Stereoselectivity in Glycosidic Bond Formation: adical eactions Pg Pg (Pg) n (Pg) n X α-selectivity dominates X = D, C 2 C 2 CN, n-busnc 3 6 Ac Ac Ac n SM (anomeric stabilization) SM σ* C2 Studies by Giese t-bu S t-bu S SePh Bu 3 SnD, AIBN Benzene, reflux D SnBu 3 t-bu S t-bu S adical Cieplack Effect D Abe,.; Shuto, S.; Matsuda, A. J. Am. Chem. Soc. 2001, 123, 11870 11882.

Conformationally Locking in α-glycosylation: α-selective Substrates Ac Ac SePh 20 Acceptor: A = n-bu 3 SnD, B = n-bu 3 SnC 3 5! Abe,.; Shuto, S.; Matsuda, A. J. Am. Chem. Soc. 2001, 123, 11870 11882. 21 (α/β) = 1:1 SePh

Conformationally Locking in β-glycosylation: β-selective Substrates SePh TIPS SePh B TIPS TIPS Ph 11 12 Abe,.; Shuto, S.; Matsuda, A. J. Am. Chem. Soc. 2001, 123, 11870 11882.