Mo-enriched Li 2 MoO 4 scintillating bolometers for 0ν2β decay search: from LUMINEU to CUPID-0/Mo projects

Similar documents
CUPID Advanced bolometric technologies for double beta decay search in France

Neutrinoless double beta decay with CUPID-Mo

a step forward exploring the inverted hierarchy region of the neutrino mass

Scintillating bolometers for the LUCIFER project. Luca Pattavina INFN-Laboratori Nazionali del Gran Sasso

Luminescent bolometers for the study of double beta decay. Claudia Nones CEA- IRFU

Status of the CUORE experiment at Gran Sasso

cryogenic calorimeter with particle identification for double beta decay search

THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS

First results on neutrinoless double beta decay of 82 Se with CUPID-0

Stefano Pirro. JRA2 Highlights Scintillating Bolometers. -Milano

LUCIFER. Marco Vignati INFN Roma XCVIII congresso SIF, Napoli, 21 Settembre 2012

The LUCIFER project current status and perspective!!!

CANDLES Experiment Current Status and Future Plan. X. Li for the CANDLES Collaboration

Status of CUORE and Results from CUORICINO. SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration

Institute for Nuclear Research, MSP Kyiv, Ukraine. Dipartimento di Fisica, Università di Roma Tor Vergata, I Rome, Italy

The CUORE Detector: New Strategies

the first prototype for a scintillating bolometer double beta decay experiment.

New results of CUORICINO on the way to CUORE

SuperNEMO Double Beta Decay Experiment. A.S. Barabash, ITEP, Moscow (on behalf of the SuperNEMO Collaboration)

Search for Neutrinoless Double- Beta Decay with CUORE

F. Cappella INFN - LNGS

LUCIFER: Neutrinoless Double Beta Decay search with scintillating bolometers

E.Fiorini, Neutrino 2004 Paris, June 17, For searches on neutrinoless ββ decay, WIMPs and axions interactions and on rare nuclear events

Status of the CUORE and CUORE-0 experiments at Gran Sasso

Status of the AMoRE experiment searching for neutrinoless double beta decay of 100 Mo

The EDELWEISS DM search Phase II to Phase III

DARK MATTER SEARCHES AT CANFRANC: ANAIS AND ROSEBUD: an update INTRODUCTION AND EXPERIMENTAL GOALS SUMMARY OF RECENT ACHIEVEMENTS AND EFFORTS

An active-shield method for the reduction of surface contamination in CUORE

arxiv: v1 [physics.ins-det] 3 Nov 2017

Double Beta Present Activities in Europe

AMORE neutrino-less double beta decay experiment

Investigation of 2 decay of 116Cd with the help of enriched 116CdWO4 crystal scintillators

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST

Search for Majorana neutrinos and double beta decay experiments

Experimental Searches for Neutrinoless Double-Beta Decays in 76-Ge Alan Poon

arxiv: v1 [physics.ins-det] 23 Oct 2007

AMoRE 0 experiment using low temperature 40 Ca 100 MoO 4 calorimeters

ANAIS: Status and prospects

Search for Low Energy Events with CUORE-0 and CUORE

Two Neutrino Double Beta (2νββ) Decays into Excited States

GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich)

Status of the CUORE and CUORE-0 experiments at Gran Sasso

Status of the EDELWEISS Dark Matter search

arxiv: v2 [physics.ins-det] 4 Oct 2017

Background Free Search for 0 Decay of 76Ge with GERDA

Effect Cherenkov dans le TeO2. Marco Vignati INFN Roma GDR neutrino, APC Paris, 21 June 2012

Latest results of EDELWEISS II

CdWO 4 crystal scintillators from enriched isotopes for double beta decay experiments

LUCIFER: AN EXPERIMENTAL BREAKTHROUGH IN THE SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY

Search for 0νββ-decay with GERDA Phase II

Status of Cuore experiment and last results from Cuoricino

Direct Dark Matter and Axion Detection with CUORE

DOUBLE BETA DECAY OF 106 Cd - EXPERIMENT TGV (Telescope Germanium Vertical) EXPERIMENT SPT (Silicon Pixel Telescope)

PoS(PhotoDet 2012)072

GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge. Allen Caldwell Max-Planck-Institut für Physik

Bolometric detectors in neutrino physics

DarkSide-50: performance and results from the first atmospheric argon run

The energy calibration system of the CUORE double beta decay bolometric experiment

DarkSide-20k and the future Liquid Argon Dark Matter program. Giuliana Fiorillo Università degli Studi di Napoli Federico II & INFN Napoli

Direct Dark Matter and Axion Detection with CUORE

NTD-Ge development in the LUMINEU project for Rare Events searches with cryogenic detectors

The GERmanium Detector Array

Search for neutrinoless double beta decay: status of SuperNEMO project Yu. Shitov, Imperial

Current status and future of double β decay experiments. Fedor Danevich Institute for Nuclear Research, Kyiv, Ukraine

Performances of a large mass ZnMoO 4 scintillating bolometer for a next generation 0νDBD experiment

Excited State Transitions in Double Beta Decay: A brief Review

Double Beta Decay Experiments Present and Future First results of NEMO3

Testing DAMA/LIBRA signal with ANAIS-112

Background and sensitivity predictions for XENON1T

Neutrinoless Double Beta Decay. Phys 135c Spring 2007 Michael Mendenhall

Neutrinoless Double-Beta Decay

Prospects for kev-dm searches with the GERDA experiment

The NEMO experiment. Present and Future. Ruben Saakyan UCL 28 January 2004 IOP meeting on double beta decay Sussex

Cryogenic Detectors Direct Dark Matter Search. Dark Matter

Pauli. Davis Fermi. Majorana. Dirac. Koshiba. Reines. Pontecorvo. Goeppert-Mayer. Steve Elliott

LUCIFER: Neutrinoless Double Beta decay search with scintillating bolometers

K. Zuber, Techn. Univ. Dresden Cocoyoc, Status of double beta decay searches

-> to worldwide experiments searching for neutrinoless double beta decay

NEMO-3 latest results

How can we search for double beta decay? Carter Hall University of Maryland

L esperimento GERDA. GERDA - gruppo INFN. L Aquila, Congresso SIF, 30/09/2011. OUTLINE: GERDA Motivations GERDA Status GERDA Future plans

Status of KIMS-NaI experiment

Search for rare processes with DAMA experimental set-ups

Björn Lehnert. Search for double beta decays of palladium isotopes into excited states

SuperNEMO collaboration

Results from 730 kg days of the CRESST-II Dark Matter Search

=> Ωmatter >> Ωbaryon

The GERDA Neutrinoless double beta decay experiment

The GERDA Experiment:

Results on neutrinoless double beta decay of 76 Ge from the GERDA experiment

arxiv: v2 [physics.ins-det] 27 Jul 2013

NEUTRON BACKGROUND STUDIES FOR THE EDELWEISS WIMP SEARCH

Background rejection techniques in Germanium 0νββ-decay experiments. ν=v

DarkSide. Bianca Bottino Università di Genova and INFN Sezione di Genova on behalf of the DarkSide collaboration 1

Welcome to neutrino nuclear physics

Study well-shaped germanium detectors for lowbackground

GERDA & the future of 76 Ge-based experiments

Neutrinoless Double Beta Decay for Particle Physicists

Neutron background studies for

Investigation and development of the suppression methods of the 42 K background in LArGe

Transcription:

Mo-enriched Li 2 MoO 4 scintillating bolometers for 0ν2β decay search: from LUMINEU to CUPID-0/Mo projects D.V. Poda on behalf of the LUMINEU Collaboration CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay, France Institute for Nuclear Research, MSP 03680 Kyiv, Ukraine in cooperation with LUCIFER MEDEX 17 meeting, Prague, 01 June 2017

LUMINEU and its follow up (CUPID-0/Mo) Luminescent Underground Molybdenum Investigation for NEUtrino mass and nature Initially involved institutions: CSNSM and IAS Orsay, ICMCB Bordeaux, CEA Saclay (France); INR Kyiv (Ukraine); NIIC Novosibirsk (Russia); KIP Heidelberg (Germany); INFN Milano Bicocca (Italy) Further involved participants: EDELWEISS collaboration (France, Germany, UK, Russia); ITEP Moscow (Russia); INFN / LUCIFER coll. LNGS/Rome (Italy) 2012-2016 http://lumineu.in2p3.fr New participants: LAL Orsay (France); Fudan Shanghai, USTC Hefei (China); MIT Massachusetts, UCLA California, UCB and LBNL Berkley (USA) R&D of the technology based on Mo-containing scintillating bolometers for a next-generation 0ν2β experiment Development of ZnMoO 4 / Li 2 MoO 4 based scintillating bolometers A pilot 0ν2β experiment with up to ~1 kg of Mo: LUMINEU project Extension to ~5 kg of Mo: CUPID-0/Mo project to prove the technology in view of CUPID (CUORE follow-up) 2

Advantages High Q ββ -value of Mo (3034 kev) T 1/2 (0ν2β) ~ Q 5 ; dominant γ bkg < 2615 kev ~10% of Mo in natural Mo Industrial Mo enrichment (> 95%) Reasonable cost ~80 $/g Variety of Mo-containing scintillators Active-source technique (~% efficiency) Some Mo based materials successfully tested as scintillating bolometer ZnMoO 4 initial choice by LUMINEU (2012) Li 2 MoO 4 parallel R&D by LUMINEU (2014) Warnings The choice of Mo-containing scintillator o Fastest 2ν2β process (7 10 18 yr) Pile-up issue for slow response detectors o Weak γ line of 214 Bi close to Mo Q ββ 3054 kev, 0.021% B.R.; 2818 kev Compton edge o Weak hygroscopicity of Li 2 MoO 4 o 40 K issue for Li 2 MoO 4 (K is a homolog of Li) o Low light yield of Li 2 MoO 4 (~x0.5 of ZnMoO 4 at ~10 mk) RPP 80 (2017) 046301 3

The choice of scintillating bolometer approach Scintillating bolometers Active-source technique High energy resolution Particle identification CUPID R&D arxiv:1504.03599 arxiv:1504.03612 ΔT = E C ΔV LUMINEU ~1 kev/mev ~0.1 mk/mev ~3 MeV ~0.1 0.5 mv/mev LUMINEU demands in view of CUPID Sensor technology NTD Enriched isotope 90% Low material losses few % Radiopure crystal High performance 228 Th, 226 Ra 10 µbq/kg 10 kev FWHM @ ROI Rejection of α s 99.9% 4

LUMINEU R&D of Mo-enriched Li 2 MoO 4 crystals LUMINEU protocol of LMO production Mo-enriched molybdenum 1 kg ( Mo~99%; KINR) + 10 kg ( Mo~97%; ITEP) Deep purification of enriched material sublimation in vacuum recrystallization from aqueous solutions Advanced crystallization technology low-thermal-gradient Czochralski crystal growth possible size: 6 cm; 14 cm length of cylindrical part Dedicated R&D to control 40 K content in LMO selection of ultra-pure Li 2 CO 3 powder LMO growth by double crystallization R&D of Li 2 CO 3 purification is in progress Extraction of MoO 3 from residues arxiv:1704.01758 (Submitted to EPJC) Submitted to Cryst. Eng. Comm. Li 2 MoO 4 ~ 0.2-0.5 kg 2015 Li 2 MoO 4 ~ 0.6 kg 2016 Li 2 MoO 4 ~ 0.8 kg Developed large mass Mo-enriched LMO high optical quality and scintillation properties high crystal yield (~ 80-85%) low irrecoverable losses of Mo (~3%) Ready for a batch production of Li 2 MoO 4 crystals 2017 5

Li 2 MoO 4 crystals for low temperature tests Full cycle of LMO growth in NIIC (Russia) Deeply purified MoO 3 powder Commercial MoO 3 with natural isotopic abundance Mo-enriched Molybdenum (97%) used in NEMO-3 Commercial Li 2 CO 3 powder Novosibirsk Rare Metal Plant (Russia), by default Alfa Aesar (USA), for LMO-3 only Solid state synthesis of Li 2 MoO 4 compound LTG Cz growth from Pt crucible in air atmosphere Cutting, extraction of MoO 3 from residues Scintillator Mo purification Boule Produced elements crystalli- Subl. Recryst. ID Size (mm) Mass (g) zation Li 2 MoO 4 Single Double Single LMO-1 40 40 151 Single Double Double LMO-2 50 40 241 Single Double Single LMO-3 50 40 242 Li 2 MoO 4 Double Double Triple enrlmo-1t enrlmo-1b Double Double Double enrlmo-2t enrlmo-2b arxiv:1704.01758; Submitted to Cryst. Eng. Comm. Nuclide NRMP Activity (mbq/kg) 44 40 44 44 44 46 44 44 Alfa Aesar 186 204 213 207 Sigma- Aldrich 228 Ra 2.9 14 16(8) 228 Th 3.7 12(4) 13(4) 226 Ra 3.3 705(30) 53(6) 40 K 42 42 210(70) 6

Used underground cryogenic facilities CUPID R&D @ LNGS (Italy) EDELWEISS @ LSM (France) Corno Grande 2912 m Roma 3600m w.e. Teramo 4800m w.e. Suspended systems to reduce vibrations muon veto Polyethylene (PE) PE Pb Cu Pb See e.g. in arxiv:1704.01758 neutron counter 7

From single Li 2 MoO 4 module to x4 Li 2 MoO 4 array CUPID R&D EDELWEISS LMO-1 enrlmos ~3 years of LUMINEU activity 8

Tests of Li 2 MoO 4 -based scintillating bolometers Detector Crystal ID Crystal mass (g) Light detector standard Lab Temperature (mk) Acquired data (h) Li 2 MoO 4 LMO-1 151 IAS LNGS 11 328 LMO-2 LMO-3 241 242 LUCIFER IAS LNGS 11 201 Li 2 MoO 4 enrlmo-1b 204 LUCIFER LNGS 12 487 enrlmo-1t 186 LUMINEU LSM 19 2090 enrlmo-1t enrlmo-1b enrlmo-2t enrlmo-2b 186 204 213 207 LUMINEU LSM 17 2570 Ge light detector by Diameter (mm) Thickness (mm) Antireflecting coating NTD mass (mg) IAS 25-40 0.03-0.04 No ~1 LUCIFER 45 0.30 No 9 LUMINEU 44 0.17 70 nm SiO 5-9 arxiv:1704.01758 9

Performance & radiopurity of Li 2 MoO 4 bolometers LMO-1 151 g LMO-2 241 g LMO-3 242 g Signal [nv/kev] 166 11 23 FWHM [kev] @ 2615 kev 4 ± 1 6 ± 1 5 ± 1 LY γ(β) [kev/mev] 0.7 1.0 0.12 * DP α/γ(β), > 2.5 MeV 16 9 11 Discrimination Power between α and γ(β) arxiv:1704.01758 LMO-2, 232 Th (45 h), 2.5-4.5 MeV data DP α/γ(β) = 9 α, 99.9% γ(β), 99.7% α, 5σ α 99.9999% Activity (mbq/kg) α, 9σ α Powder NRMP LMO-1 Single cr. LMO-2 Double cr. Powder Alpha Aesar LMO-3 Single cr. 228 Th 3.7 0.023 0.026 12(4) 0.024 226 Ra 3.3 0.051 0.044 705(30) 0.13(2) 40 K 42 62(2) 12 42 3.3 10

LUMINEU light detectors performance Light detectors coupled to Li 2 MoO 4 bolometers Light detector 1b-LD Conditions optimal over bias Signal µv/kev 1.3 0.7 FWHM Bsl kev 0.08 0.11 1b-LD, 46 h 60 Co (~ 200 kbq) EDW regen runs 1t-LD optimal over bias 2.4 1.2 0.07 2b-LD optimal over bias 1.5 1.1 0.11 0.12 2t-LD optimal over bias 1.1 0.85 0.09 0.11 LUMINEU 17 mk 1.5 0.1 CUPID-0 20 mk 1.3 0.1 Performance of CUPID-0 LDs: EPJC 76 (2016) 364 Effect of LD performance on α/γ DP: FWHM Bsl ~ 0.5 kev expected DP ~ 8 FWHM Bsl ~ 0.1 kev expected DP ~ 14 Good reproducibility of standard high performance 11

Performance of Li 2 MoO 4 bolometers enrlmo-# 1t 1b 2t 2b 20 mk 17 mk 17 mk 12 mk 17 mk 17 mk Signal [nv/kev] 32 40 47 89 50 48 FWHM [kev] @ 0 kev FWHM [kev] @ 2615 kev ~1.2 ~1.0 ~1.2 ~1.2 ~2.4 ~2.0 6.3±0.6 5.8±0.6 5.7±0.6 5.0±0.6 5.5±0.5 5.7±0.6 ~5-6 kev FWHM @ Q ββ Mo (3034 kev) Excellent performance 12

Neutron spectroscopy with Li 2 MoO 4 bolometers enrlmo-1t, AmBe (290 h) Li 2 MoO 4 7.6% of 6 Li 6 Li + n t + α (Q = 4783 kev) E(t+α) = 4783 kev (thermal n, ~25 mev) E(t+α) = 5022 kev (resonance @ ~240 kev) 6 Li(n,t)α thermal n FWHM = 7.9(1) kev 6 Li(n,tot) 98 Mo(n,tot) Mo(n,tot) 16 O(n,tot) 7 Li(n,tot) 6 Li(n,t)α, resonance Prospects for in-situ neutron detection Advantages ~% detection of thermal n clear α+t signature @ Q+E n γ(β) background-free ROI world record resolution of thermal n capture on 6 Li (6-11 kev FWHM @ 4783 kev) 13

Light-assisted particle identification for Li 2 MoO 4 enrlmo-# 1t 1b 2t 2b M3 reflecting foil yes no yes no yes yes LY γ(β) [kev/mev] n.a. 0.41 0.77 0.38 0.73 0.74 DP α/γ(β), > 2.5 MeV * 18 9 12 9 14 14 * - Data selection for DP: γ(β) s in 2.5-2.7 MeV, α s ~ 5.4 MeV 210 ae Po or ~ 4.8 MeV 6 ae Li(n,t)α enrlmo-2t, AmBe (290 h) With M3 foil enrlmo-1t, AmBe (290 h) No M3 foil DP α+t/γ(β) = 14 DP α+t/γ(β) = 9 Full α/γ(β) separation 14

Particle identification by heat channel LMO-1, AmBe (20 h), 2 ksps sampling rate DP=5.7 DP=8.2 arxiv:1704.01758 Ability to particle identification by only heat signals 15

First background measurements with Li 2 MoO 4 Scintillation of M3 reflecting foil enrlmo-1t, Bkg (1303 h), LSM α s @ 2.7-3.9 MeV ~0.1 cnts/(kev kg yr), similar to CUORICINO Scintillation of M3 reflecting foil enrlmo-1b, Bkg (319 h), LNGS Low Σ α rate High radiopurity of both enrlmos arxiv:1704.01758 16

Background measurements with 4 Li 2 MoO 4 array Preliminary enrlmo-1t, 624 h enrlmo-2t, 666 h No bright α s enrlmo-1b, 587 h enrlmo-2b, 666 h No bright α s Surface 226 Ra High radiopurity of enrlmos + α s in 2.7-3.9 MeV ~0.2 cnts/yr/kg/kev 17

α Background of Li 2 MoO 4 detectors enrlmo-1t 1303 h June 2016 enrlmo-1b 487 h June 2016 arxiv:1704.01758 arxiv:1704.01758 enrlmo-1t 905 h Feb. 2017 enrlmo-1b 898 h Feb. 2017 Surface 226 Ra Preliminary enrlmo-2t 943 h enrlmo-2b 666 h 18

α Background of Li 2 MoO 4 detectors enrlmo-1t 1303 h June 2016 0.23(2) mbq/kg enrlmo-1b 487 h June 2016 0.06(1) mbq/kg 6 Li(n,t)α, 4784 kev Thermal n flux in EDW 6 10-9 n/cm 2 /sec Other U/Th 3-8 µbq/kg n flux in CUPID R&D 3 10-8 n/cm 2 /sec Other U/Th 6-11 µbq/kg enrlmo-1t 905 h Feb. 2017 0.45(3) mbq/kg Preliminary enrlmo-1b 898 h Feb. 2017 surface 0.04(1) mbq/kg 0.20(2) mbq/kg enrlmo-2t 943 h 0.08(1) mbq/kg enrlmo-2b 666 h 0.02(1) mbq/kg 19

γ(β) Background of Li 2 MoO 4 detectors enrlmo-1t Preliminary No muon veto clock No muon veto clock enrlmo-1t, 905 h Dominant γ(β) Bkg: 2ν2β Mo ~10 mbq/kg 40 K 1.3 mbq/kg muons, pile-ups? enrlmo-1b, 901 h enrlmo-2t, 943 h enrlmo-2b, 666 h muons, pile-ups? enrlmo-# 1t 1b 2t 2b Average Rate [cnts/day/kg] of 2615 kev γ s 1.5(4) 0.7(3) 2.1(5) 1.3(5) 1.0(3) 1.1(2) Position dependent γ(β) rate inside the EDELWEISS set-up 208 Tl rate is ~x40 of CUORICINO background Work is in progress to reduce the external 232 Th background 20

Sensitivity to 0ν2β decay of Mo Li 2 MoO 4, 0.11 kg yr No muon veto clock Preliminary Background in 2.8-3.6 MeV: 0.06(3) c/yr/kg/kev Mo Q ββ (3034 kev) Sensitivity to Mo 0ν2β decay: Q ββ ( Mo) = 3034 kev ROI = 10 kev window @ Q ββ eff 0ν2β = 73% in ROI eff PSD = 97% Enrichment = 96.9% of Mo Exposure = 39 kg d BI = 0.06 cnts/yr/kg/kev Bkg = 0.064 counts in ROI Signal = 0 lims = 2.38 counts at 90% CL T 1/2 = 0.7 10 23 yr @ 90% CL <m ββ > 1.4-2.4 ev NEMO-3 (34.3 kg yr): T 1/2 1.1 10 24 yr @ 90% CL PRD 92 (2015) 072011 High potential of scintillating bolometers approach 21

Investigation of 2ν2β decay of Mo Enriched LMO, 28.7 kg d Preliminary Signal / Bkg ~ 10 in 1.5-2.6 MeV Measurement of Mo 2ν2β decay: Exposure = 29 kg d Enrichment = 96.9% of Mo eff PSD = 96.4% Fit in 160-2650 kev Effect = 24320 ± 229 decays T 1/2 = [6.92±0.06(stat)] 10 18 yr Systematic error = 6.5% Crystals mass 0.025 % Mo enrichment 0.2 % PSD cut efficiency 0.4 % Trigger efficiency 0.5 % Monte Carlo 5 % Fit 1.1 % One of the most precise Mo half-life value T 1/2 [10 18 yr] Exposure Experiment Ref. 7.11±0.02(stat)±0.54(syst) 7.37 kg yr NEMO-3 PRL 95, 182302 (2005) 7.15±0.37(stat)±0.66(syst) 0.08 kg yr LUCIFER JPG 41, 075204 (2014) 6.90±0.15(stat)±0.42(syst) 0.03 kg yr LUMINEU arxiv:1704.01758 6.92±0.06(stat)±0.36(syst) 0.08 kg yr LUMINEU MEDEX 17 22

LUMINEU follow-up: CUPID-0/Mo CUPID-0/Mo Phase I (20 crystals): 20 Mo-enriched (97%) Li 2 MoO 4 ( 44 45 mm, 0.21 kg each; 4.18 kg total) 2.34 kg of Mo (1.37 10 25 Mo nuclei) 20 Ge light detectors ( 44 0.175 mm)+sio EDELWEISS set-up @ LSM (France) CUPID-0/Mo Phase II (20+20 crystals): Additional 20 Li 2 MoO 4 CUPID-0 set-up @ LNGS (Italy) or CROSS set-up @ Canfranc (Spain) First 20 crystals have been delivered CUPID-0/Mo Phase I in EDELWEISS set-up 23

ROI = 10 kev window Efficiency = 69% ε 0ν2β = 73%, ε PSD = 95% BI = 10-3 cnts/yr/kg/kev Options (1) and (2) are substantially unchanged by BI = 10-2 cnts/yr/kg/kev (lower T 1/2 by 6%, 16%, 37%) CUPID-0/Mo sensitivity CUPID-0/Mo configuration T 1/2 sensitivity [yr] 90% CL <m ββ > [ev] (1) 20 0.5 cr. yr 1.3 10 24 0.33-0.56 (2) 20 1.5 cr. yr 4.0 10 24 0.19-0.32 (3) 40 3.0 cr. yr 1.5 10 25 0.10-0.17 CUPID-0/Mo sensitivity LUMINEU (0.06 kg yr Mo) (1) 1.2 kg yr Mo (2) 3.5 kg yr (3) 14 kg yr ββ Nuclide Exposure [kg yr] 130 Te 29.5 Mo 34.3 76 Ge 34.4 136 Xe 504 PRL 115 (2015) 102502 PRD 92 (2015) 072011 Nature 544 (2017) 5 PRL 117 (2016) 082503 RPP 80 (2017) 046301 24

Summary Prospects of Li 2 MoO 4 scintillating bolometers for high-sensitivity 0ν2β searches have been unambiguously proved by results of LUMINEU project Developed mass production technology of high quality radiopure Li 2 MoO 4 Established technology of high performance Li 2 MoO 4 bolometers array Achieved reasonably high sensitivity to Mo 0ν2β decay of over a short exposure Performed one of the most precise measurements of the 2ν2β decay half-life of Mo LUMINEU is extended to CUPID-0/Mo 2β experiment as a demonstrator of the Li 2 MoO 4 scintillating bolometer technology for CUPID project ββ Source: ~5 kg of Mo embedded in 40 Li 2 MoO 4 crystals 0.2-kg each Start by: end of 2017 (20 crystals) and mid. 2018 (20+20 crystals) Ambitious results in 3 yr: the best accurate Mo 2ν2β half-life value and one of the highest sensitivity to effective Majorana neutrino mass Main goal: demonstration of the LUMINEU technology viability for CUPID, next generation 1t-scale bolometric 0ν2β project (CUORE follow up) 25