CS514 Fall '00 Numerical Analysis (Sketched) Solution of Homework 3 1. Questions from text in Chapter 3 Problem 1: 0 f 0 1 f 8 1 8(f 1 f 0 ) 1 f 4 2 8

Similar documents
3.4 Numerical integration

Lecture 12: Numerical Quadrature

Lecture 14: Quadrature

Numerical Integration

COT4501 Spring Homework VII

Lecture 6: Singular Integrals, Open Quadrature rules, and Gauss Quadrature

Numerical Integration. 1 Introduction. 2 Midpoint Rule, Trapezoid Rule, Simpson Rule. AMSC/CMSC 460/466 T. von Petersdorff 1

Lecture 14 Numerical integration: advanced topics

NUMERICAL INTEGRATION. The inverse process to differentiation in calculus is integration. Mathematically, integration is represented by.

Orthogonal Polynomials

Numerical integration

Numerical quadrature based on interpolating functions: A MATLAB implementation

INTRODUCTION TO INTEGRATION

COSC 3361 Numerical Analysis I Numerical Integration and Differentiation (III) - Gauss Quadrature and Adaptive Quadrature

B.Sc. in Mathematics (Ordinary)

Lecture Note 4: Numerical differentiation and integration. Xiaoqun Zhang Shanghai Jiao Tong University

Numerical Analysis. 10th ed. R L Burden, J D Faires, and A M Burden

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016

Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but...

Best Approximation. Chapter The General Case

Numerical Integration

Functions of Several Variables

Lecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at Urbana-Champaign. March 20, 2014

Construction of Gauss Quadrature Rules

Chapter 6. Riemann Integral

37 Kragujevac J. Math. 23 (2001) A NOTE ON DENSITY OF THE ZEROS OF ff-orthogonal POLYNOMIALS Gradimir V. Milovanović a and Miodrag M. Spalević

1 The fundamental theorems of calculus.

Numerical Analysis: Trapezoidal and Simpson s Rule

1. Gauss-Jacobi quadrature and Legendre polynomials. p(t)w(t)dt, p {p(x 0 ),...p(x n )} p(t)w(t)dt = w k p(x k ),

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.

Lecture 20: Numerical Integration III

Advanced Computational Fluid Dynamics AA215A Lecture 3 Polynomial Interpolation: Numerical Differentiation and Integration.

2

Abstract inner product spaces

Trapezoidal Rule, n = 1, x 0 = a, x 1 = b, h = b a. f (x)dx = h 2 (f (x 0) + f (x 1 )) h3

Sections 5.2: The Definite Integral

Math 1B, lecture 4: Error bounds for numerical methods

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

Best Approximation in the 2-norm

Orthogonal Polynomials and Least-Squares Approximations to Functions

Math 100 Review Sheet

Fundamental Theorem of Calculus

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

The Riemann Integral

Math& 152 Section Integration by Parts

Chapter 2. Numerical Integration also called quadrature. 2.2 Trapezoidal Rule. 2.1 A basic principle Extending the Trapezoidal Rule DRAWINGS

7. Numerical evaluation of definite integrals

Solutions to Assignment #8

Chapter 3 Solving Nonlinear Equations

Definite integral. Mathematics FRDIS MENDELU

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

We know that if f is a continuous nonnegative function on the interval [a, b], then b

Interpolation. Gaussian Quadrature. September 25, 2011

Numerical integration. Quentin Louveaux (ULiège - Institut Montefiore) Numerical analysis / 10

Lecture 23: Interpolatory Quadrature

New Expansion and Infinite Series

DOING PHYSICS WITH MATLAB MATHEMATICAL ROUTINES

Review of Calculus, cont d

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Lecture 19: Continuous Least Squares Approximation

Math 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8

Final Exam - Review MATH Spring 2017

Euler-Maclaurin Summation Formula 1

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )

Module 11.4: nag quad util Numerical Integration Utilities. Contents

CAAM 453 NUMERICAL ANALYSIS I Examination There are four questions, plus a bonus. Do not look at them until you begin the exam.

Discrete Least-squares Approximations

THE HANKEL MATRIX METHOD FOR GAUSSIAN QUADRATURE IN 1 AND 2 DIMENSIONS

Review of Gaussian Quadrature method

CMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

AM1 Mathematical Analysis 1 Oct Feb Exercises Lecture 3. sin(x + h) sin x h cos(x + h) cos x h

Main topics for the First Midterm

NUMERICAL INTEGRATION

p(x) = 3x 3 + x n 3 k=0 so the right hand side of the equality we have to show is obtained for r = b 0, s = b 1 and 2n 3 b k x k, q 2n 3 (x) =

Arithmetic Mean Derivative Based Midpoint Rule

APPROXIMATE INTEGRATION

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

JDEP 384H: Numerical Methods in Business

We divide the interval [a, b] into subintervals of equal length x = b a n

Composite Mendeleev s Quadratures for Solving a Linear Fredholm Integral Equation of The Second Kind

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

QUADRATURE is an old-fashioned word that refers to

III. Lecture on Numerical Integration. File faclib/dattab/lecture-notes/numerical-inter03.tex /by EC, 3/14/2008 at 15:11, version 9

Big idea in Calculus: approximation

Math 473: Practice Problems for the Material after Test 2, Fall 2011

AP Calculus Multiple Choice: BC Edition Solutions

Integration Techniques

APPLICATIONS OF THE DEFINITE INTEGRAL

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Taylor Polynomial Inequalities

4181H Problem Set 11 Selected Solutions. Chapter 19. n(log x) n 1 1 x x dx,

MA 124 January 18, Derivatives are. Integrals are.

different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson s).

The Regulated and Riemann Integrals

8 Laplace s Method and Local Limit Theorems

Calculus II: Integrations and Series

Final Exam Review. [Top Bottom]dx =

Test , 8.2, 8.4 (density only), 8.5 (work only), 9.1, 9.2 and 9.3 related test 1 material and material from prior classes

Transcription:

CS514 Fll '00 Numericl Anlysis (Sketched) Solution of Homework 3 1. Questions from text in Chpter 3 Problem 1: 0 f 0 1 f 8 1 8(f 1 f 0 ) 1 f 4 2 8(f 2 f 1 ) 32(f 2 2f 1 f 0 ) 1 32 f 2 3 4(f 3 f 2 ) (f 64 3 3 3f 2 + 2f 1 ) (f 3 3 6f 2 + 8f 1 3f 0 ) Therefore, f 0 (0) = 1 3 (2f 3 24f 2 + 64f 1 42f 0 ) + e, nd jej» 1 1 1 8 4 2 M 4 4! = M 4 1536. Problem 6: () I(h) = 1 3 h3 + 2 7 h7=2 ; T (h) = 1 2 h3 + 1 2 h7=2 : (b) Then, E(h) = O(h 3 ) s h! 0: I(h) = 1 3 h3 + 2 3 h3=2 ; T (h) = 1 2 h3 + 1 2 h3=2 : Then, E(h) = O(h 3=2 ) s h! 0: Problem 7: The error is lrger by 1 1 2 order compred to (). f in () is in C 2 [0; h]; but f in (b) is in C[0; h]. 1

() By Tylor's Theorem, letting x k + 1 h be written s 2 x0, f(x) = f(x 0 ) + (x x 0 )f 0 (x 0 ) + 1 2 (x x0 ) 2 f 00 (ο(x)); x k» x» x k + h; where ο 2 [x k ; x k + h]. Integrting gives, Z +h f(x)dx = hf(x 0 ) + f 0 (x 0 ) Z +h (x x 0 )dx + 1 2 Z +h (x x 0 ) 2 f 00 (ο(x))dx: The second term on the right hnd side is zero nd pply Men Vlue Theorem, yields, Z +h f(x)dx = hf(x 0 ) + 1 2 f 00 (ο(x)) Clculte Hence, Z +h (b) Sum ll subintervls, Problem 8: () tht is, Z b 1 2 f 00 (ο(x)) Z +h Z +h (x x 0 ) 2 dx = h3 12 : (x x 0 ) 2 dx: f(x)dx = hf(x 0 )f(x 0 ) + h3 24 f 00 (ο k ); x k» ο k» x k + h: Z b X n 1 f(x)dx = h f(x 0 ) + h2 n 1 b f 00 (ο k ); 24 n X k=0 X k=0 n 1 f(x)dx = h f(x 0 ) + h2 24 (b )f 00 (ο);» ο» b: k=0 1 y 1 0 y 0 y 0 y 1 0 y 0 y 0 0 1 y 1 y 1 y 0 y 0 y 0 0 + y 1 y 1 y 0 y 0 0 1 (y 2 1 y 1 2y0) 0 p 3 (y; t) = y 1 + (t + 1)(y 0 y 1 ) + (t + 1)t(y 0 0 y 0 + y 1 ) + 1 2 (t + 1)t2 (y 1 y 1 2y 0 0): 2

Then, Z 1 p 3 (y; t)dt 1 = 2y 1 + 2(y 0 y 1 ) + 2 3 (y0 0 y 0 + y 1 ) + 1 3 (y 1 y 1 2y 0 0) = 1 3 (y 1 + 4y 0 + y 1 ): (b) E S (y) = Z 1 1 (t + 1)t 2 (t 1) y(4) (fi(t)) dt 4! = 1 90 y(4) (fi); 1» fi» 1: (c) Let n be even, h = (b )=n, x k = + kh, nd f k = f(x k ). Then, Z +2 f(x)dx = h Z 1 Let y(t) = f(x k+1 + th) in () nd (b), we obtin 1 f(x k+1 + th)dt: Z +2 Sum ll even k from 0 to n-2, f(x)dx = hf 1 3 (f k + 4f k+1 + f k+2 ) 1 90 h4 f (4) (ο k )g; Z b ο k = x k+1 + fih; 1» fi» 1: f(x)dx = n 2 X k is even. After clculting, we will get k=0 Z +2 f(x)dx; Z b f(x)dx = h 3 (f 0 + 4f 1 + 2f 2 + 4f 3 + + 2f n 2 + 4f n 1 + f n ) + E S n (f); where Problem 10: E S n (f) = b 180 h4 f (4) (ο);» ο» b: f = e x2 ; f 00 = 2(2x 2 1)e x2 ; f (4) = 4(4x 4 12x 2 + 3)e x2 : so, jf 00 j» 2; jf (4) j» 12 on [0; 1]: 3

() E T n = 1 12n 2 f 00 (ο); 0» ο» 1; we get, Tht is, je T n j» 1 6n 2» 1 2 10 6 if n 1 3 106 : n 103 p 3 ß 578: (b) we get, if Tht is, E S n = 1 180n 4 f (4) (ο); 0» ο» 1; je S n j» 1 180n 4 12 = 1 15n 4» 1 2 10 6 n 4 2 15 106 : n [ 200 15 ]1=4 10 ß 20: Problem 35 The re of unit disk cn be computed s A = 2 Z 1 1 (1 t 2 ) 1=2 dt = 2 Z 1 1 (1 t 2 )(1 t 2 ) 1=2 dt; hence cn be evluted exctly by 2 point Guss-Chebyshev qudrture rule pplied to f(t) = 1 t 2 : A = 2 ß 2 (1 t2 1 + 1 t 2 2) = ß(2 t 2 1 t2 2): But, nd Thus, t 1 = cos ß 4 = 1 p 2 t 2 = cos 3ß 4 = 1 p 2 : A = ß(2 1=2 1=2) = ß: 4

2. Mchine Assignment 1 in Chpter 3. After computing, we get The progrm is s following: e 1 (h) = ß (f 1 f 0 ) ; e 2 (h) = 2ß 2 f 1 2f 0 + f 1 ; h h 2 e 3 (h) = 6ß 3 f 2 3f 1 + 3f 0 f 1 h 3 ; e 4 (h) = 24ß 4 f 2 4f 1 + 6f 0 4f 1 + f 2 h 4 : % % Mchine ssignment 1 in Chpter 3, the problem description is not cler % fixed nd solve it. % index for -2-1 0 1 2 in f is 1 2 3 4 5 % formt long; i=[-2-1 0 1 2]; PI = 4*tn(1); E1 = PI; E2 = 2*pi^2; E3 = 6*pi^3; E4 = 24*pi^4; k = 0:10; h=2.^(-k-2); f = 1./ (1 - PI * (i'*h)); P = [ ((f(4,:)-f(3,:))./ h) ; ((f(4,:)-2*f(3,:)+f(2,:))./ (h.^2)); ((f(5,:)-3*f(4,:)+3*f(3,:)-f(2,:))./ (h.^3)); ((f(5,:)-4*f(4,:)+6*f(3,:)-4*f(2,:)+f(1,:))./ (h.^4)) ]; E = [E1 - ((f(4,:)-f(3,:))./ h) ; E2 - ((f(4,:)-2*f(3,:)+f(2,:))./ (h.^2)); E3 - ((f(5,:)-3*f(4,:)+3*f(3,:)-f(2,:))./ (h.^3)); E4 - ((f(5,:)-4*f(4,:)+6*f(3,:)-4*f(2,:)+f(1,:))./ (h.^4)) ]; R=[]; 5

for j=2:11 R = [R bs(e(:,j)./ E(:,j-1))]; end fid1 = fopen('ma3_1','w'); fprintf(fid1,' exct derivtes n'); fprintf(fid1,' %8.3f %8.3f %8.3f %8.3f n', E1, E2, E3, E4); fprintf(fid1,' pproximte derivtes n'); fprintf(fid1,' %8.3f %8.3f %8.3f %8.3f n', P); fprintf(fid1,' pproximte errors n'); fprintf(fid1,' %8.3f %8.3f %8.3f %8.3f n', E); fprintf(fid1,' r1 r2 r3 r4 n'); fprintf(fid1,' %8.3f %8.3f %8.3f %8.3f n', R); fclose(fid1); The result is s exct derivtes 3.142 19.739 186.038 2337.818 pproximte derivtes 14.639 51.518-850.651-4158.085 5.173 23.338 1024.958 7214.081 3.909 20.531 318.619 2874.910 3.484 19.931 233.744 2455.227 3.304 19.787 206.788 2366.272 3.221 19.751 195.759 2344.877 3.181 19.742 190.747 2339.580 3.161 19.740 188.356 2338.258 3.151 19.739 187.188 2337.930 3.146 19.739 186.611 2337.840 3.144 19.739 186.324 2337.781 pproximte errors -11.498-31.779 1036.688 6495.903-2.031-3.599-838.921-4876.262 6

-0.768-0.792-132.581-537.092-0.342-0.192-47.706-117.409-0.162-0.048-20.751-28.454-0.079-0.012-9.721-7.059-0.039-0.003-4.710-1.761-0.019-0.001-2.318-0.440-0.010-0.000-1.150-0.111-0.005-0.000-0.573-0.022-0.002-0.000-0.286 0.037 r1 r2 r3 r4 0.177 0.113 0.809 0.751 0.378 0.220 0.158 0.110 0.446 0.243 0.360 0.219 0.474 0.248 0.435 0.242 0.487 0.250 0.468 0.248 0.494 0.250 0.484 0.250 0.497 0.250 0.492 0.250 0.498 0.250 0.496 0.253 0.499 0.250 0.498 0.194 0.500 0.250 0.499 1.705 One cn relize tht the convergence order is O(h) for n = 1 nd n = 3, the rtion tends to 1. However, for n = 2 nd n = 4, the order is 2 O(h2 ) nd the rtio tends to be 1. 4 Rounding error occurs in the lst few vlues of n = 4 which corrupts the limit of the rtion. 3. Problem 3 on HW sheet. () trpezoid rule: Z 1 0 e x dx = 0:1( 1 2 e0 + 9X i=1 e i 10 + 1 2 e 1 ) ß 0:63265: Then the error is -0.00053. Z 1 0 e x dx = 0:63212 7

(b) gussin qudrture: Let ß 3 (t) = t 3 +p 1 t 2 +p t 2+p 3 : Since it is orthogonl to 1, t, nd t 2, one cn solve the coefficients which p 1 = 3, p 2 2 = 3, nd p 5 3 = 1. Then, we 20 cn get 3 roots for ß 3. Then, one need to find the weights w 1, w 2, nd w 3. Consider f(t) 1, f(t) t, nd f(t) t 2, then solve the liner eqution system nd get w 1, w 2, nd w 3. The results re s t 1 = 0:887298; t 2 = 0:5; t 3 = 0:112702; w 1 = 0:277778; w 2 = 0:444444; w 3 = 0:277778: And, Z 1 0 e x dx ß 0:632120 Z 1 0 e x dx = 0:6321205588 Then the error is -0.0000005588 (more precision pplied here). Therefore, gussin qudrture preforms better for this problem 4. Questions from text in Chpter 4. Problem 7: () Plot the function. Since there re three intersections with the line x = 0, there (b) No. Problem 21: () re 3 rel root. Their pproximted loction is -2, 2, nd 10.5 respectively. x n+1 ff = 1 2 (x n + x n ) ff = x2 n + 2ffx n 2x n = x2 n 2ffx n + ff 2 2x n = (x n + ff) 2 2x n : ) 1 2x n (b) Let f(x) = x 3. Then f 0 (x) = 3x 2. = x n+1 ff x n ff : x n+1 ff lim n!1 x n ff = n!1 lim 1 = 1 2x n 2ff : x n+1 = x n f(x n) f 0 (x n ) = x n x3 n = 3x3 x 3 + n n 3x 2 3x 2 n n 8

= 1 3 (2x n + x 2 n ): Then, Problem 22: () Therefore, x n+1 ff = 1 3 (2x n + x 2 n = 2x3 n + ff 3 3ffx 2 n 2x 2 n = (ff3 x 3 n) 3x 2 n(ff x n ) 3x 2 n ) ff = 2x3 n + 3ffx 2 n 3x 2 n = ff3 x 3 n + 3(x 3 n ffx 2 n) 3x 2 n ) x n+1 ff (x n ff) = ff + 2x n : 2 3x 2 n x n+1 ff lim n!1 (x n ff) = lim ff + 2x n 2 n!1 3x 2 n = (ff x n) 2 (ff + 2x n ) : 3x 2 n = 1 ff : d n = x n+1 x n = 1 2 ( x n x n ): (b) ) 2d n x n = x 2 n : ) x n 2 + 2dx n = 0: ) x n = 2d n ± p 4dn 2 + 4 2 = d n ± q d 2 n + : We ssume x 0 > 0, then x n > 0. Therefore, q x n = d n + d 2 + = + d2 p d 2 n n n d n + d 2 + : n ) x n = d n + p d 2 n + : ) x n = d n + p d 2 n + = 1 2 (x n 1 + = 1 2 ( d n 1 + qd 2n 1 + 1 + (d n 1 + x n 1 ) q d 2 n 1 + )): q p d n + d 2 + = 1 2 ((d n 1 d 2 + ) n 1 d 2 n n 1 d2 + d n 1 + n 1 = 1 2 ( qd 2 n 1 + d n 1 + d n 1 + q d 2 n 1 + ) qd 2n 1 + ) = q d 2 n 1 + : 9

() '(x) = 2 x, x 6= 0. Then, ' 0 (ff) = 2ff 1 6= 0: ) p q d n + d 2 + = d 2 + : n 1 n q ) d n + d 2 + = n qd 2n 1 + : ) q d 2 n + = ) d 2 n + = d 2 n ) q 2d n d 2 + = n 1 q d n : d 2 n 1 2d n 2 qd 2n 1 + + d 2 + : n 1 d2 n 1 d 2 n 1 + 2: Problem 35: Therefore, d 2 n 1 ) d n = 2 qd 2n 1 + : d 2 n 1 jd n j = 2 qd 2n 1 + : Clim j 2 x 2 j < 1, then x 2 ( 1; p 2) [ ( p 2; 1). It will converge only when x 0 = ± p 2. Otherwise, it never converges. (b) '(x) = x 2 + x 2. Then, ' 0 (ff) = 2ff + 1 6= 0: Clim j2x + 1j < 1, then x 2 ( 1; 0). It will never converge to the root. (c) '(x) = x+2, x 6= 1. Then, x+1 ' 0 (ff) = 1 6= 0: (ff + 1) 2 1 Clim j j < 1, then, x 2 ( 1; 2) [ (0; 1). (x+1) 2 converge when x 0 > 0. Since p 2 > 2, it will 5. Mchine Assignment 1 in Chpter 4. The progrm is s following: FORTRAN(f90) prt, min progrm 10

!! This is for Mchine Assignment 1 in Chpter 4! PROGRAM m4_1 rel e rel from, to, h integer i, n n=200 e = Eps()! For prt (): open(20, file='m4_1') from = 0.93 to = 1.07 h = (to-from)/n write(20,2) from write(20,2) to do i=0, n x = from+i*h write(20,1)(p(x)/e) enddo close(20) 1 formt(e16.7) 2 formt(f16.7)! For prt (b): open(20, file='m4_1b') from = 21.7 to = 22.2 h = (to-from)/n write(20,2) from write(20,2) to do i=0, n 11

x = from+i*h write(20,1)(pb(x)/e) enddo close(20) end rel function Eps() rel, b, c =4./3. b=-1 c=b+b+b Eps=bs(c-1) return end rel function p(x) rel x p=x**5-5*x**4+10*x**3-10*x**2+5*x-1; return end rel function pb(x) rel x pb=x**5-100*x**4+3995*x**3-79700*x**2+794004*x-3160088; return end MATLAB prt, for plot only % % for plot in Mchine ssignment 1 of Chpter 4, red file m4_1 nd m4_1b % fid1 = fopen('m4_1', 'r'); 12

p = fscnf(fid1, '%g', [203]); fclose(fid1); fid1 = fopen('m4_1b', 'r'); pb = fscnf(fid1, '%g', [203]); fclose(fid1); h = (p(2)-p(1))/200; hb = (pb(2)-pb(1))/200; i = p(1):h:p(2); ib = pb(1):hb:pb(2); figure; subplot(2,1,1); plot(i, p(3:203), '-'); title('polynomil /eps'); grid on; subplot(2,1,2); plot(ib, pb(3:203), '-'); title('polynomil b/eps') grid on; The plots re s below 13

20 polynomil /eps 10 0 10 20 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1 5 x 107 polynomil b/eps 0 5 10 15 20 21.7 21.8 21.9 22 22.1 22.2 22.3 22.4 Figure 1: The plots for two functions 14