sx 'may r e?'.:`~~ Fy`.`I ~` -... n a ~ - `~ ~.n~ Be a %~... > r~'~s~ egvrr'~.~,~,,,~., ~~' ~... PY s r~~k~ ~ ~f~ ~, _ t s. ., ~ ~~~ ~..

Similar documents
A L A BA M A L A W R E V IE W

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f

H STO RY OF TH E SA NT

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

35H MPa Hydraulic Cylinder 3.5 MPa Hydraulic Cylinder 35H-3

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

Integrated II: Unit 2 Study Guide 2. Find the value of s. (s - 2) 2 = 200. ~ :-!:[Uost. ~-~::~~n. '!JJori. s: ~ &:Ll()J~

Math Assignment. Dylan Zwick. Spring Section 2.4-1, 5, 9, 26, 30 Section 3.1-1, 16, 18, 24, 39 Section 3.2-1, 10, 16, 24, 31

Parts Manual. EPIC II Critical Care Bed REF 2031

w x a f f s t p q 4 r u v 5 i l h m o k j d g DT Competition, 1.8/1.6 Stainless, Black S, M, L, XL Matte Raw/Yellow

(308 ) EXAMPLES. 1. FIND the quotient and remainder when. II. 1. Find a root of the equation x* = +J Find a root of the equation x 6 = ^ - 1.

HoKyu Lee Department of Mathematics, Ewha Womans University, Seoul , Korea

::::l<r/ L- 1-1>(=-ft\ii--r(~1J~:::: Fo. l. AG -=(0,.2,L}> M - &-c ==- < ) I) ~..-.::.1 ( \ I 0. /:rf!:,-t- f1c =- <I _,, -2...

is: 3o>« P 6 Jsgg E 2 si O j= o ocq O o & s r 3 O O K O r " CD r cd as c 3 ^th ^ "OU a 5 " c ?.53 drag S.S pqc O r OT3 4J o >> o.- X h 5 c o o C C :_

Math 551 Homework Assignment 3 Page 1 of 6

The Corrected Trial Solution in the Method of Undetermined Coefficients

r(j) -::::.- --X U.;,..;...-h_D_Vl_5_ :;;2.. Name: ~s'~o--=-i Class; Date: ID: A

The function graphed below is continuous everywhere. The function graphed below is NOT continuous everywhere, it is discontinuous at x 2 and

P a g e 3 6 of R e p o r t P B 4 / 0 9

llnan ilznahcobo - xo gsfi cesennorz ge*nenrhoctrr% na 2OL1 Fo,q % nnanosruz nep oa 2OLB u 2019 nogoe

Executive Committee and Officers ( )

~---~ ~----~ ~~

VH-G(A)=IIVHGF(S)"J=1.

EXAM 2, MATH 132 WEDNESDAY, OCTOBER 23, 2002

B A P T IS M S solemnized. Hn the County of

P a g e 5 1 of R e p o r t P B 4 / 0 9

Homework set #7 solutions, Math 128A J. Xia

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

Wireless & Hybrid Fire Solutions

l [ L&U DOK. SENTER Denne rapport tilhører Returneres etter bruk Dokument: Arkiv: Arkivstykke/Ref: ARKAS OO.S Merknad: CP0205V Plassering:

ON THE HARMONIC SUMMABILITY OF DOUBLE FOURIER SERIES P. L. SHARMA

3.2. Built Environment: Land Use and Transportation

Hölder, Chebyshev and Minkowski Type Inequalities for Stolarsky Means

5.5. Indefinite Integrals 227

MATH 3795 Lecture 12. Numerical Solution of Nonlinear Equations.

ADVANCED PROBLEMS AND SOLUTIONS

direct or inverse variation. Write the equation that models the relationship.

THE POISSON TRANSFORM^)

l I I I I I Mechanics M 1 Advanced/ Advanced Subsidiary Pearson Edexcel P46705A II II I I I I II PEARSON

Name: 2. Determine (a) the leading coefficient and (b) the degree of the polynomials

Supplementary Information

ECE430 Name 5 () ( '-'1-+/~ Or"- f w.s. Section: (Circle One) 10 MWF 12:30 TuTh (Sauer) (Liu) TOTAL: USEFUL INFORMATION

rhtre PAID U.S. POSTAGE Can't attend? Pass this on to a friend. Cleveland, Ohio Permit No. 799 First Class

ALGEBRA QUALIFYING EXAM, WINTER SOLUTIONS

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco

T h e C S E T I P r o j e c t

Exercise 2.2. Find (with proof) all rational points on the curve y = 2 x.


Higher Order Linear Equations

OPTIMAL RESOURCE ALLOCATION AMONG AREAS OF EQUAL VALUE

Contours of Constant Effectiveness For PF Coil Pairs

Using the Rational Root Theorem to Find Real and Imaginary Roots Real roots can be one of two types: ra...-\; 0 or - l (- - ONLl --

Beginning and Ending Cash and Investment Balances for the month of January 2016

f;g,7k ;! / C+!< 8R+^1 ;0$ Z\ \ K S;4 i!;g + 5 ;* \ C! 1+M, /A+1+> 0 /A+>! 8 J 4! 9,7 )F C!.4 ;* )F /0 u+\ 30< #4 8 J C!

Monochromatic Homothetic Copies of f1; 1 + s; 1 + s +tg

Optimization and Calculus

Linear Second Order ODEs


S U E K E AY S S H A R O N T IM B E R W IN D M A R T Z -PA U L L IN. Carlisle Franklin Springboro. Clearcreek TWP. Middletown. Turtlecreek TWP.

III Illl i 111 III illlllill 111 Illlll

Flint Ward 1 !( 1. Voting Precinct Map «13 «15 «10. Legend. Precinct Number. Precinct Boundaries. Streets. Hydrography. Date: 1/18/2017.

tc., ,if. l/ ft 6 & L 8. livteya.halaf6e feoreox es Pp I +41 Sc C Qn 4-er 70-y Cc, inoor f,?cr LA I }or 1.er

WORLD MATH DAY ACTIVITY PACK. Ages worldmathsday.com UNICEF WORLD MATH DAY Lesson Plans Age 4 10 ACTIVITY RESOURCE

i;\-'i frz q > R>? >tr E*+ [S I z> N g> F 'x sa :r> >,9 T F >= = = I Y E H H>tr iir- g-i I * s I!,i --' - = a trx - H tnz rqx o >.F g< s Ire tr () -s

Discovery Guide. Beautiful, mysterious woman pursued by gunmen. Sounds like a spy story...

Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork and res u lts 2

l(- oo)-~j [-I <. )( L6\ \ -J ~ ~ ~~~ ~~L{ ,~:::-=r\ or L":: -j) {fevylemr.eor k, ("p J~ -4" e S ' e,~ :; ij or J iv I 0"'& ~~ a. 11 qa.

Last Name. First Name. General Instructions: (i) Use scratch paper at back of exam to work out answers; final answers must

s(\y'+- -Y;/ o o- UN9 EHF fri "rii I lt iil# trd= llllll r-rrl a_ / r_*{fr d3= ffffi0" n6 _ n'n.tr ff== ooh cn lu 22.Jtu<. P Qfo -_L -T d ;u \, a c

Control Systems Engineering (Chapter 2. Modeling in the Frequency Domain) Prof. Kwang-Chun Ho Tel: Fax:

LOWELL JOURNAL.. TOOK H BR LIFE.

Calculation of the Ramanujan t-dirichlet. By Robert Spira

5 H o w t o u s e t h e h o b 1 8

trawhmmry ffimmf,f;wnt

J. Org. Chem., 1997, 62(12), , DOI: /jo961896m

Why should you care about the solution strategies?

Ordinary Differential Equation Theory

o V fc rt* rh '.L i.p -Z :. -* & , -. \, _ * / r s* / / ' J / X - -

o K(s, t)f(t)(s tp) dt g(s), 0 < =< T, with given p > 0 and 0< a < 1. Particular attention is

:i.( c -t.t) -?>x ( -\- ) - a.;-b 1 (o..- b )(a..+al,-+ b:r) x x x -3x 4-192x

Math Refresher - Calculus

The solution of linear differential equations in Chebyshev series

MATH 1372, SECTION 33, MIDTERM 3 REVIEW ANSWERS

CS137 Introduction to Scientific Computing Winter Quarter 2004 Solutions to Homework #3

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

f(x) = f-1(x) (*) 343

Figure 1: Graph of y = x cos(x)

Mathematics Extension 1

I-1. rei. o & A ;l{ o v(l) o t. e 6rf, \o. afl. 6rt {'il l'i. S o S S. l"l. \o a S lrh S \ S s l'l {a ra \o r' tn $ ra S \ S SG{ $ao. \ S l"l. \ (?

o ri fr \ jr~ ^: *^ vlj o^ f?: ** s;: 2 * i i H-: 2 ~ " ^ o ^ * n 9 C"r * ^, ' 1 ^5' , > ^ t g- S T ^ r. L o n * * S* * w 3 ** ~ 4O O.

On the convergence of solutions of the non-linear differential equation

A Gentle Introduction to Gradient Boosting. Cheng Li College of Computer and Information Science Northeastern University

SPU TTERIN G F R O M A LIQ U ID -PH A SE G A -IN EUTECTIC ALLOY KEVIN M A R K H U B B A R D YALE UNIVER SITY M A Y

z E z *" I»! HI UJ LU Q t i G < Q UJ > UJ >- C/J o> o C/) X X UJ 5 UJ 0) te : < C/) < 2 H CD O O) </> UJ Ü QC < 4* P? K ll I I <% "fei 'Q f

MPM 2D Final Exam Prep 2, June b) Y = 2(x + 1)2-18. ~..: 2. (xl- 1:'}")( t J') -' ( B. vi::: 2 ~ 1-'+ 4 1<. -t-:2 -( 6! '.

We help hotels and restaurants SAYHELLO.

p r * < & *'& ' 6 y S & S f \ ) <» d «~ * c t U * p c ^ 6 *

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Transcription:

gt 4 x r _.:. 'o.s ----.-----------_ y6^j T r.. ^ _.._ C..._6 a i' :: _, a,ti Ck So /- { r1t`..r.t"`pd?4'' "+u "...'3,1 sx 'may r e?'.:` Fy`.`I ` -... n a - `.n Be a %... > r's egvrr'.,,,,., '... PY v la' 6 4fS 9Js.<d' C.:L,,'If... o "., ',. Q i ' _?.,.. _ f _ n rj z j ' I ;s r x a _ s rk f a --, _ t s. r _.. a,_,..., d.. "< w s _ Ed ' n C. - P C! ',?'Jds _ ' ; r td5 c E, '>'a",.mss' d;;.;., y! tj.. -b F ` Tp ' :i '. C e't s; 1 J P ts,,. -,,d.', " `y. ibs;, -p ' p L ' C "y, /t` '- _ 'tip 'v.]+2 f "` < +', I y..e ' s' a t ''/r '`' 'IM ",I 'ate...., J''?l."'j B.L.,'I ' _."l P.- s ' L' C.g " ' f -0 t _. 3t ). n _ c... ( a _ r - ;! 1 :s P' ' 2 5 f :. 1 k ;; - `:-tit" f G,.; G 2' "1"' f i{ a`t, t'1ds,sl a,?rg`` f'- ihlo(

Ire, a _... g9 ' " '= _ c adr` G? '"'.r='a' Ys 7 YL.J v G 0L b p by «1_d,f`e r i h,,r,,, C + ' = ', c ' _ C J, %.. 1, :., `F " ` y ' ';f r. ;; rr It &-7 -,y, / 1 v P,. d FCC ', '' L t, j r I 'ib., ) ' ` 'lx 1, P f L Cc J ;, +...!rte. ` nom, fro,, Fi r ' t U _ Li'^-Y 3 et c. 'j,,' re'! J```v3.r'i ' "%'"a^ b,^ c GIB ler'' GJ' a " )1/r.PrG, I ( ly a,.j F Ca, I ' l z 1 z > q,it 71 f,, / -,2 S'v g l > + inn ",_ J, i,, y 11 l `. 1,, 1 _... 1.yon, l :'f't r 'a',('-n 1 - - y'c I'P"n ( ` r7 E ` p /,/' `ale:)- _ (:ctv yjc7'+`! -y' ' ;.. 1",- 3 % :c:;f' g, :1 -t l ' + -` ' (,. 1 G.C T J.-- _._ l, r ar Z.s--(, - s ye!rr,,,,a,a r-af r r Sy,-it,ib" y;, _ a,, (_._._ ro v

3r7..,,.- %v8f' w s fl _, f,g ` + J ycy., ^+ ` q, 7 T-.1 '.(C /..4" '"P '' 4C.'`" 3 X F, 3 4 v 4d! d 4 5.+5 a. V j g D..... 1 a f 7 q',.r '..=.N'' a"ifs `a`+'fe "'a''f1 `1,tij `.'/f &` f+ltgz.f' _ - {, a 1 ' e_., 9 + :_.. _.. F P GVw 'a j t r 5 uf' l a ; y/^1-7qf /ti _/ / e `3 /Of )U b ''.._...,f, _.... U :. $f.e i'wgt,i;tlq Y> 4`,... f.. qy'"'"`'r,_ y' j f y^ @. / " y^ {g C ' '' C(-' `T tt) i tom g "- 5'd' e' "t`,,. j o w- y, iq t g iyi- 1 -a 61M :) t - ' f ' c ` a i' "'' C pro _ ptl.,.,,- y fay, --,, N rt'i (`,',,n C,) %. - a.----, r _ e, - d,,

-, 5, a " r ' ;,. w,,, G z 6.......- 1`9..+6 r`,'t 7 aee..a f... -}. _z fx ' j /.+ / f!"l d '`c/i L'ih t` v 6 Z'f J I I_,7 s Y. A / 1 b, /K' r +'6',7 y.. Ic-v,C- a!fir_- ea,i'.8 '' 4- v u,, Y, " 3 fi f _ ', Z ( I 't,,z v / AL..i C L"i '`?, `1 '7 d:t+t `1 -rp f _ < fit,-, `o'.m.a -!.J J ct. "^ C.

J {' I [ d; m. F q - r s " ;:.!( d z E't' 'al at, %ate [a.d s'!,p' f al,d;.r r,_ r_ rt.r1_ r t4 s., c x" z -,, b p (a a'y, 3 3"1 ter, r` H 'e a+ 1 6 s a r" E y(s, u pg.y^,#2 ppy { [ ) y... _ '1 i ('.tiey4s '1.. K G"fS y'pn "c:'.. rti,.-p 9G-. q7 % a l ''e/'.g,l f ' r... c,cl`., f c q ( n. g gf `/{ d,, ) q 6 Gg Gi.._,"n'8.bi U:, '`E lz7,{. pb,1(, t _"rjo _... _..., ex... p b d tigl' -U4. dn!7.,.,.., a ( ' - a 1 a. i d ' a. y 4 " e 9.I- (7 +`.:4t` 'i G/,'y''o. '! - t > u ; 7. ','M..?Gi r C +,r =' w r y a - %s y -- w. '? - t -., e Val ' :s. -.,, w - =cif

7 s', u w- ' l ln7 e?, t (" 2{ e i i IA's - 1 t! x r,a e `m., 11' 7, _ r f 'T.ate e _. _ / / f?t / U r -- ',., --... <e a

function [xc,yc,errx]=newtonldr(fun,funpr,xl,tol,kmax,pcon) Input. fun function (inline function or m-file function) funpr derivative function (inline or m-file) xl starting estimate o tol allowable tolerance in computed zero kmax maximum number of iterations o pcon=expected order of convergence, p $ Output: xc approximation to the root fun(xc)=0 o yc =fun (xc) errx = approximation to error in xc x(1)=xl;err(1)=0.;papp(1)=0.;capp(1)=0.;cap2(1)=0.; y(1)=feval (fun,x(1)) ; ypr(1)=feval(funpr,x(1)); for k = 2:kmax x(k)=x(k-1)-y(k-1)/ypr(k-1); err(k)=abs(y(k-1)/ypr(k-1)); if k<4 papp(k)=0.;capp(k)=0.;cap2(k)=0.; if k==3 cap2(3)=abs(err(k)/(err(k-1))^pcon); end %if k==3 else papp(k)=(log(err(k))-log(err(k-1)))/(log(err(k-1))-log(err(k-2))); capp(k)=abs(err(k)/(err(k-lj)^papp(k)); cap2(k)=abs(err(k)/(err(k-1))^pcon); end oif k<4 y (k) =feval (fun, x (k)) ; if abs(x(k)-x(k-1)) < tol disp('newton method has converged'); break; end ypr(k)=feval(funpr,x(k)); iter=k; end if liter >= kmax) disp(' zero not found to desired tolerance'); end n=length(x); if imag(x(1)) =0 imag(y(1)) =0 disp(' n x y err Pa1P ) else disp(' n x y err papp Capp cwithpcon') end oif for k=1:n; gout = [k' x' y' err' papp']; odisp(out) if imag(x(l))= 0 ( imag(y(1)) = 0 fprintf('%3.of o10.6f o10.6f %-13.5g o-13.5g o-13.58 o8.4f\n',k,real(x(k)),imag(x(k)),real(y(k)),,imag(y(k)),err(k),papp(k)); else fprintf('%3.of o10.6f o-13.5g o-13.5g %8.4f o8.4f %8.4f\n',k,x(k),y(k),err(k),papp(k),capp(k),cap2(k)); end oif end %for Page 1 of

>o output for problem 6 >[xc yc errx]=newtonldr("pr6fun","pr6fpr",o,l.e-11,20,2) Newton method has converged n x y err papp capp cwithpcon 1 0.000000-3 0 0.0000 0.0000 0.0000 2 3.000000 1441.5 3 0.0000 0.0000 0.0000 3 2.822099 548.43 0.1779 0.0000 0.0000 0.0198 4 2.631425 209.48 0.19067-0.0245 0.1828 6.0247 5 2.425401 80.251 0.20602 1.1167 1.3110 5.6668 6 2.201692 30.667 0.22371 1.0635 1.2005 5.2704 7 1.961003 11.48 0.24069 0.8884 0.9103 4.8094 8 1.715613 3.9921 0.24539 0.2645 0.3576 4.2359 9 1.505268 1.1135 0.21035-7.9651 0.0000 3.4931 10 1.389750 0.16916 0.11552 3.8891 49.6435 2.6109 11 1.365232 0.005603 0.024518 2.5862 6.5118 1.8374 12 1.364363 6.6398e-006 0.00086888 2.1548 2.5664 1.4453 13 1.364362 9.3507e-012 1.0321e-006 2.0167 1.5375 1.3671 14 1.364362 0 1.4535e-012 2.0003 1.3698 1.3645 xc = 1.36436159792756 yc = 0 errx = 1.45349815489365e-012 >% >o output for problem 3b >[xc yc errx]=newtonldr("pr3fun","pr3fpr",l,l.e-11,20,2) Newton method has converged n x y err papp capp cwithpcon 1 1.000000-1 0 0.0000 0.0000 0.0000 2 1.100000 0.27972 0.1 0.0000 0.0000 0.0000 3 1.082551 0.011028 0.017449 0.0000 0.0000 1.7449 4 1.081805 1.9165e-005 0.00074605 1.8055 1.1149 2.4504 5 1.081804 5.8158e-011 1.301e-006 2.0150 2.6036 2.3375 6 1.081804 1.7764e-015 3.948e-012 2.0003 2.3431 2.3325 xc = 1.08180405955982 yc = 1.77635683940025e-015 errx = 3.94804435424867e-012 >o >% output for problem 4a >[xc yc errx]=newtonldr("pr4fun","pr4fpr",0,5.e-9,26,1) Newton method has converged n x y err papp Capp cwithpcon 1 0.000000 1 0 0.0000 0.0000 0.0000 2 0.166667 0.1234 0.16667 0.0000 0.0000 0.0000 3 0.202177 0.027537 0.03551 0.0000 0.0000 0.2131 4 0.217257 0.0065717 0.01508 0.5539 0.0958 0.4247 5 0.224298 0.0016082 0.0070409 0.8893 0.2934 0.4669 6 0.227708 0.00039792 0.0034102 0.9519 0.3816 0.4843 7 0.229387 9.8979e-005 0.0016791 0.9773 0.4329 0.4924 8 0.230220 2.4683e-005 0.00083321 0.9890 0.4625 0.4962 9 0.230635 6.1631e-006 0.00041505 0.9946 0.4793 0.4981 10 0.230842 1.5398e-006 0.00020714 0.9973 0.4887 0.4991 11 0.230946 3.8483e-007 0.00010347 0.9987 0.4939 0.4995 12 0.230997 9.6193e-008 5.1712e-005 0.9993 0.4967 0.4998 13 0.231023 2.4046e-008 2.585e-005 0.9997 0.4982 0.4999 14 0.231036 6.0114e-009 1.2923e-005 0.9998 0.4991 0.4999 15 0.231043 1.5028e-009 6.4613e-006 0.9999 0.4995 0.5000 16 0.231046 3.757e-010 3.2306e-006 1.0000 0.4997 0.5000 17 0.231047 9.3924e-011 1.6153e-006 1.0000 0.4998 0.5000 Page 1 of

s j v,,.,fy z:: -.. m Y,.gip c " 1, 1 l. f'j r., a c >?.,' A ' 9 'Td 'e4 a ' ' -, ' P, p!' / i '` -a t, y `? i r '-- i i i ` r p,., d. _ f -. t ' "}8 'T-a'' 4 -a as -R "9A E 1 { (a s ' >B a'... _ v,a. R`. 2 l a ` r > r, a r `=3 ` c

0 output for problem 6 using pr6ftaylor.m to evaluate f(x)=integral 0 to x e^(t^2) dt with a Taylor polynomial >[xc yc errx]=newtonldr("pr6ftaylor","pr6fpr",o,l.e-11,20,2) Newton method has converged n x err papp cape 1 0.000000-3 0 0.0000 0.0000 2 3.000000 1441.5 3 0.0000 0.0000 3 2.822099 548.43 0.1779 0.0000 0.0000 4 2.631425 209.48 0.19067-0.0245 0.1828 5 2.425401 80.251 0.20602 1.1167 1.3110 6 2.201692 30.667 0.22371 1.0635 1.2005 7 1.961003 11.48 0.24069 0.8884 0.9103 8 1.715613 3.9921 0.24539 0.2645 0.3576 9 1.505268 1..1135 0.21035-7.9651. 0.0000 10 1.389750 0.16916 0.11552 3.8891 49.6435 11 1.365232 0.005603 0.024518 2.5862 6.5118 12 1.364363 6.6398e-006 0.00086888 2.1548 2.5664 13 1.364362 9.3494e-012 1.0321e-006 2.0167 1.5375 14 1.364362 0 1.4533e-012 2.0003 1.3700 xc = 1.36436159792756 yc 0 errx = 1.45329106454103e-012 cwithpco 0.0000 0.0000 0.0198 6.0247 5.6668 5.2704 4.8094 4.2359 3.4931 2.6109 1.8374 1.4453 1.3671 1.3643 function [y ier nfun err]=pr6ftaylor(x) [y ier nfun err]=quad("pr6fpr",o,x); This integrates the function integral 0 to x e^(t^2) dt using a Taylor polynomial. ier=0 is returned iff the integration was successful nfun=how many terms were used in the Taylor polynomial err = an estimate of the error in the solution sum=x; dfact=l.; term=x; nmax=900; efact=exp(x.^2);ier=0;k=0;err=1; if x < 0 efact=l; end oif while err > l.e-15 k=k+l; dfact=dfact+2; term=term*x^2/k; sum=sum+term/dfact; err=abs(efact*term*x^2/(k+l)/(dfact+2)); if k > nmax ier=1; break; end oif end while nfun=k; if ier==1; disp 'more terms are needed in the Taylor polynomial' x y=sum nfun err break; end %if y=sum-3; return