André-Marie Tremblay

Similar documents
Many-body theory versus simulations for the pseudogap in the Hubbard model

Quantum Cluster Methods (CPT/CDMFT)

Pairing fluctuations and pseudogaps in the attractive Hubbard model

Examples of Lifshitz topological transition in interacting fermionic systems

arxiv:cond-mat/ v3 [cond-mat.str-el] 11 Dec 1997

Cluster Extensions to the Dynamical Mean-Field Theory

O. Parcollet CEA-Saclay FRANCE

A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra

Can superconductivity emerge out of a non Fermi liquid.

Non-Perturbative Many-Body Approach to the Hubbard Model and Single-Particle Pseudogap

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

A quantum dimer model for the pseudogap metal

Pseudogap and high-temperature superconductivity from weak to strong coupling. Towards a quantitative theory Review Article

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

Functional renormalization group approach to interacting Fermi systems DMFT as a booster rocket

Superconductivity due to massless boson exchange.

Quantum phase transitions

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals

arxiv:cond-mat/ v2 [cond-mat.supr-con] 1 Dec 2005

Magnetism at finite temperature: molecular field, phase transitions

De l atome au. supraconducteur à haute température critique. O. Parcollet Institut de Physique Théorique CEA-Saclay, France

The Hubbard model in cold atoms and in the high-tc cuprates

!"#$%& IIT Kanpur. !"#$%&. Kanpur, How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors

Exact results concerning the phase diagram of the Hubbard Model

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Topological order in the pseudogap metal

Strongly Correlated Systems:

Introduction to DMFT

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy

Superconductivity from repulsion

Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations

arxiv:cond-mat/ v2 [cond-mat.str-el] 5 Dec 2003

Topological order in quantum matter

Crossover from two- to three-dimensional critical behavior for nearly antiferromagnetic itinerant electrons

DT I JAN S S"= = 11111'11 I HtI IBlIIIt g ~II. Report: ONR Grant N J Unclassified: For General Distribution LECTF

Metal-insulator transitions

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Is a system of fermions in the crossover BCS-BEC. BEC regime a new type of superfluid?

The Nernst effect in high-temperature superconductors

High-T c superconductors

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

FROM NODAL LIQUID TO NODAL INSULATOR

The NMR Probe of High-T c Materials

arxiv:cond-mat/ v1 26 Jan 1994

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds

Strongly correlated Cooper pair insulators and superfluids

A FERMI SEA OF HEAVY ELECTRONS (A KONDO LATTICE) IS NEVER A FERMI LIQUID

Signatures of spin and charge energy scales in the local moment and specific heat of the half-filled two-dimensional Hubbard model

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP

Landau-Fermi liquid theory

The Hubbard Model In Condensed Matter and AMO systems

Theoretical Study of High Temperature Superconductivity

Lattice modulation experiments with fermions in optical lattices and more

MOTTNESS AND STRONG COUPLING

Quantum gases in the unitary limit and...

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Intermediate valence in Yb Intermetallic compounds

Mott transition : beyond Dynamical Mean Field Theory

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

Preface Introduction to the electron liquid

Superconductivity, antiferromagnetism and Mott critical point in the BEDT family

Parquet approximation for the 4 Ã 4 Hubbard cluster

Quantum criticality of Fermi surfaces

Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas

Seconde partie: Quelques questions liées au transport dans les matériaux à fortes corrélations électroniques

One-dimensional systems. Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal?

Quantum Cluster Methods: An introduction

The Mott Metal-Insulator Transition

A BCS Bose-Einstein crossover theory and its application to the cuprates

Aditi Mitra New York University

Quantum Cluster Methods

Supraconductivité à haute température dans les cuprates et les organiques: Où en est-on?

High Temperature Superconductivity - After 20 years, where are we at?

Recent advances on Hubbard models using quantum cluster methods

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

arxiv:cond-mat/ v3 [cond-mat.supr-con] 15 Jan 2001

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION

Ground-state properties, excitations, and response of the 2D Fermi gas

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates

NMR in Strongly Correlated Electron Systems

AdS/CFT and condensed matter

Quantum Monte Carlo study of strongly correlated electrons: Cellular dynamical mean-field theory

Specific heat of a fermionic atomic cloud in the bulk and in traps

10 Strongly Correlated Superconductivity

Extreme scale simulations of high-temperature superconductivity. Thomas C. Schulthess

Quantum phase transitions and Fermi surface reconstruction

Spontaneous symmetry breaking in fermion systems with functional RG

Temperature crossovers in cuprates

Numerical Studies of the 2D Hubbard Model

a-. 2m ar, MICROSCOPIC DERIVATION OF THE GINZBURG-LANDAU EQUATIONS IN THE THEORY OF SUPERCONDUCTIVITY {- _? (_? - iea (r) \) 2 + G (x x')

Dual fermion approach to unconventional superconductivity and spin/charge density wave

Magnetic Moment Collapse drives Mott transition in MnO

Transcription:

André-Marie Tremblay CENTRE DE RECHERCHE SUR LES PROPRIÉTÉS ÉLECTRONIQUES DE MATÉRIAUX AVANCÉS Sponsors:

Pairing vs antiferromagnetism in the cuprates 1. Motivation, model 2. The standard approach : - what it is - a qualitatively incorrect result - limitations of the approach 3. A non-perturbative approach (U > 0 and U < 0 ) - Proof that it works - How it works 4. Results: - Mechanism for pseudogap - Spectral weight rearrangement - Pairing in the repulsive model 5. Perspectives.

1. Motivation, model -Here, -W < U < W with (W = 8t) -Relevant for high Tc where U > W? - A question of threshold (and continuity) U SDW T δ - Importance of quantitative predictions - Location of QCP - No ferromagnetism - Effective U < 0 model may be not too strongly interacting - Suppose we find new quasiparticles in strong coupling. How do we study residual interactions? - Do we give up calculating Landau parameters? - How to predict when the theory is bad? - Standard method gives qualitatively incorrect results 3

2. The standard approach : - what it is (FLEX, self-consistent T-matrix...) Φ [G] = + 1 2 +... Σ [G] = δφ [G] / δg = + +... Γ [G] = δσ [G] / δg = + 4

2. The standard approach : - what it is (FLEX, self-consistent T-matrix...) - Thermodynamically consistent: df/dµ = Tr[G] - Satisfies Luttinger theorem (Volume of Fermi surface at T = 0 preserved) - Satisfies Ward identities (conservation laws): G2(1,1;2,3) appropriately related to G(1,2) 5

2. The standard approach : - a qualitatively incorrect result ( π,0) Monte Carlo Many-Body (0,0) (0, π ) π π (, ) 4 2 π π 4 4 (, ) (, ) π 2 π 2 (0, π ) (0,0) -5.00 0.00 5.00-5.00 0.00 5.00 ω/t Calc. + QMC: Moukouri et al. P.R. B 61, 7887 (2000). U = + 4 T = 0.2 n=1 8 X 8 Flex -5.00 0.00 5.00 6

T X T = 0 T n c E A(ω) k F I k ω k F A(ω) k F II ω E A(ω) k F III 2 k ω k F 2 99-aps/Explication... 7

2. The standard approach : - limitations of the approach - Integration over coupling constant of potential energy does not give back the starting Free energy. - The Pauli principle in its simplest form is not satisfied (It is used in defining the Hubbard model in the first place) - There is an infinite number of conserving approximations (How do we pick up the diagrams?) - Inconsistency: Strongly frequency-dependent self-energy, constant vertex No Migdal theorem, so vertex corrections should be included 8

Singular Σ (k F,ikn) U T 4 N X q 1 Uspχ sp (q, 0) ikn ² k+q Σ (k F +q,ikn) Σ (ikn) = 2 ikn Σ (ikn) ReΣ R (ω) = ω 2 ω 2 ω θ ( ω 2 ) ³ ω 2 4 2 1/2 ImΣ R (ω) = 1 2 θ (2 ω ) ³ 4 2 ω 2 1/2 9 Non Fermi-liquid but not singular at ω = 0 Vilk, et al. J. Phys. I France, 7, 1309 (1997).

2. The standard approach : - problem... - We do not know how to properly solve even the «standard model» for heavy fermions (Coleman). - Lee-Rice-Anderson simpler approach seems qualitatively better, why? - GW approach to improve band structure calculations? 10

3. An approach for both U > 0 and U < 0 - Proofs that it works Notes: -F.L. parameters -Self also Fermi-liquid 0.4 n = 0.20 n = 0.45 (b) (c) U = 8 2 n = 0.20 n = 0.45 n = 1.0 U = 8 0.0 0.4 0 2 0.0 (0,0) (π,0) q (π,π) (0,0) 0 q QMC + cal.: Vilk et al. P.R. B 49, 13267 (1994) 11 n S ch (q) n S sp (q) n = 0.26 n = 0.60 n = 0.94 (a) U = 4 n = 0.19 n = 0.33 n = 0.80 (d) U = 4 U > 0

Proofs... 2.0 U=4.0 n=0.87 Monte Carlo 8x8 (BWS) 1.5 8*8 (BW) 1.0 χ ( π,π sp,0) 0.5 This work FLEX no AL FLEX 0.0 0.50 0.75 1.00 T Calc.: Vilk, et al. J. Phys. I France, 7, 1309 (1997). QMC: Bulut, Scalapino, White, P.R. B 50, 9623 (1994). U = + 4

T X T mf 16 12 U=4 n=1 Monte Carlo 4x4 8 6x6 8x8 10x10 S sp (π,π) 12x12 ξ ~exp ( CT ( )/ T) 4 ξ = 5 0 0.0 0.2 0.4 0.6 0.8 1.0 T Calc.: Vilk et al. P.R. B 49, 13267 (1994) QMC: S. R. White, et al. Phys. Rev. 40, 506 (1989). O ( N = ) A.-M. Daré, Y.M. Vilk and A.-M.S.T Phys. Rev. B 53, 14236 (1996)

Proofs... ( π,0) Monte Carlo Many-Body (0,0) (0, π ) π π (, ) 4 2 π π 4 4 (, ) (, ) π 2 π 2 (0, π ) (0,0) -5.00 0.00 5.00-5.00 0.00 5.00 ω/t Calc. + QMC: Moukouri et al. P.R. B 61, 7887 (2000). U = + 4 Flex -5.00 0.00 5.00 14

Proofs... 1.0 Monte Carlo Many-Body Σ (s) FLEX a) b) c) U = + 4 L=4 L=6 L=8 0.5 L=10 0.0 0.0-1 0 1-1 0 1-1 0 1 15 G(τ) A(ω) -0.5 0 β/2 β Calc. + QMC: Moukouri et al. P.R. B 61, 7887 (2000).

Proofs... Other approach DCA C.Hushcrof, M. Jarrell et al. P.R.L 86, 139 (2001).

Moving to the attractive case... Calc. : Kyung, Allen,A.M.S.T. P.R.B 64, 075116/1-15 (2001) QMC : Moreo, Scalapino, White, P.R. B. 45, 7544 (1992) Proofs... U = - 4 17

Proofs... U = - 4 Calc. : Kyung, Allen,A.M.S.T. P.R.B 64, 075116/1-15 (2001) QMC : Trivedi and Randeria, P.R. L. 75, 312 (1995) 2 nd order perturbation theory S.C. T-matrix 18

Proofs... 0.4 T = 0.25, n = 0.8, U = -4 QMC Many-Body N( ω ) A(k, ω ) 1.2 (a) 0.8 (b) 0.0-0.2 G(k, τ ) 0.0-0.2 G(k, τ ) (a) (b) 0.2 0.4-0.4 T = 0.25, n = 0.8, U = -4-0.4 QMC Many Body 0.0 0.3-4.0 0.0 4.0 ω T = 0.2, n=0.8, U = -4 QMC Many-Body 0.0 0.6-4.0 0.0 4.0 ω -0.6 0.0 τ -0.6 0.0 (c) (d) τ 0.2 (c) 0.4 (d) -0.2-0.2 0.1 0.2-0.4 T = 0.2, n=0.8, U = -4 QMC -0.4 Many-Body 0.0 0.0-0.6-0.6-4.0 0.0 4.0-4.0 0.0 4.0 Kyung, Allen,A.M.S.T. P.R.B 64, 075116/1-15 (2001) 19 Σ k U = - 4

3. An approach for both U > 0 and U < 0 - How it works 20

General results (Dyson equation) : 1, 1 G 1,2 U 1 1 1 2. 1, 1 G 1,1 U n 1 n 1 Hartree-Fock approximation H 1, 1 G H H 1,2 UG 1,1 G H 1,2. Step one of our approximation 1 1, 1 G 1 1,2 AG 1 1, 1 G 1 1, 2 A U n n n n.

Find n n from (a) fluctuation-dissipation theorem (b)pauli principle Usp 1 1 n n. U n n G 1 G 1 n n 2 n n 2 n n T 0 q N q 1 1 U 2 sp 0 q n 2 n n T 0 q N q 1 1 U 2 ch 0 q n 2 n n n 2.

A better approximation for single-particle properties (Ruckenstein) 1 3 1 2 = - 2 + 3 1 3 2 3 4 5 2 1 Σ 2 = 1 2 + Y.M. Vilk and A.-M.S. Tremblay, J. Phys. Chem. Solids 56, 1769 (1995). Y.M. Vilk and A.-M.S. Tremblay, Europhys. Lett. 33, 159 (1996); 1 1 5 2 2 4 N.B.: No Migdal theorem 23

Improved self-energy (step (2)) 2 k sym Un U 8 T N q 3Usp sp 1 1 q Uch ch q 1 G k q. Consistency check 1 Tr 2 G 1 lim T 2 2 0 k G 1 k e ik n U n n. N k

Results of the analogous procedure for U < 0 Upp = U h(1 n )n i h1 n ihn i. (5) χ (1) p (q) = χ (1) 0 (q) 1+Uppχ (1) (6) 0 (q) T N X q χ (1) p (q)exp( iqn0 )=h i = hn n i. (7) Σ (1) ' U 2 U pp (1 n) 2 (8) Σ (2) σ (k) =Un σ U T N X q Uppχ (1) p (q)g (1) σ (q k) (9) 25

SatisÞes Pauli principle and generalization of f sum rule Z dω Dh ie π Im χ(1) (q, ω) = Dh q (0), q (0) ie =1 n ; q (10) Z dω π ω Im χ(1) (q, ω) = 1 X ³ε N k + ε k+q ³1 2 D E n k (11) k µ 2 µ (1) U (1 n) ; q (12) 2 Internal accuracy check (For both U>0 and U<0). 1 2 Tr h Σ (2) G (1)i T = lim τ 0 N X k Σ (2) σ (k) G (1) σ (k) e ik D nτ = U Check : Tr h Σ (2) G (1)i Tr h Σ (2) G (2)i n n E 26

4. Results: - Mechanism for pseudogap U = - 4 - (analogous to U > 0 ) : Vilk et al. Europhys. Lett. 33, 159 (1996) Pines, Schmalian (98) - Enter the renormalized-classical regime. N.B. d = 2 Kyung, Allen,A.M.S.T. P.R.B 64, 075116/1-15 (2001) 29 27

4. Results: - Mechanism for pseudogap U = - 4 - Pairing correlation length larger than single-particle thermal de Broglie wavelength (vf / T) ξ 1.3 ξ th Kyung, Allen,A.M.S.T. P.R.B 64, 075116/1-15 (2001) 28

Mechanism for pseudogap formation in the attractive model: U = - 4 d = 2 is crucial Even part of the pair susceptibility at q = 0, for different temperatures T=1/3 T=1/4 T=1/5 0.00 0.50 1.00 1.50 2.00 ω Allen, et al. P.R. L 83, 4128 (1999) 29

Mechanism for pseudogap in RC regime k,ik n Un U 4 N T Upp pp q, q Large correlation length limit cl k, ikn UT dd q 1 2 2 0 2 d q 2 2 0 1 ikn k q 1 ikn k. q v k Analytic continuation R cl k F, ik n UT dd q 1 2 2 0 2 d q 2 2 1 i. q v F

Imaginary part: compare Fermi liquid, limt 0 R kf,0 0 R kf,0 T d d 1 q vf 1 T 2 q 2 vf 3 d d 2 th Why leads to pseudogap A k, 2 R k R 2 R 2

4. Results: - Spectral weight rearrangement U = - 4 - Pseudogap appears first in total density of states - Fills in instead of opening up - Rearrangement over huge frequency scale compared with either T or T. ( T ~ 0.03, T ~ 0.2, ω 1 ) Kyung, Allen,A.M.S.T. P.R.B 64, 075116/1-15 (2001) 32

4. Results: - Crossover diagram U = - 4 Kyung, Allen,A.M.S.T. P.R.B 64, 075116/1-15 (2001) 33

4. Results: - Pairing in the repulsive model Historical reminder: Spin fluctuation induced d-wave superconductivity U/t = 4 D. J. Scalapino, E. Loh, Jr., and J. E. Hirsch P.R. B 34, 8190-8192 (1986). Béal Monod, Bourbonnais, Emery P.R. B. 34, 7716 (1986). Miyake, Schmitt Rink, and Varma P.R. B 34, 6554-6556 (1986) Kohn, Luttinger, P.R.L. 15, 524 (1965). Bickers, Scalapino, White P.R.L 62, 961 (1989).

χdx 2 -y 2 d x 2 -y 2-wave susceptibility for 6x6 lattice U = 0 U = 4 U = 6 U = 8 U = 10 4 3 2 1 1.0 0.8 0.6 0.4 0.2 0.0 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 δ β Landry, A.-M.S.T. unpublished

0.7 U = 0, β = 4 L = 6 0.6 0.5 0.4 0.3 U = 4 β = 4 β = 3 β = 2 β = 1 χd 0.2 0.1 0.0 0.2 0.4 0.6 0.8 1.0 0.0 Doping QMC: symbols. Solid lines analytical. Kyung, Landry, A.-M.S.T.

d G = - - + - - 2 3 - - - 1 4 G GG 1 G 1 G 0 1 2 3 ~ - - - - - - d G + 1 4 s = - - - 2 3 + - - - 1 4

0.45 0.40 0.35 U = 4, β = 4 0.30 0.25 0.20 0.15 0.10 0.05 Full susceptibility, L=32 Susceptibility without vertex, L=32 Full susceptibility, L=6 0.0 0.2 0.4 0.6 0.8 1.0 0.00 Doping x χd

Analogous procedure for attractive case can be used to compute particle-hole properties (Spin and charge susceptibilities) U=-4, n=0.2, N=12X12 (Fig.1 in the paper) 0.16 0.14 0.12 0.10 0.08 0.06 0.04 χsp (T) Self-consistent T-matrix Crossing 0.02 QMC 0.00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 Temperature

5. Perspectives H tx c i, i,j, Phenomenological model cj, h. c J S i S j 1 4 n inj i,j i, c i, ci,. Computation of local correlation function from the mean-field solution HMF k, k c k, c k, 4Jmm Jd d d Jy y F 0 Compute dynamical susceptibilities with renormalized vertices obtained from T N pp q e i m0 d 0 2. q pp k 1 4 V effvpp T N q Compute single-particle properties from d k d q k 2 pp q G 0 q k.

T=0 order parameters From paramagnetic self-energy: B. Kyung, P.R.B. 64, 104512 (2001). Opening of pseudogap (RC regime) From dynamical susceptibility, ξ sc = 4

Pseudogap and total gap B. Kyung, P.R.B. 64, 104512 (2001). Kyung and A.-M.S.T. unpublished t/j = 3, J = 125 mev

Properties of the condensate

Some speculations Weak - coupling T AF fluctuations T pseudogap S.C. δ quasi d = 2 S.C.? d = 3 AF δ

Strong-coupling T AF pseudogap δ Strong-coupling quasi d = 2 T AF S.C.? δ Strong-coupling d = 3

Michel Barrette Elix David Sénéchal A.-M.T. Mehdi Bozzo-Rey Alain Veilleux

Steve Allen François Lemay David Poulin Liang Chen Yury Vilk Bumsoo Kyung Samuel Moukouri Hugo Touchette

Claude Bourbonnais R. Côté D. Sénéchal Sébastien Roy Alexandre Blais Jean-Séastien Landry A-M.T. Bumsoo Kyung