Coupling Reactions Using Excited State Organonickel Complex _LS_Daiki_Kamakura

Similar documents
Metallaphotoredox Catalysis (Including my work in Shū Kobayashi group from Oct to Aug. 2015)

Hybridization of Nickel Catalysis and Photoredox Catalysis. Literature seminar#1 B4 Hiromu Fuse 2017/02/04(Sat)

O H Hydrogen bonding promotes H-atom transfer from C H bonds for C-alkylation of alcohols

Deactivation Pathways in Transition Metal Catalysis

Reductive Elimination from High-Valent Palladium. Kazunori Nagao MacMillan Group Meeting

Stable gold(iii) catalysts by oxidative addition of a carboncarbon

Nickel-Catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides

Asymmetric Radical Reactions. Zhen Liu 08/30/2018

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0

Additions to Metal-Alkene and -Alkyne Complexes

Mechanistic Studies in Copper Catalysis

Elementary Organometallic Reactions

Palladium-Catalyzed Oxygenation of Unactivated sp 3 C-H Bonds

Electronic Supplementary Information

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides

Catalytic alkylation of remote C H bonds enabled by proton-coupled electron transfer

Structure and Reactivity: Prerequired Knowledge

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

10/26/2010. An Example of a Polar Reaction: Addition of H 2 O to Ethylene. to Ethylene

Sonogashira: in situ, metal assisted deprotonation

Chem 634. Introduction to Transition Metal Catalysis. Reading: Heg Ch 1 2 CS-B 7.1, , 11.3 Grossman Ch 6

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

Supplementary Figures

Reaction mechanism 1/17/19. HCl. HCl. 3 radical can form here. Br 2. hint!

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July

The merger of transition metal and photocatalysis

Zr-Catalyzed Carbometallation

Organometallic Chemistry and Homogeneous Catalysis

Electronic Supplementary Information (ESI) Dual Homogeneous and Heterogeneous Pathways in Photo- and

Recent Advancement in Ag Mediated C-F Bond Formation. Chem 535 Literature Seminar Jiabao Zhang 02/21/2017

s-buli (1.2 eq.), ( )-sparteine (1.2 eq.) Et 2 O, 78 ºC ; 1-2 (1.2 eq.), 78 ºC ; solvent switch to CHCl 3 *, reflux

Supplementary Information

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H

Bond length (pm) Bond strength (KJ/mol)

Supporting Information. DFT as a Powerful Predictive Tool in Photoredox Catalysis: Redox Potentials and Mechanistic Analysis

Oxidative Addition/Reductive Elimination 1. Oxidative Addition

Chiral Brønsted Acid Catalysis

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129,

Ch.10 Alkyl Halides. Organic halides are valuable as industrial solvents, inhaled anesthetics in medicine, refrigerants, and pesticides.

Alkenes. Dr. Munther A. M-Ali For 1 st Stage Setudents

A brief overview of Transition Metal Photoredox Catalysis as a tool for organic synthesis

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group.

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds

Catalytic Conjunctive Cross-Coupling enabled by Metal-Induced Metallate Rearrangement

Ligand Substitution Reactivity of Coordinated Ligands

Reactivity within Confined Nano-spaces

Solvent Scales. ε α β α: solvent's ability to act as a hydrogen bond-donor to a solute

HYDROGENATION. Concerned with two forms of hydrogenation: heterogeneous (catalyst insoluble) and homogeneous (catalyst soluble)

S1. 1 H NMR spectrum for PTTBD in CDCl 3. Insert shows the expansion of the aromatic region and the sharp proton resonances.

Química Orgânica I. Organic Reactions

TEM image of derivative 1 and fluorescence spectra of derivative 1 upon addition of

Copper-Catalyzed Diastereoselective Arylation of Tryptophan Derivatives: Total Synthesis of (+)-

Catellani Reaction (Pd-Catalyzed Sequential Reaction) Todd Luo

Department CMIC Lecture 5c FR5c Free-Radicals: Chemistry and Biology

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid

CHEM 203. Topics Discussed on Sept. 16

Chapter 20: Aldehydes and Ketones

E L E C T R O P H O S P H O R E S C E N C E

Molybdenum-Catalyzed Asymmetric Allylic Alkylation

Unraveling the Mechanism of Water Oxidation by Ruthenium-Oxo Complexes

Supporting Information

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts

The following molecules are related:

Carbon-heteroatom single bonds basic C N C X. X= F, Cl, Br, I Alkyl Halide C O. epoxide Chapter 14 H. alcohols acidic H C S C. thiols.

Branched-Regioselective Hydroformylation with Catalytic Amounts of a Reversibly Bound Directing Group

Use of Cp 2 TiCl in Synthesis

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2.

12. Aldehydes & Ketones (text )

Organometallic Study Meeting#11 Chapter 5. Ligand Substitution Reactions

Asymmetric Nucleophilic Catalysis

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions

Regioselective Reductive Cross-Coupling Reaction

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives

Functionalization of C O Bonds. Stefan McCarver. MacMillan Lab Group Meeting

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005

What Makes for a Good Catalytic Cycle? A Theoretical Study of the. SPhos Ligand in the Suzuki-Miyaura Reaction.

Supporting Information for

Chap. 12 Photochemistry

Name: Unit 3 Packet: Activation Energy, Free Radical Chain Reactions, Alkane Preparations, S N 2, E 2

Supporting Information

Organometallics: Hard to define usefully and completely at the same time, but generally: Compounds containing metal-carbon bond(s).

Supporting Information For. Visible Light Photocatalytic Radical-Radical Cross-Coupling. Reactions of Amines and Carbonyls: A Route to 1,2-Amino

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Aula 5 e 6 Transferência de Energia e Transferência de Elétron Caminhos de espécies fotoexcitadas

The Mechanism of Pd-Catalyzed Amination Controversy.. And Conclusion?

Supporting Information For:

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements

Chem Soc Rev. Chemical Society Reviews Volume 45 Number 21 7 November 2016 Pages

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry

Organocopper Chemistry

The Study of Chemical Reactions. Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order.

Lecture 22 February 25, 2011 Metal Oxide Catalysis

Organometallic Rections 1: Reactions at the Metal

Green Oxidations with Tungsten Catalysts. by Mike Kuszpit Michigan State University

Survival Strategy: Photosynthesis

Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes

"-Amino Acids: Function and Synthesis

Transcription:

Coupling eactions Using Excited State rganonickel Complex 171118_LS_Daiki_Kamakura

i Catalysis in Coupling eactions 9 10 11 Co 28 i Cu h Pd Ag Ir Pt Au Features of i d electrons: 8 relatively inexpensive (i: $1/g, Pd: $183/g, Pt: $483/g) easier accessibility of i 0 /i I /i II /ii II /i IV oxidation states Coupling reactions using i catalysis coupling with nucleophile i X + M coupling with electrophile i X + X C-H activation i H + X = sp 3, sp 2 X =. Br, I, Tf, Me, H H H = sp 3, sp 2, sp, 2,, H M = B 2, MgX, ZnX, SiX 3 In all of these reactions, ground state i complex was used. So excited-state metal catalysts remains largely unexploited. etherton, M.., Fu, G. C. Adv. Synth. Catal. 2004, 346,1525. Tasker, S. Z., Standley, E. A., Jamison, T. F. ature, 2014, 509, 299. Su, B., Cao, Z-C., Shi, Z-J. Acc, Chem es, 2015, 48, 886. Ananikov, V. P. ACS Catal. 2015, 5, 1964. 1

Photo eactions of Metal Complex assical reactions ligand elimination Cr(C) 6 h Cr(C) 5 + C ligand exchange Cp* H Ir Ph 3 P H h C 6 H 12 Cp* H Ir Ph 3 P C 6 H 11 Janowicz, A. H., Bergman,. G. J. Am. Chem. Soc, 1983, 105, 3930. ecently reported chlorine photoelimination Ph 2 P P Ph 2 i III h Ph 2 P P Ph 2 * i III Ph 2 P P Ph 2 i II Hwang, S. J., Powers, D. C. Maher, A. G., Anderson, B. L., Hadt,. G., Zheng, S-L., Chen, Y-S., ocera, D. G. J. Am. Chem. Soc, 2015, 137, 6472 2

Contents 1. Direct C(sp 3 ) H Cross Coupling Enabled by Catalytic Generation of Chlorine adicals (Doyle, 2016) 2. Photosensitized, Energy Transfer Mediated rganometallic Catalysis through Electronically Excited ickel(ii) (MacMillan, 2017) 3

Contents 1. Direct C(sp 3 ) H Cross Coupling Enabled by Catalytic Generation of Chlorine adicals (Doyle, 2016) 2. Photosensitized, Energy Transfer Mediated rganometallic Catalysis through Electronically Excited ickel(ii) (MacMillan, 2017) 4

C-H Functionalization of Amines with yl Halides Ir III (2 mol%) I i II 2 glyme (10 mol%) + dtbbpy (15 mol%) Ph H Ph KH (3 eq.), DMF (0.04 M) 34W Blue LED, rt (3 equiv.) Proposed mechanism Ph Ir III*, h H + Ir II Ph Ph Ph I, i 0 Ii III Ph i I I Ph Ir II i 0 + Ir III F 3 C F 3 C Ir III F F F F + PF6 Ahneman, D. T., Doyle, A. G. Chem. Sci, 2016, 7, 7002. Ir III = [Ir III (df-cf 3 -ppy) 2 (dtbpy)]pf 6 5

Difficulty of Application for α-ylation of Ether Ir III* H + i 0 H H Ir II I not reported E 1 / 2 (Ir III* /Ir II ) = 1.21 V Usage of more storong oxidant C E 1 / 2 (THF + /THF) = 1.75 V E 1 / 2 (Ph 2 + /Ph 2 ) = 0.70 V = (CH 2)4 E 1 / 2 (DCA * /DCA ) = 2.07 V xidation of THF: disfavored (ΔE = 0.69 V) xidation of Amine: favored (ΔE = 0.51 V) xidation of THF: favored (ΔE= 0.32 V) C DCA E 1 / 2 (i I /i 0 ) = 1.2 V E 1 / 2 (DCA/DCA ) = 1.01 V E 1 / 2 (Ir III /Ir II ) = 1.37 V eduction of i I by DCA : disfavored (ΔE= 0.2 V) eduction of i I by Ir II : favored (ΔE= 0.36 V) Ir III = [Ir III (df-cf 3 -ppy) 2 (dtbpy)]pf 6, i I = (dtbpy)i I Br A + B + + e A + e B E 1 / 2 (A + /A) = xx V E 1 / 2 (B + /B) = yy V ΔG = FΔE F: Faraday constant ΔE>0 ΔG<0 A + + B A + B + ΔE = (xx yy) V ΔE = 0.1 V ~ ΔG = 2.3kcal/mol 6

Doyle s Working Hypothesis for α-ylation of Ether Ph 2 P P Ph 2 i III h Doyle s Working Hypothesis Ph 2 P P Ph 2 * i III P Ph 2 Hwang, S. J., Powers, D. C. Maher, A. G., Anderson, B. L., Hadt,. G., Zheng, S-L., Chen, Y-S., ocera, D. G. J. Am. Chem. Soc, 2015, 137, 6472 Ph 2 P i II + H Ir III, i 0 h i II Ir III* ; h [i III ] + * [i II ] + Ir II THF BDE THF: 92 kcal/mol H-: 102 kcalmol H Shieds, B. J., Doyle, A. G. J. Am. Chem. Soc. 2016, 138, 12722 7

ptimization of THF α-ylation eaction Ac entry 1 + H (X equiv.) photocatalyst [Ir III (df-cf 3 -ppy) 2 (dtbpy)]pf 6 Photocatalyst (2 mol%) i(cod) 2 (10 mol%) dtbbpy (15 mol%) K 3 P 4 (2 eq.), solvent (0.04 M) 34W Blue LED, rt, 72 h THF (X equiv.) solvent Ac yield 1 benzene 20 2 [Ir III (df-cf 3 -ppy) 2 (dtbpy)]pf 6 10 benzene 71 F 3 C F 3 C F Ir III F + PF6 F F [Ir III (df-cf 3 -ppy) 2 (dtbpy)]pf 6 3 4 [Ir III (df-cf 3 -ppy) 2 (dtbpy)]pf 6 THF (0.04 M) 92 none THF (0.04 M) 0 5 a [Ir III (df-cf 3 -ppy) 2 (dtbpy)]pf 6 THF (0.04 M) 0 6 b [Ir III (df-cf 3 -ppy) 2 (dtbpy)]pf 6 THF (0.04 M) 0 a i(cod) 2 was not added. b eaction was conducted in the dark. Shieds, B. J., Doyle, A. G. J. Am. Chem. Soc. 2016, 138, 12722 8

Sutoichiometric xidation Experiment i II [TBPA]Sb 6 (1 eq.) K 3 P 4 (2 eq.), THF (2 mm) 34W Blue LED 78 ºC, 72 h i III h + + entry 1 conditions see above 6% - 32% THF 20% 2 no oxidant 3% 62% 0% 3 dark 63% 9% 0% Br SbF 6 3 [TBPA]Sb 6 E 1 / 2 ( 3 + / 3 ) = 1.16 V E 1 / 2 (i III /i II ) = 0.85 V i II = (tbbpy)i II (tol) Shieds, B. J., Doyle, A. G. J. Am. Chem. Soc. 2016, 138, 12722 9

eactivity of yl Halides Me X + H (0.04 M) [Ir III (df-cf 3 -ppy) 2 (dtbpy)]pf 6 (2 mol%) i(cod) 2 (10 mol%) dtbbpy (15 mol%) K 3 P 4 (2 eq.) additive 34W Blue LED, rt, 72 h Me entry X additive yield 1 none 68% 2 Br none 10% 3 I none 5% BDE THF: 92 kcal/mol H : 102 kcalmol H Br: 87 kcal/mol H I: 71 kcal/mol H X 4 I TBAC 51% i II I l i II 5 I TBAI 6% TBA: tetrabutylammonium Shieds, B. J., Doyle, A. G. J. Am. Chem. Soc. 2016, 138, 12722 10

Proposed Catalytic Cycle Lni 0 SET Ir II L i II n Lni I Ir III h Ir III* SET L i III n L n i III L i III n + L n i II h * L i III n H Shieds, B. J., Doyle, A. G. J. Am. Chem. Soc. 2016, 138, 12722 H Ir III = [Ir III (df-cf 3 -ppy) 2 (dtbpy)]pf 6 11

Substrate Scope of yl Chloride + H (0.04 M) [Ir III (df-cf 3 -ppy) 2 (dtbpy)]pf 6 (2 mol%) i(cod) 2 (10 mol%) dtbbpy (15 mol%) K 3 P 4 (2 eq.) 34W Blue LED, rt, 36~72 h = Me: 70% = Ph: 86% = Ph: 77% = C: 83% = Ac: 79% = Bz: 76% Me 51% Me Boc 69% F 3 C 78% 93% Shieds, B. J., Doyle, A. G. J. Am. Chem. Soc. 2016, 138, 12722 12

Substrate Scope of Ether and Hydrocarbon Ac + H (0.04 M) [Ir III (df-cf 3 -ppy) 2 (dtbpy)]pf 6 (2 mol%) i(cod) 2 (10 mol%) dtbbpy (15 mol%) K 3 P 4 (2 eq.) 34W Blue LED, rt, 36~72 h Ac ether X Me Me Ph Ac Ac Ac X = CH 2 : 58% X = : 78% 91% (branch: linear = 1.35 : 1) 47% hydrocarbon Ac 71% Shieds, B. J., Doyle, A. G. J. Am. Chem. Soc. 2016, 138, 12722 Ac 41% a a 10 eq. of cyclohexane was used. eaction was conducted in benzene (0.04 M). 13

Computational Studies A B i III transitions with > 10% i, σ σ* contributions: A: 375, B: 401 nm reaction was conducted under blue LED (λ>400 nm) so transition B would raise i dissociation Fig. 1. Calculated absorption spectrum (solid black line) and oscillators (solid bars; red bars: transitions with > 10% i, σ σ* contributions) from TD- DFT calculations on [iiii(dtbbpy)(ph)] +. calc. BDE of [(dtbpy)(tol)i III ] + : 56 kcal/mol Fig. 2. Transition orbitals for excited state B of [i(dtbbpy)(ph)]+ ( This transition has a large i σ σ* component). i could be cleaved by transition B (401 nm > 71 kcal/mol ) Shieds, B. J., Doyle, A. G. J. Am. Chem. Soc. 2016, 138, 12722 For all calculations the B3LYP hybrid exchange-correlation functional was used. Gas-phase geometry optimization 14 and frequency calculations were carried out using a SDD basis set for i and and 6-31G* for all other atoms.

Short Summary + H Ir III = (2 mol%) i(cod) 2 (10 mol%) dtbbpy (15 mol%) K 3 P 4 (2 eq.) 34W Blue LED, rt i III * H + i II Ir III = [Ir III (df-cf 3 -ppy) 2 (dtbpy)]pf 6 Shieds, B. J., Doyle, A. G. J. Am. Chem. Soc. 2016, 138, 12722 15

Contents 1. Direct C(sp 3 ) H Cross Coupling Enabled by Catalytic Generation of Chlorine adicals (Doyle, 2016) 2. Photosensitized, Energy Transfer Mediated rganometallic Catalysis through Electronically Excited ickel(ii) (MacMillan, 2017) 16

Coupling of yl Halide with xygen ucleophiles Br + H i II Photocatalyst (1 mol%) i 2 glyme (5 mol%) dtbbpy (5 mol%) quinuclidine (10 mol%) K 2 C 3 (1 eq.), CH 3 C Blue LED, rt, 24 h Ir III* Ir II i III F 3 C F 3 C F Ir III F + PF6 F F [Ir III (df-cf 3 -ppy) 2 (dtbpy)]pf 6 Terrett, J. A., Cuthbertson, J. D., Shurtleft, V. W., MacMillan, D. W. C. ature, 2015, 524, 330. Br + C 2 H Photocatalyst (1 mol%) i 2 glyme (10 mol%) dtbbpy (15 mol%) Cs 2 C 3 (1.5 eq.), DMF Blue LED, rt, 72 h C 2 Ir III, hv i II Ir IV + C 2 Br C 2 not obtained Zuo, Z., Ahneman, D. T., Chu, L., Terrett, J. A., Doyle, A. G. Macmillan, D. W. C. Science, 2014, 6195, 437. 17

Difficulty of Coupling eaction with carboxylic Acid Ir III, hν i0 IrII C 2 X i 0, X C i II Ir III, hν Ir II C i III i I C not reported E 1 / 2 (Ir III* /Ir II ) = 1.21 V E 1 / 2 (C 2 /C 2 Cs) = 0.95 V E 1 / 2 (i III /i II ) = 1.00 V xidation of C 2 Cs: favored (ΔE = 0.26 V) xidation of i II : favored (ΔE = 0.21 V) Ir III = [Ir III (df-cf 3 -ppy) 2 (dtbpy)]pf 6 C 2 Cs = Boc Pro Cs i II is exists only catalytic ammount so selective oxidation of i II complex would be difficult To surpless oxidation of carboxilic acid, usage of weaker oxidant is necessary, but it makes difficult to oxidize i II to i III. Welin, E.., Le. C., ias,. D. M., McCusker, J. K., MacMillan, D. W. C. Science, 2017, 355, 380, 18

Coupling of yl Bromide with Carboxylic Acid Me 2 C Br + PhC 2 H (2 equiv.) Photocatalyst (1 mol%) i(cod) 2 (10 mol%) dtbbpy (10 mol%) Hi-Pr (2 equiv.) DMF(0.2 M) 26W CFL, 40 ºC, 24 h Me 2 C Ph entry 1 3 4 5 ligand E 1 / 2 (Ir III* /Ir II ) (V) yield 4,4 -(CF 3 ) 2 -bpy 0.74 2 4,4 -(C 2 Me) 2 -bpy 0.70 0 bpy 0.61 50 4,4 -Me 2 -bpy 0.59 65 4,4 -(Me) 2 -bpy 0.58 70 6 ppy 0.13 85 0 strong oxidant oxidizing power weak oxidant 4 5 X Ir III + PF6 Photocatalyst = [Ir III (ppy) 2 (ligand)]pf 6 Ir III = [Ir III (df-cf 3 -ppy) 2 (dtbpy)]pf 6 E 1 / 2 (Ir III* /Ir II ) = 1.21 V E 1 / 2 (i III /i II ) = 1.00 V Welin, E.., Le. C., ias,. D. M., McCusker, J. K., MacMillan, D. W. C. Science, 2017, 355, 380, 19

Energy of the Ir-Based Exited State Me 2 C Br + PhC 2 H (2 equiv.) Photocatalyst (1 mol%) i(cod) 2 (10 mol%) dtbbpy (10 mol%) Hi-Pr (2 equiv.) DMF(0.2 M) 26W CFL, 40 ºC, 24 h Me 2 C Ph entry 1 ligand E 1 / 2 (Ir III* /Ir II ) (V) E T (kcal/mol)* yield 4,4 -(CF 3 ) 2 -bpy 0.74 39.2 0 strong oxidant low energy potential 2 4,4 -(C 2 Me) 2 -bpy 0.70 39.7 0 3 4 5 bpy 4,4 -Me 2 -bpy 4,4 -(Me) 2 -bpy 0.61 0.59 0.58 46.3 47.6 47.7 50 65 70 oxidizing power triplet state energy 6 ppy 0.13 53.6 85 Photocatalyst = [Ir III (ppy) 2 (ligand)]pf 6 * E T was caluculated from MAX of emission spectrum. weak oxidant high energy potential Welin, E.., Le. C., ias,. D. M., McCusker, J. K., MacMillan, D. W. C. Science, 2017, 355, 380, 20

Direct Excitation Experiment Me 2 C Br + PhC 2 H (2 equiv.) Photocatalyst (1 mol%) i(cod) 2 (10 mol%) dtbbpy (10 mol%) Hi-Pr (2 equiv.) DMF(0.04 M) 40 W Blue LED, 40 ºC, time Me 2 C Ph entry Photocatalyst time (h) yield 0 1 Ir(ppy) 3 Ph Ph 18 18 85% 25% (brsm: 63%) Ir III 2 none 120 45% (brsm: 100%) [Ir III (ppy) 3 ] 3 a none 120 0% a eaction vessel was wrapped in aluminium foil and placed in front of blue LED. coupring reaction would undergo via energy transfer pathway Welin, E.., Le. C., ias,. D. M., McCusker, J. K., MacMillan, D. W. C. Science, 2017, 355, 380, 21

Stoichiometric Studies with ylnickel(ii) Complex Me Me i II F 3 C Me CF3 Photocatalyst (0.625 mol%) Hi-Pr (2 equiv.) DMF-d 7 (0.01 M) 40 W Blue LED, 40 ºC, time CF 3 CF 3 Me entry 1 Photocatalyst Ir(ppy) 3 time (h) 30 min CMe a detected Ir III 2 none 60 h detected 3 b none 60 h not detected [Ir III (ppy) 3 ] a eaction was accessed by 19 F M. b eaction vessel was wrapped in aluminium foil and placed in front of blue LED. Welin, E.., Le. C., ias,. D. M., McCusker, J. K., MacMillan, D. W. C. Science, 2017, 355, 380, 22

Proposed Catalytic Cycle Br Lni 0 C * L i II n Br L i II n Ir III* ET L i II n C Br C 2 hν Ir III Welin, E.., Le. C., ias,. D. M., McCusker, J. K., MacMillan, D. W. C. Science, 2017, 355, 380, 23

Substrate Scope of Carboxylic Acid Me 2 C Br + C 2 H (2 equiv.) [Ir III (ppy) 3 ] (1 mol%) i(cod) 2 (5 mol%) dtbbpy (5 mol%) Hi-Pr (2 equiv.) DMF(0.2 M) 26W CFL, 40 ºC, 18 h Me 2 C Me Me 2 C Me 2 C Me 2 C = Me:76% = c-hex: 81% = : 79% = Ad: 80% 83% X 76% H Cbz Me 2 C Me 2 C Me 2 C 80% X = F: 93% X = Me: 95% = Ph: 86% = i-pr: 81% Welin, E.., Le. C., ias,. D. M., McCusker, J. K., MacMillan, D. W. C. Science, 2017, 355, 380, 24

Substrate Scope of yl Bromide Br + PhC 2 H (2 equiv.) [Ir III (ppy) 3 ] (1 mol%) i(cod) 2 (5 mol%) dtbbpy (5 mol%) Hi-Pr (2 equiv.) DMF(0.2 M) 26W CFL, 40 ºC, 18 h Ph Ph Ph Ph C = Ac: 86% = CF 3 : 86% F = 81% = : 68% = CF 3 : 86% Ph F 3 C Ph Ph = Me: 95% = CF 3 : 87% 62% = Me: 84% = CF 3 : 86% Welin, E.., Le. C., ias,. D. M., McCusker, J. K., MacMillan, D. W. C. Science, 2017, 355, 380, 25

Possible Energy Transfer Mechanism 1 Förster resonance energy transfer nonradiative dipole dipole coupling efficiency is depends on the overlap integral of the donor emission spectrum with the acceptor absorption distance between D and A: 10~100 Å 2 Dexter energy transfer electron exchange between A and D efficiency is depends on the wavefunction overlap between the donor and acceptor Donor Acceptor D A D A D A distance between D and A: <10Å i II : Ir III = 5 : 1 Me Me Me i II F 3 C CF3 Ir III i II Dexter transfer is likely Figure 3. Electronic Absorption Spectrum. Main graph: Electronic playing an important role in absorption spectrum of i II. Inset: verlap between the emission of the reductive elimination step Ir III * and the absorbance of i II. Welin, E.., Le. C., ias,. D. M., McCusker, J. K., MacMillan, D. W. C. Science, 2017, 355, 380, 26 i II Ir III small degree of overlap

Detailed Excitation Mechanism i II : Ir III = 5 : 1 i II + Ir III (calculated) i II + Ir III (observed) Me Me i II F 3 C Me CF3 association between i II and Ir III was suggested Ir III œä œä interaction between dmbpy and ppy? S 1 (Ir III ) Figure 4. UV-Vis spectrum of i II and Ir III S 1 (i II ) S 1 (Ir III ) S 1 (i II ) hν T 1 (Ir III ) T 1 (i II ) energy transfer T 1 (Ir III ) T 1 (i II ) (Dexter mechanism) S 0 (Ir III ) S 0 (i II ) Ir III i II Ir III i II ground state association S 0 (Ir III ) S 0 (i II ) Ir III [i II ]* Welin, E.., Le. C., ias,. D. M., McCusker, J. K., MacMillan, D. W. C. Science, 2017, 355, 380, 27

Proposed Mechanism for. E. (My proposal) π* of ppy (MLCT) S 1 (Ir III ) π* of ppy (MLCT) S 1 (i II ) π* of dmbpy? (MLCT) hν T 1 (Ir III ) [Ir IV (ppy )(ppy) 2 ]* T 1 (i II ) S 0 (Ir III ) [Ir III (ppy) 3 ] hν [Ir III (ppy) 3 ]* S 0 (i II ) [(dmbpy)i II ()(CMe)] It is well known that transition S 0 (Ir III ) to S 1 (Ir III ) and T 1 (Ir III ) is metal to ligand charge transfer (MLCT) If transition S 0 (i II ) to T 1 (i II ) is MLCT (i II to dmbpy), electron deficient i III+ would undergo reductive relimination [(dmbpy)i II ()(CMe)]* [(dmbpy )i III ()(CMe)]* [(dmbpy )i I ]* dmbpy = 4,4-dimethoxybipyridine CMe Welin, E.., Le. C., ias,. D. M., McCusker, J. K., MacMillan, D. W. C. Science, 2017, 355, 380, 28

Summary + H Ir III (2 mol%) i(cod) 2 (10 mol%) dtbbpy (15 mol%) K 3 P 4 (2 eq.) 34W Blue LED, rt i III * H + i II Ir III = [Ir III (df-cf 3 -ppy) 2 (dtbpy)]pf 6 Shieds, B. J., Doyle, A. G. J. Am. Chem. Soc. 2016, 138, 12722 Br + C 2 H Ir(ppy) 3 (1 mol%) i(cod) 2 (5 mol%) dtbbpy (5 mol%) Hi-Pr (2 equiv.) DMF(0.04 M) 26W CFL, 40 ºC i II * Welin, E.., Le. C., ias,. D. M., McCusker, J. K., MacMillan, D. W. C. Science, 2017, 355, 380, 29

Appendix 30

Absorbance of [i III 3 ] + Complex Black: [Li III 3 ] + ed: Li II 2 Ph 2 P P Ph 2 i III hν Ph 2 P P Ph 2 * i III Ph 2 P P Ph 2 i II Hwang, S. J., Powers, D. C. Maher, A. G., Anderson, B. L., Hadt,. G., Zheng, S-L., Chen, Y-S., ocera, D. G. J. Am. Chem. Soc, 2015, 137, 6472 31

Halogene Exchange Experiment Me I + H (0.04 M) [Ir III (df-cf 3 -ppy) 2 (dtbpy)]pf 6 (2 mol%) i(cod) 2 (10 mol%) dtbbpy (15 mol%) K 3 P 4 (2 eq.) TBA (1 equiv.) 34W Blue LED, rt, 72 h Me Shieds, B. J., Doyle, A. G. J. Am. Chem. Soc. 2016, 138, 12722 32

Lamp Emission Data (Doyle s Work) Shieds, B. J., Doyle, A. G. J. Am. Chem. Soc. 2016, 138, 12722 33

Absorbance of [(tbbpy)i II (tol)] i II Shieds, B. J., Doyle, A. G. J. Am. Chem. Soc. 2016, 138, 12722 34

Stoichiometric xidation Using Ir III as an xidant i II [Ir III (df-cf 3 -ppy) 2 (dtbpy)]pf 6 (20 mol%) THF (12.5 mm) 34W Blue LED, rt, 3 h + 7% 33% Shieds, B. J., Doyle, A. G. J. Am. Chem. Soc. 2016, 138, 12722 35

Cyclic Voltammetry Data i II Shieds, B. J., Doyle, A. G. J. Am. Chem. Soc. 2016, 138, 12722 36

Calculated elevant Molecular rbitals Calculations were performed on Gaussian 09 D.01 software suite (37). For all calculations the B3LYP hybrid exchange-correlation functional was used. Gasphase geometry optimization and frequency calculations were carried out using a SDD basis set for i and and 6-31G* for all other atoms. ptimization and frequency calculations for thermochemistry were carried out using a SDD basis for i and and 6-311+ +G** for all other atoms with the SMD (THF) solvation model. All frequency calculations gave no imaginary frequencies. Time-dependent DFT (TD-DFT) calculations were carried out on the gas-phase optimized geometry using the TZVP basis set. Shieds, B. J., Doyle, A. G. J. Am. Chem. Soc. 2016, 138, 12722 37

DFT-Calculated Transitions Shieds, B. J., Doyle, A. G. J. Am. Chem. Soc. 2016, 138, 12722 38

ptimization of eaction Conditions Welin, E.., Le. C., ias,. D. M., McCusker, J. K., MacMillan, D. W. C. Science, 2017, 355, 380, 39

Emission Spectrum of Ir III Complexes Welin, E.., Le. C., ias,. D. M., McCusker, J. K., MacMillan, D. W. C. Science, 2017, 355, 380, 40

Cyclic Voltammetry Data Me Me Me i II F 3 C CF 3 Welin, E.., Le. C., ias,. D. M., McCusker, J. K., MacMillan, D. W. C. Science, 2017, 355, 380, 41

Quenching Experiments Ir III absorbance at 400 nm was used Me Me Me i II F 3 C CF3 (quencher) I 0 /I = 1 + k q t 0 [Q] Welin, E.., Le. C., ias,. D. M., McCusker, J. K., MacMillan, D. W. C. Science, 2017, 355, 380, 42

Quenching Experiments Ir III Me Me Me i II F 3 C CF3 (quencher) Figure S19. Time-esolved Stern-Volmer Experiment. Welin, E.., Le. C., ias,. D. M., McCusker, J. K., MacMillan, D. W. C. Science, 2017, 355, 380, 43

Excitation of Ir III (ppy) 3 MacMillan, D. W. C. ature ev. 2017, 52,1, 44

xidative and eductive Quenching Cycle of [u(bpy) 3 ] 2+ MacMillan, D. W. C. Chem. ev. 2013, 113, 5322. 45