Review questions CHAPTER 5. Practice exercises 5.1 F F 5.3

Similar documents
: Bond Order = 1.5 CHAPTER 5. Practice Questions

5 Polyatomic molecules

Chapter 8. Molecular Shapes. Valence Shell Electron Pair Repulsion Theory (VSEPR) What Determines the Shape of a Molecule?

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10

Molecular Geometry and Bonding Theories. Chapter 9

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model.

Chapter 9. Molecular Geometry and Bonding Theories

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

CHEM 110 Exam 2 - Practice Test 1 - Solutions

Covalent Compounds: Bonding Theories and Molecular Structure

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories

Chemistry 1210, Section 1 Third Hour Exam November 21, 2011

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

AP Chemistry- Practice Bonding Questions for Exam

Unit Six --- Ionic and Covalent Bonds

AP Chemistry. Unit #7. Chemical Bonding & Molecular Shape. Zumdahl Chapters 8 & 9 TYPES OF BONDING BONDING. Discrete molecules formed

Chapter 4. Molecular Structure and Orbitals

Experiment #2. Lewis Structures

Chapter 10: Molecular Structure and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2

Unit 6: Molecular Geometry

CHAPTER 5: Bonding Theories - Explaining Molecular Geometry. Chapter Outline

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Lecture Presentation. Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

Assignment 09 A. 2- The image below depicts a seesaw structure. Which of the following has such a structure?

Chapter 9. and Bonding Theories

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols

Ch. 9- Molecular Geometry and Bonding Theories

; (c) [Li] [: O :] [Li]. 5a. The electrostatic potential map that corresponds to IF is the one with the most red in it. ... C C H

B. (i), (iii), and (v) C. (iv) D. (i), (ii), (iii), and (v) E. (i), (iii), (iv), and (v) Answer: B. SO 3, and NO 3 - both have 24 VE and have Lewis

Fill in the chart below to determine the valence electrons of elements 3-10

8.1 Types of Chemical Bonds List and define three types of bonding. chapter 8 Bonding General Concepts.notebook. September 10, 2015

Molecular Geometry and Chemical Bonding Theory

Chemistry and the material world Lecture 3

Name Unit Three MC Practice March 15, 2017

CHAPTER 8 BONDING: GENERAL CONCEPTS Ionic solids are held together by strong electrostatic forces that are omnidirectional.

SHAPES OF MOLECULES (VSEPR MODEL)

Chapter 9. and Bonding Theories. Molecular Shapes. What Determines the Shape of a Molecule? 3/8/2013

Chapter 7 Chemical Bonding and Molecular Structure

General and Inorganic Chemistry I.


Chapters 9&10 Structure and Bonding Theories

Molecular shape is determined by the number of bonds that form around individual atoms.

What Do Molecules Look Like?

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond

Helpful Hints Lewis Structures Octet Rule For Lewis structures of covalent compounds least electronegative

SMK SULTAN ISMAIL JB, NUR FATHIN SUHANA BT AYOB

Organic Chemistry. Review Information for Unit 1. VSEPR Hybrid Orbitals Polar Molecules

Chapter 9 Molecular Geometry and Bonding Theories

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond

Molecular Structure. Valence Bond Theory Overlap of atomic orbitals is a covalent bond that joins atoms together to form a molecule

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

Valence Shell Electron Pair repulsion

Valence Bond Theory - Description

Ch 6 Chemical Bonding

Chapter One MULTIPLE CHOICE QUESTIONS. Topic: General Section: 1.1 Difficulty Level: Easy

Chapter 6. Preview. Objectives. Molecular Compounds

Chemical Bonding. Section 1 Introduction to Chemical Bonding. Section 2 Covalent Bonding and Molecular Compounds

CHEMISTRY - ZUMDAHL 2E CH.4 - MOLECULAR STRUCTURE AND ORBITALS.

REVIEW ANSWERS EXAM 3 GENERAL CHEMISTRY I Do not hesitate to contact the instructor should you have any questions.

Introduction to VSEPR Theory 1

Chemistry 121: Topic 4 - Chemical Bonding Topic 4: Chemical Bonding

Chapter 6. The Chemical Bond

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides

Chapter 10 Theories of Covalent Bonding

Molecular Geometry and Bonding Theories. Molecular Shapes. Molecular Shapes. Chapter 9 Part 2 November 16 th, 2004

Chapter 10. Geometry

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories

Chem 121 Exam 4 Practice Exam

Chapter 10. VSEPR Model: Geometries

Chapter 9: Chemical Bonding I: Lewis Theory. Lewis Theory: An Overview

Chapter 10. VSEPR Model: Geometries

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons?

Chapter 9. Molecular Geometry and Bonding Theories

1s atomic orbital 2s atomic orbital 2s atomic orbital (with node) 2px orbital 2py orbital 2pz orbital

Chapter 10: Chemical Bonding II. Bonding Theories

Covalent Bonding and Molecular Structures

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule.

Chapter 12. Chemical Bonding

Test Review # 4. Chemistry: Form TR4.11A

Ex. 1) F F bond in F = 0 < % covalent, no transfer of electrons

Section 12: Lewis Structures

CH 222 Sample Exam Exam I Name: Lab Section:

Chemical Bonding Chapter 8

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved.

OFB Chapter 3 Chemical Periodicity and the Formation of Simple Compounds

Chapter 16 Covalent Bonding

Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

Chapter 8 Covalent Boding

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules

Periodic Trends. Homework: Lewis Theory. Elements of his theory:

For more info visit Chemical bond is the attractive force which holds various constituents together in a molecule.

Chapter 10. Structure Determines Properties! Molecular Geometry. Chemical Bonding II

16. NO 3, 5 + 3(6) + 1 = 24 e. 22. HCN, = 10 valence electrons

Transcription:

CHAPTER 5 Practice exercises 5.1 S 5.3 5.5 Ethane is symmetrical, so does not have a dipole moment. However, ethanol has a polar H group at one end and so has a dipole moment. 5.7 xygen has the valence electron configuration 2s 2 2p 4, so it uses four sp 3 hybridised orbitals. Two of these overlap with 1s orbitals from the hydrogen atoms to form σ bonds and the other two sp 3 hybrid orbitals contain lone pairs. 5.9 H 2 has two electrons which occupy a bonding orbital, but H 2 has a third electron which must occupy an antibonding orbital, hence H 2 has the stronger bond. Review questions 5.1 (a) : 1s 2 2s 2 2p 4 ; its six n = 2 electrons are involved in bond formation. (b) P: 1s 2 2s 2 2p 6 3s 2 3p 3 ; its five n = 3 electrons are involved in bond formation. (c) B: 1s 2 2s 2 2p 1 ; its three n = 2 electrons are involved in bond formation. (d) Br: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 5 ; its seven n = 4 electrons are involved in bond formation. 5.3 (a) Al, group 13, 3 valence electrons (b) As, group 15, 5 valence electrons

(c), group 17, 7 valence electrons (d) Sn, group 14, 4 valence electrons 5.5 (a) N (3.0) attracts electrons more than C (2.5) (b) S (2.5) attracts electrons more than H (2.1) (c) I (2.5) attracts electrons more than Zn (1.6) (d) S (2.5) attracts electrons more than As (2.0) 5.7 The order of bond polarity is: PH 3 < H 2 S < NH 3 < H 2. 5.9 Ba, Be, and Bi, all metals, are found in ionic compounds as cations. Br is found in ionic compounds as an anion. B is not found as an atomic ion. 5.11 (a) 32 valence electrons (b) 90 valence electrons (c) 24 valence electrons (d) 32 valence electrons 5.13 5.15

5.17 5.19 5.21 (a) T-shaped (b) Seesaw-shaped (c) Trigonal planar (d) Square pyramid

5.23 (a) (b) (c) (d) Three sets of electron pairs around the central atom, giving trigonal planar electron group geometry. ne lone pair gives a bent shape, with ideal angle of 120. There are five sets of electron pairs around the central atom, giving trigonal bipyramidal shape and ideal angles of 90 and 120 A total of five sets of electron pairs, giving trigonal bipyramidal electron group geometry. ne lone pair gives a seesaw shape, with ideal angles of 90 and 120. There are six sets of electron pairs around the central atom giving octahedral electron group geometry. Two lone pairs result in a square planar shape, with ideal bond angles of 90. 5.25 The Lewis structure of C 2 shows no lone pairs on the C atom, thus there are only two sets of electron pairs around C resulting in a linear shape. The two C= bonds point opposite each other, so bond polarities cancel. The Lewis structure of S 2 below shows a lone pair on the S atom, resulting in a bent molecule whose polar bonds do not cancel each other. C S 5.27 The order of increasing bond strength is: Bond C C < H N < C=C < C= < N N Energy (kj mol 1 ) 345 390 615 750 945 Strong bonding and bond polarity of the n = 1 orbital makes H N > C C, multiple bonding makes C=C > H N, bond polarity makes C= > C=C, and multiple bonding makes N N > C=. 5.29 Hydrogen always uses its 1s orbital to form bonds. Chlorine, the halogen in the third row, has seven electrons in its n = 3 valence orbitals. Just as in 2, chlorine uses the 3p orbital pointing along the bond axis, which overlaps with the 1s orbital of the hydrogen atom:

5.31 (a) This atom must have four sets of electron pairs, requiring sp 3 hybridisation. (b) our sets of electron pairs, requiring sp 3 hybridisation. (c) Three sets of electron pairs, requiring sp 3 hybridisation. 5.33 (a) our sets of electron pairs around N, sp 3 hybrids. H H C N H H C H H H (b) Three sets of electron pairs around S, sp 2 hybrids. S (c) SN = 2, sp hybrids. S C S 5.35 A description of bonding begins with the Lewis structure of the molecule, from which steric numbers of inner atoms translate into hybridisation. uter atoms use atomic orbitals for bond formation. The N atoms in hydrazine have SN = 4, use sp 3 hybrids and have tetrahedral geometry: 4 sp 3 (N) 1s (H) σ bonds, 1 sp 3 (N) sp 3 (N) σ bond, 2 lone pairs in sp 3 hybrids. The Lewis structure of hydrazine (showing the approximate geometry) and orbital overlap diagrams are: 5.37 The steric number of each carbon atom is determined from the line structures of the compounds. These are shown on the line structures below:

C atoms designated 4 have only single bonds and thus four sets of electron pairs, sp 3 hybridisation and tetrahedral geometry. Those with double bonds, designated 3, have three sets of electron pairs, sp 2 hybridisation and trigonal planar geometry. Two C atoms, designated 2, have two double bonds, sp hybridisation and linear geometry. The σ bonds are described by overlap of hybrid orbitals, with each C H bond described as a hybrid overlapping with a hydrogen 1s orbital. The π bonds are described by side-by-side overlap of 2p orbitals. In pent-1-yne, the two C atoms designated 2 have three bonds: a σ bond formed from sp hybrids and two π bonds, at right angles to each other, as in acetylene. The orbital overlap diagrams for acetylene are: 5.39 rom weakest to strongest bond, the order is H 2 2 < H 2 < H 2. 5.41 5.43 (a) The molecular geometry is tetrahedral. Si

(b) The molecular geometry is seesaw. Se (c) The molecular geometry is T-shaped. 5.45 There are two isomers: 5.47 Both ions have the same number of valence electrons, 5 + 4 + 6 + 1 = 16. Two pairs are required to complete the bonding framework and the remaining six pairs are placed on the two outer atoms: Shift electron pairs to make two additional bonds to the central atom, completing its octet. The cyanate ion has two near-equivalent structures, each of which has one atom with formal charge 1: The isocyanate ion also has two near-equivalent structures, but the formal charge on the nitrogen atom cannot be reduced to zero: 5.49 Consult table 5.3 for the correspondence between molecular shapes and lone pairs.

(a) (b) (c) This is the trigonal pyramid, derived from the tetrahedron when there is one lone pair. The ideal bond angles are 109.5 and an example is NH 3. This is the trigonal planar shape associated with SN = 3 and no lone pairs. The ideal bond angles are 120 and an example is the nitrate anion, N 3. This is the T-shape, the shape associated with with five sets of electrons pairs around the central atom and two lone pairs. The ideal bond angles are 90 and 120 and an example is Br 3. 5.51 VSEPR theory predicts tetrahedral bond angles (109.5 ) for both these molecules. A bond angle of 104.5 is smaller than this, because of the larger repulsion of lone pairs. An angle of 92.2 indicates that the bonding is described using p orbitals rather than spacing the electron pairs as far apart as possible. Space-filling models of the two molecules show that the smaller oxygen atom cannot accommodate two H atoms at right angles, but the larger S atom can. 5.53 Describe bonding and geometry starting with a Lewis structure and a count of bonds and non-bonding pairs around inner atoms. The provisional structure of each compound has a positive formal charge on the row 3 sulfur atom, which is reduced to zero by making double bonds to each oxygen atom: The sulfur atom in each compound has three sets of electron pairs around the central atom, so sp 2 hybrids overlapping with oxygen 2p orbitals describe the σ bonds: two in S 2 and three in S 3. S 2 is bent, like 3 and S 3 is trigonal planar, like N 3. The Lewis structures indicate the presence of two π bonds in S 2 and three π bonds in S 3. All the π orbitals extend over the entire molecule. Because sulfur is a third-row element, its 3d orbitals contribute to the extended π bonding orbitals, which form from side-byside overlap of oxygen 2p orbitals with sulfur 3p and 3d orbitals. 5.55 (a) diamagnetic (b) paramagnetic 5.57 Determine the Lewis structures using the standard procedure. Both molecules have

2(5) + 6 = 16 valence electrons. Two pairs are required for the bonding framework and each outer atom has three pairs: Because these molecules contain only row two atoms, the octets must be completed by shifting two electron pairs to make double bonds: Molecules have dipole moments only if they are unsymmetric. A linear N N structure does not have a dipole moment, because the N dipole exactly cancels the N dipole. Thus N 2 must have the structure N N to have a dipole moment. 5.59 The Lewis structures of molecules with formula X 3 show octets around the inner atom and C X = 0, making them stable. Compounds with formula X 5 also have C X = 0 but have five electron pairs associated with the inner atom. This is possible for phosphorus, a third row element that has d orbitals available for bonding. It is not possible for nitrogen, a second row element that lacks valence d orbitals: 5.61 To generate the configuration of an excited state, move an electron from an occupied orbital to an unoccupied orbital. The most stable excited state results from moving an electron from the least stable occupied orbital to the most stable unoccupied orbital. The excited state has one more antibonding electron and one less bonding electron than the ground state, so the excited state has a weaker N N bond than the ground state.

5.63 A description of bonding and geometry starts with determination of the Lewis structure. 2 has 7 + 2(6) = 19 valence electrons. The bond framework requires two pairs, six additional electrons are placed on each atom, leaving three lone electrons on the atom. C = 7 2 3 = +2, so shift two pairs to make double bonds: The atom has four sets of electron pairs (remember that a lone electron requires an orbital, just as an electron pair does), so its geometry is tetrahedral, the σ bonds can be described using sp 3 hybrids from and the molecule has a bond angle near 109 o. There is an extended π system formed from d orbitals on overlapping side-by-side with 2p orbitals from the two atoms. This molecule is considered unusual because it has an odd number of electrons. 5.65 Visualise what happens when protons add to oxalate anions using Lewis structures: All the C bonds in the oxalate anion, with extended π orbitals, have equal lengths and strengths, with a C bond order of 1.5. Adding two protons removes two oxygen atoms from the extended π system and converts the C bonds into single bonds. The other two C bonds become double bonds. Thus, the C H bonds in oxalic acid are longer than the C bonds in oxalate anions, whereas the C= bonds in oxalic acid are shorter.