Consider serial transmission. In Proakis notation, we receive

Similar documents
ELG3150 Assignment 3

ECEN620: Network Theory Broadband Circuit Design Fall 2014

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

Note: Torque is prop. to current Stationary voltage is prop. to speed

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

ELEC 372 LECTURE NOTES, WEEK 4 Dr. Amir G. Aghdam Concordia University

Discrete Fourier Transform (DFT)

Frequency Measurement in Noise

Chapter Taylor Theorem Revisited

IV Design of Discrete Time Control System by Conventional Methods

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

ECEN620: Network Theory Broadband Circuit Design Fall 2014

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

EEO 401 Digital Signal Processing Prof. Mark Fowler

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

WEEK 3 Effective Stress and Pore Water Pressure Changes

SER/BER in a Fading Channel

(1) Then we could wave our hands over this and it would become:

2. SIMPLE SOIL PROPETIES

CDS 101: Lecture 5.1 Reachability and State Space Feedback

Pipe flow friction, small vs. big pipes

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

Chapter 10 Time-Domain Analysis and Design of Control Systems

Washington State University

Calculus II (MAC )

First derivative analysis

EECE 301 Signals & Systems Prof. Mark Fowler

Supplementary Materials

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

Last time: Ground rules for filtering and control system design

Ordinary Differential Equations

EECE 301 Signals & Systems Prof. Mark Fowler

CDS 101: Lecture 5.1 Reachability and State Space Feedback

Engineering Differential Equations Practice Final Exam Solutions Fall 2011

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Session : Plasmas in Equilibrium

Chapter 13 GMM for Linear Factor Models in Discount Factor form. GMM on the pricing errors gives a crosssectional

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

are given in the table below. t (hours)

Answer Homework 5 PHA5127 Fall 1999 Jeff Stark

LESSON 10: THE LAPLACE TRANSFORM

Note 6 Frequency Response

Introduction to Control Systems

Strongly Connected Components

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables.

Sundials and Linear Algebra

Lectur 22. RF and Microwave Circuit Design Γ-Plane and Smith Chart Analysis. ECE 303 Fall 2005 Farhan Rana Cornell University

ECE 2210 / 00 Phasor Examples

Exercises for lectures 7 Steady state, tracking and disturbance rejection

Exercise 1. Sketch the graph of the following function. (x 2

Last time: Completed solution to the optimum linear filter in real-time operation

Technical Support Document Bias of the Minimum Statistic

APPENDIX: STATISTICAL TOOLS

Numerical Method: Finite difference scheme

THE IMPACT OF A PRIORI INFORMATION ON THE MAP EQUALIZER PERFORMANCE WITH M-PSK MODULATION

1985 AP Calculus BC: Section I

EEO 401 Digital Signal Processing Prof. Mark Fowler


Calculation of electromotive force induced by the slot harmonics and parameters of the linear generator

Asymptotic Behaviors for Critical Branching Processes with Immigration

Quasi-Classical States of the Simple Harmonic Oscillator

A Propagating Wave Packet Group Velocity Dispersion

Sec 2.3 Modeling with First Order Equations

ANOVA- Analyisis of Variance

Exercises for lectures 23 Discrete systems

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values

Section 11.6: Directional Derivatives and the Gradient Vector

INTRODUCTION TO SAMPLING DISTRIBUTIONS

UNIT 2: MATHEMATICAL ENVIRONMENT

Source code. where each α ij is a terminal or nonterminal symbol. We say that. α 1 α m 1 Bα m+1 α n α 1 α m 1 β 1 β p α m+1 α n

Lecture 4: Parsing. Administrivia

Chapter4 Time Domain Analysis of Control System

Estimating the Variance in a Simulation Study of Balanced Two Stage Predictors of Realized Random Cluster Means Ed Stanek

ANALYSIS IN THE FREQUENCY DOMAIN

Chapter 10. The singular integral Introducing S(n) and J(n)

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

DPSK signal carrier synchronization module implemented on the FPGA

3.4 Properties of the Stress Tensor

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 14 Group Theory For Crystals

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b)

The Matrix Exponential

Lecture Outline. Skin Depth Power Flow 8/7/2018. EE 4347 Applied Electromagnetics. Topic 3e

High-Speed Serial Interface Circuits and Systems. Lect. 4 Phase-Locked Loop (PLL) Type 1 (Chap. 8 in Razavi)

ENGG 1203 Tutorial. Difference Equations. Find the Pole(s) Finding Equations and Poles

Abstract Interpretation: concrete and abstract semantics

15/03/1439. Lectures on Signals & systems Engineering

3 2x. 3x 2. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

page 11 equation (1.2-10c), break the bar over the right side in the middle

Solution of Assignment #2

The Matrix Exponential

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Answer: 1(A); 2(C); 3(A); 4(D); 5(B); 6(A); 7(C); 8(C); 9(A); 10(A); 11(A); 12(C); 13(C)

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

The Stokes Theorem. (Sect. 16.7) The curl of a vector field in space

3 Error Equations for Blind Equalization Schemes

Math 34A. Final Review

Slide 1. Slide 2. Slide 3 DIGITAL SIGNAL PROCESSING CLASSIFICATION OF SIGNALS

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

(Reference: sections in Silberberg 5 th ed.)

Transcription:

5..3 Dciio-Dirctd Pha Trackig [P 6..4] 5.-1 Trackr commoly work o radom data igal (plu oi), o th kow-igal modl do ot apply. W till kow much about th tructur o th igal, though, ad w ca xploit it. Coidr rial tramiio. I Proaki otatio, w rciv j φ rt () = I gt ( T) + zt () t ( ; φ, I) ( z() t i whit oi) o th log-liklihood to b maximizd i (p. 5.1-4) ovr a obrvatio tim o K ymbol i jφ ΛL( φ ) = R r() t () t dt K jφ = R I r( t) g ( t T) dt = 0 MF output y K jφ = R Iy = 0 ad th max i achivd at 1 K φ ML = arg yi. = 0 5.-1

5.-13 I a trackr, w uually work with th gradit o th log-liklihood, ad approach th optimum i vral tp, adjutig th pha i th dirctio o dcraig pha rror (icraig log-liklihood). A poitiv drivativ impli φ =φ φ> 0 drivativ impli φ =φ φ< 0, o rduc proportioal to pha rror φ ar th optimum., o icra φ. Ngativ φ. Th drivativ i approx. o Th gradit ca b xprd a th um o pr-ymbol cotributio K K dλl( φ) jφ jφ = Im y Im I yi = dφ = 0 = 0 v λ ( ) L o W ca mak a corrctio atr vry ymbol uig it trm i th um a a oiy gradit timat: λ ( ) K φ ( ) + oi. Not φ ( ) ad L p φ ( ) ow dpd o ymbol tim. 5.-13

5.-14 o Thi i till a data-aidd (DA) trackr, ic I i aumd kow. To track pha through data gmt, u dciio itad, or a dciio-dirctd (DD) trackr. jφ ( ) Im ( ) Im λ L = y I = v I o Ratioal or DD: th data i a uiac param i pha timatio ( jφ ΛL φ, I) = R yi ad w ca dal with it by joit timatio jφ φ JE = arg max max R y I φ, which u dciio. I Hr i th DSP-bad DD pha trackr. Not icomig igal i aumd to hav a tatic pha φ, ad DVCO output pha φ ( ) tri to match it. Pha rror i φ ( ) =φ φ ( ). W orm a oiy drivativ timat. 5.-14

How do th opratio o Rotatd MF output i vi crat a pha rror timat? ( φ φ ( ) ) jφ ( ) j jφ ( ) = = + ( ) v y I z 5.-15 jφ ( ) = I + z ( ) o A a pictur: So jφ ( ) ( ) = + vi II z I jφ ( ) = E + ζ ( ) + glitch rom dciio rror ζ σ = NE 0 o Ad ( ) ( ) Im jφ = i φ( ) φ( ). Or u arg vi. 5.-15

Hr th ovrall tructur or BPSK. o Form λ = v I = [ v ] ( ) Im Im I (ic I i ral), ad u th L dciio I g R[ v ] = 5.-16 Thi i th trackr rom p. 5.-14, rdraw or BPSK. It ca track lowly varyig tru pha φ. Not th 180 ambiguity du to dciio dirctio: o I φ uddly jumpd by 180, it would b quivalt to t () t (). o Th j + ad I I v I φ z, o which lav th igal part o λ ( ) uchagd. L So 180 dirc ar iviibl. Th trackr ca covrg to a olid timat, but with all th dciio ivrtd. Now look at Dciio Dirctd Trackr or BPSK, i dmo. 5.-16

Th drivativ ad pha rror timat ( ) Im λ L = v I Kpφ ( ) + oi work or othr modulatio, too. jφ ( ) ( ) ( ) Im ( ) λ L = I + z I, ad i o dciio rror, 5.-17 ( ) = E i φ ( ) + ζ ( ) th imagiary part o th oi. i ζi σ = E N 0 o Hr i it or QPSK For QPSK or 4PSK it ha a our-old pha ambiguity (multipl o 90 ). For 8PSK, it ight-old ambiguity. o For 16 QAM, it baically our-old, but thr ar om wakr lock poit, too. S Bigham book o modm dig. Dirt poit hav dirt amplitud, which act th rror timat. 5.-17

How wll do th trackr work? What i th tady tat pha rror variac? How quickly do it pull i? Rpod to chag? Blow, a covtioal liarizd aalyi, or mall φ ( ). o Start by rdrawig th loop, abtractd to pha, itad o complx. 5.-18 o Two o vral choic or PED rom p. 5.-14: U Im vi jφ ( ) Im ( λ ) L = y So K p E I E φ ( ) +ζ ( ) i = ad ξ=ζ i EN ad σ ξ =σ ζ = i 0 U arg vi jφ( ) jφ( ) yi arg yi = arg E So K p = 1 ad ξ =ζ i E ad σ ζ N i 0 1 ξ E E σ = = = γ =φ ( ) +ζi( ) E 5.-18

o Choic o loop iltr... For 1 t ordr loop: H ( z) = K Aalyz thi o. For d ordr loop: H ( z) = K + K z 1 1 z 5.-19 o Firt, th igal compot. Trar uctio rlatig iput pha φ to pha rror φ ( ) i H Φ( z) 1 1 z ( z) = = = Φ( z) K K z 1 ( 1 K K ) z 1+ 1 z p p DC gai chag. H (1) i zro. Good tady tat rror i zro i φ do t Impul rpo 1 KpK h( ) = ( ) ( 1 KpK ), 0 1 K K δ 1 K K p p ha tim cotat ( ) c (i ymbol tim). Calculat it: c 1 1 KpK = o c = l 1 K K ( KpK ) p 5.-19

5.-0 o Nxt, th oi compot. Trar uctio rlatig PED oi ξ ( ) to pha rror φ ( ) i H z K z p ( p ) K z Φ( z) ( z) = = 1 = Ξ( z) K K z 1 1 K K z 1+ 1 z ad th corrpodig uit pul rpo i ( ) K ( ( ) ( 1 ) ) h = δ KpK 1, K 0 Th rultig pha rror atr may tim cotat i φ ( ) = h ( k) ξ( k) k = 0 o th gric tady-tat pha jittr variac i φ () ξ h i ξ k= 0 K p p σ =σ =σ K ( K K ) 5.-0

o Now coidr th PED that u arg vi. With K p = 1 ad 1 ξ σ = γ, w hav: 5.-1 * tim cotat (i ymbol tim) c = 1 K * pha rror variac W that K K σ = 4γ 1 φ γ ( K ) (mall K ). K cotrol variac dirctly ad tim cotat ivrly. Icraig γ dcra jittr variac ivrly. o Nxt, coidr th PED that u Im vi. It ha K p = E ad ξ σ = EN. Thror: 0 * tim cotat c 1 = - i igal gt trogr, loop pd up! E K * pha rror variac EN K 0 NK 0 σ φ = E 4 ( E K ) Now tidy it. W d EK to b dimiol i th ubtractio, o mak K = Kl E, whr th loop gai K l i dimiol. Th = 1 c K ad l φ 14 σ = γ. Similar to th othr PED, but it a uiac havig to adjut K i rpo to igal trgth. 5.-1