Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Review. Semester Recap. Nature of Light. Wavelength. Red/Blue Light 4/30/18

Similar documents
AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation!

Beyond the Solar System 2006 Oct 17 Page 1 of 5

Types of Stars 1/31/14 O B A F G K M. 8-6 Luminosity. 8-7 Stellar Temperatures

Properties of Stars. Characteristics of Stars

The Stars. Chapter 14

Name Date Period. 10. convection zone 11. radiation zone 12. core

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D.

HNRS 227 Lecture 18 October 2007 Chapter 12. Stars, Galaxies and the Universe presented by Dr. Geller

8/30/2010. Classifying Stars. Classifying Stars. Classifying Stars

Prentice Hall EARTH SCIENCE

Earth Science, 13e Tarbuck & Lutgens

Astronomy 104: Second Exam

Stars and Galaxies. Content Outline for Teaching

Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012

Beyond Our Solar System Chapter 24

LIFE CYCLE OF A STAR

Stars and their properties: (Chapters 11 and 12)

Stellar Astronomy Sample Questions for Exam 4

ASTRONOMY II Spring 1995 FINAL EXAM. Monday May 8th 2:00pm

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14

Chapter Introduction Lesson 1 The View from Earth Lesson 2 The Sun and Other Stars Lesson 3 Evolution of Stars Lesson 4 Galaxies and the Universe

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Distances & the Milky Way. The Curtis View. Our Galaxy. The Shapley View 3/27/18

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D.

What is a star? A body of gases that gives off tremendous amounts of energy in the form of light & heat. What star is closest to the earth?

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

ASTRONOMY 1 EXAM 3 a Name

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A

The Universe. But first, let s talk about light! 2012 Pearson Education, Inc.

Coriolis Effect - the apparent curved paths of projectiles, winds, and ocean currents

Universe Now. 12. Revision and highlights

Review Questions for the new topics that will be on the Final Exam

BROCK UNIVERSITY. Test 2, March 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 420 Date of Examination: March 5, 2015

Notes for Wednesday, July 16; Sample questions start on page 2 7/16/2008

Test Natural Sciences 102 Section 8 noon --- VERSION A February 28, 2007

Chapter 13 Notes The Deaths of Stars Astronomy Name: Date:

(Astronomy for Dummies) remark : apparently I spent more than 1 hr giving this lecture

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Island Universes. Up to 1920 s, many thought that Milky Way encompassed entire universe.

Astronomy Stars, Galaxies and Cosmology Exam 3. Please PRINT full name

CHAPTER 29: STARS BELL RINGER:

ASTR 101 General Astronomy: Stars & Galaxies

UNIT 3: Astronomy Chapter 26: Stars and Galaxies (pages )

Summer 2013 Astronomy - Test 3 Test form A. Name

chapter 31 Stars and Galaxies

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10

Chapter 19: Our Galaxy

The Formation of Stars

Stellar Astronomy Sample Questions for Exam 3

The physics of stars. A star begins simply as a roughly spherical ball of (mostly) hydrogen gas, responding only to gravity and it s own pressure.

NSCI 314 LIFE IN THE COSMOS

Explain how the sun converts matter into energy in its core. Describe the three layers of the sun s atmosphere.

25.2 Stellar Evolution. By studying stars of different ages, astronomers have been able to piece together the evolution of a star.

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9

Astronomy 1504 Section 002 Astronomy 1514 Section 10 Midterm 2, Version 1 October 19, 2012

Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE

Key concepts for material since Nov 10, 2011 ASTR 100 exam

LIFE CYCLE OF A STAR

Stars and Galaxies 1

Physics Homework Set 2 Sp 2015

ASTR Midterm 1 Phil Armitage, Bruce Ferguson

Universe Celestial Object Galaxy Solar System

Mar 22, INSTRUCTIONS: First ll in your name and social security number (both by printing

Recall what you know about the Big Bang.

Light. Transverse electromagnetic wave, or electromagnetic radiation. Includes radio waves, microwaves, infra-red, visible, UV, X-rays, and gamma rays

Star Death ( ) High Mass Star. Red Supergiant. Supernova + Remnant. Neutron Star

The Electromagnetic Spectrum

5) What spectral type of star that is still around formed longest ago? 5) A) F B) A C) M D) K E) O

Stellar Evolution Notes

Physics HW Set 3 Spring 2015

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy

Prentice Hall EARTH SCIENCE

Stars & Galaxies. Chapter 27, Section 1. Composition & Temperature. Chapter 27 Modern Earth Science Characteristics of Stars

Study Guide Chapter 2

Stars & Galaxies. Chapter 27 Modern Earth Science

L = 4 d 2 B p. 4. Which of the letters at right corresponds roughly to where one would find a red giant star on the Hertzsprung-Russell diagram?

L = 4 d 2 B p. 1. Which outer layer of the Sun has the highest temperature? A) Photosphere B) Corona C) Chromosphere D) Exosphere E) Thermosphere

Chapter 28 Stars and Their Characteristics

2) On a Hertzsprung-Russell diagram, where would you find red giant stars? A) upper right B) lower right C) upper left D) lower left

10/26/ Star Birth. Chapter 13: Star Stuff. How do stars form? Star-Forming Clouds. Mass of a Star-Forming Cloud. Gravity Versus Pressure

Stellar Explosions (ch. 21)

Galaxies and Stars. 3. Base your answer to the following question on The reaction below represents an energy-producing process.

ASTR Final Examination Phil Armitage, Bruce Ferguson

AST1002 Spring 2018 Final Exam Review Questions

Stars with Mⵙ go through two Red Giant Stages

Chapter 33 The History of a Star. Introduction. Radio telescopes allow us to look into the center of the galaxy. The milky way

Astronomy 102: Stars and Galaxies Spring 2003 Final Exam Review Topics

Galaxies and the expansion of the Universe

High Mass Stars and then Stellar Graveyard 7/16/09. Astronomy 101

A Star Becomes a Star

Directed Reading A. Section: The Life Cycle of Stars TYPES OF STARS THE LIFE CYCLE OF SUNLIKE STARS A TOOL FOR STUDYING STARS.

CHAPTER 28 STARS AND GALAXIES

Stars. The composition of the star It s temperature It s lifespan

Our goals for learning: 2014 Pearson Education, Inc. We see our galaxy edge-on. Primary features: disk, bulge, halo, globular clusters All-Sky View

Astronomy 10 Test #2 Practice Version

Astronomy 113. Dr. Joseph E. Pesce, Ph.D Joseph E. Pesce, Ph.D.

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. The Big Bang & Matter. Olber s Paradox. Cosmology. Olber s Paradox. Assumptions 4/20/18

Exam 3 Astronomy 100, Section 3. Some Equations You Might Need

Brock University. Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017

The Universal Context of Life

Transcription:

https://www.theverge.com/2018/ 3/10/17104188/melodysheeptime-lapse-universe-earthformation-watch Astronomy 113 Dr. Joseph E. Pesce, Ph.D. Review Semester Recap ³Light and Radiation ³The Sun ³Measuring Stars ³Gas Clouds ³Star Formation and Evolution ³End States of Stars ³Our Galaxy and other Galaxies ³Cosmology ³Life 20-2 ³Wave? Particle (photon)? ³Electromagnetic waves 20-3 Nature of Light ³Waves cycle in space 20-4 Wavelength 20-5 Red/Blue Light ³Red light has longer wavelength than blue ³Red light has a lower energy than blue ²Remember: Longer wavelengths = lower energy ³Wavelength: distance between crests or troughs 1

³Radio ³Infrared ³Visible ³Ultraviolet ³Xrays ³Gamma-rays 20-6 The Electro-magnetic Spectrum Intensity 20-7 Blackbody Emission Wien s law Wavelength Stefan s law 20-8 Spectral Features 20-9 Bohr Atom Doppler Effect 20-10 Transport of energy Radiative (= photons) + Convection Interior of Sun Random walk : g-ray to visible (Infrared) 20-11 1 million yrs 2

In the sun: (600million tons of Hydrogen/sec = 170,000 yrs to consume mass of earth; in 10 billion years. 4 protons: (Hydrogen) + 2 electrons Fusion n p + p + p + p + p + e - e - + n p + 1 helium nucleus More mass before than after - mass conserved, so extra becomes energy (E=mc 2 ) in the form of a photon, the g-ray. 20-12 g-ray & neutrino ³Core/Interior ³Photosphere ³Chromosphere ³Corona Solar Structure 20-13 20-14 20-15 ³Sunspots ³Flares ³Prominences ³Solar wind Activity on the Sun ³Parallax Distances to Stars 20-16 20-17 Stellar Brightness ³Depends on distance and luminosity ²Inverse square law of light Magnitudes ³Apparent magnitude (m) ² Measured on Earth ³ Absolute magnitude (M) ² Apparent magnitude of a star if it were at 10pc from Earth ² Measure of absolute brightness or luminosity 3

Color Index 20-18 ³Hot stars emit more blue light than cool stars ³Color Index is ratio of blue/red ³Color Index is related to surface temperature Spectral Types O B A F G K M ³Hot to cool ³Bright to faint ³Classified by spectra 20-19 H-R Diagram 20-20 Interstellar Medium 20-21 ³Gas and dust between stars ³Reddens, polarizes, and blocks (extincts) light ³Emission nebula and HII regions ³HI gas ³Hot, warm, cold phases ³Giant Molecular Clouds 2007-2014 Joseph E. Pesce, Ph.D. Hydrostatic Equilibrium ³ Hydrostatic Equilibrium ² Balance of force of gravity, which tries to squeeze Sun, and radiative pressure from fusion, which tries to blow apart Sun 20-22 Star Formation 20-23 4

Low-mass Star Evolution 20-24 20-25 The Evolution of a Low-Mass Star ³Post Main Sequence ³Core depletion of hydrogen ³Hydrogen shell burning ³Helium flash and helium core ³Helium depletion ³Helium shell ³Helium shell flashes ³Planetary nebula ³White dwarf High Mass Stars ³5-50 times the mass of the sun 20-26 ²Last about 1 million years (very short!) ²Create elements through iron (fusion) ² Onion skin ²Expand into Red Supergiant ²Explode as a supernova ²Leave behind neutron stars or black holes Onion-skin nature of High Mass Stars Outer Atmosphere - Hydrogen Core - Fe Si Ag Ar Ne C He Not to scale 2007-2014 Joseph E. Pesce, Ph.D. ³Type II Supernova 20-28 ²Iron core cannot burn ²Mass exceeds Chandrasekhar limit ²Core collapses ²Core bounces ²Star destroyed ³ Type I ²White dwarf exceeds Chandrasekhar limit and explodes ³Nova Nova vs. Supernova ²Explosion on surface of white dwarf ²Luminosity = 10,000 x sun ²White dwarf survives explosion ³Supernova 20-29 ²Star destroyed ²Luminosity = 100 billions x sun ²Neutron star or blackhole remains + remnant 5

Pulsars 20-30 Our Galaxy 20-31 ³Magnetized, rotating neutron star Halo Bulge Halo Disk Nucleus Rotation Curves 20-32 Dark Matter 20-33 ³Matter detected through its gravity ²Has no detectable electromagnetic emission ³Over 90% of the mass of the Galaxy is composed of this dark matter ³Plots of orbital velocity versus distance from nucleus ³Gives measure of mass WITHIN each orbit ³Found everywhere we can measure it s gravitational influence. Universe is full of it The Hubble Sequence (1920s) Types of Galaxies 20-34 Stellar Populations in Galaxies ³Elliptical galaxies ²Population II stars ²Old, red ²Very low metal abundance ³Spiral galaxies ²Population I stars in spiral arms, Pop II in bulge & halo ²Young, blue stars ²Ongoing star formation in arms 20-35 6

Hubble s Law v r = H o * D 20-36 20-37 Cepheid Period-Luminosity Relationship ³H o = Hubble Constant =? ²Need to measure z (easy) and D (hard) ²HST Key Project (observe Cepheids to 200Mly) ³More distant galaxies moving away faster ³Why? ³Universe is expanding (from an explosion ) Standard Candles ³Objects with known intrinsic luminosity ³Luminosity if the same wherever object is ³Luminosity is known fairly accurately ³Comparing absolute and apparent magnitudes gives distance ³Types ²Cepheids ²Supernovae (Type I) ²Red Giants ²Others 20-38 Active Galaxies ³The centers of some galaxies are producing HUGE amounts of energy ²About 5% of galaxies ³These are ACTIVE GALAXIES, or ACTIVE GALACTIC NUCLEI (AGN) ³Non-thermal radiation 20-39 ³Radio Galaxies ³Quasars ³BL Lacerta Objects ³Seyfert Galaxies 20-405 Types of AGN 20-41 What Powers an AGN? 7

The Cosmological Principle ³The universe is isotropic and homogenous ³We are not in a special location 20-42 Implications of Hubble s Law ³Hubble s law must obey the Cosmological Principle ³Everything is expanding, everywhere ³If we go backwards in time, the universe must be getting ever smaller, denser, and hotter ²BIG BANG 20-43 Cosmic Microwave Background Radiation ³Predicted by Big Bang Theory ³Fossil from early days of universe ³First observed by Penzias and Wilson, confirmed multiple times ³Excellent agreement between theory and observation 20-44 20-45 Dark Matter & Fate of Universe ³Dark matter is important because it adds to mass of universe ³Mass of universe dictates how universe will end 1. Expand forever, at ever decreasing rate (open, unbound) 2. Expand forever at same speed (open, unbound) 3. Expansion stops eventually and universe collapses on itself (closed, bound) ³We appear to be in #1 state Dark Energy ³But this doesn t seem to matter much, because mass/energy dominated by dark energy ²Most mass is dark matter ²Most energy/mass is dark energy ³Causing expansion to accelerate 20-46 The Universe 20-47 ³Started in Big Bang, with Inflation ³Matter dominated universe filled with Dark Energy ³Matter froze out when Universe was 0.0001s old ³All Hydrogen and some Helium (and a smattering of Li, Be, & B) formed in shortly after the Big Bang 8

³Found everywhere in space ³Certainly fell on early Earth ³Life everywhere? Organic Molecules 20-48 Solar System 20-49 ³Earth is in habitable zone: ideal temperature and pressure for liquid water ³What about elsewhere? ²Mars had water in past under surface now ²Europa may have liquid water under surface ice Extrasolar Planets ³Everywhere we look (all types of stars) ³Every type of planet ²Gas giants ²Rocky earths 20-50 Extraterrestrial Life 20-51 ³ Lower forms (e.g., amoeba, bacteria, etc) ²Almost certainly ³Intelligent life (e.g., humans) ²Unknown, but maybe less likely ³Almost certainly no aliens visiting us now! Thank You! 9