Supporting Information for. an Equatorial Diadduct: Evidence for an Electrophilic Carbanion

Similar documents
Co(I)-Mediated Removal of Addends on the C60 Cage and Formation of Monovalent Cobalt Complex CpCo(CO)(η 2 -C60)

Supporting Information. Corporation, 1-1 Kurosakishiroishi, Yahatanishi-ku, Kitakyushu , Japan

Supporting Information

Supplementary Material (ESI) for CrystEngComm. An ideal metal-organic rhombic dodecahedron for highly efficient

A Sumanene-based Aryne, Sumanyne

Synthesis of two novel indolo[3,2-b]carbazole derivatives with aggregation-enhanced emission property

2,5-bis(4-alkoxycarbonylphenyl)-1,4-diaryl-1,4-dihydropyrrolo[3,2- b]pyrrole (AAPP) AIEgens: tunable RIR and TICT characteristics

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Supporting Information. DBU-Mediated Metal-Free Oxidative Cyanation of α-amino. Carbonyl Compounds: Using Molecular Oxygen as the Oxidant

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure

Hai-Bin Yang, Xing Fan, Yin Wei,* Min Shi*

Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane

Supporting Information

Supplementary Information

1G (bottom) with the phase-transition temperatures in C and associated enthalpy changes (in

Supporting Information

Hydrogen Bonded Dimer Stacking Induced Emission of Amino-Benzoic Acid Compounds

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe

Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts

Supplementary Information. Two Cyclotriveratrylene Metal-Organic Frameworks as Effective Catalysts

Electronic Supplementary Material

Super-Resolution Monitoring of Mitochondrial Dynamics upon. Time-Gated Photo-Triggered Release of Nitric Oxide

Supporting Information

Transformations: New Approach to Sampagine derivatives. and Polycyclic Aromatic Amides

Supporting Information for

Supplementary Figure 1. Structures of substrates tested with 1. Only one enantiomer is shown.

A dual-model and on off fluorescent Al 3+ /Cu 2+ - chemosensor and the detection of F /Al 3+ with in situ prepared Al 3+ /Cu 2+ complex

Catalytic hydrogenation of liquid alkenes with a silica grafted hydride. pincer iridium(iii) complex: Support for a heterogeneous mechanism

Rational design of light-directed dynamic spheres

Supporting Information

Electronic Supplementary Information

A TPE-oxazoline molecular switch with tunable multi-emission in. both solution and solid state

The precursor (TBA) 3 [H 3 V 10 O 28 ] was synthesised according to the literature procedure. 1 (TBA = n tetrabutylammonium).

Reversible dioxygen binding on asymmetric dinuclear rhodium centres

SUPPORTING INFORMATION

A water-stable zwitterionic dysprosium carboxylate metal organic. framework: a sensing platform for Ebolavirus RNA sequences

Supporting Information

Reduction-free synthesis of stable acetylide cobalamins. Table of Contents. General information. Preparation of compound 1

Block: Synthesis, Aggregation-Induced Emission, Two-Photon. Absorption, Light Refraction, and Explosive Detection

Supporting Information

Light-Controlled Switching of a Non- Photoresponsive Molecular Shuttle

Supporting Information for the Article Entitled

Total Synthesis of Gonytolides C and G, Lachnone C, and. Formal Synthesis of Blennolide C and Diversonol

All materials and reagents were obtained commercially and used without further

Supporting Information for

Supporting Information

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole

Electronic Supplementary Informations

Supporting Information. Structural Variation Determined by Length-matching Effects: Towards the Formation of Flexible Porous Molecular Crystal

Supporting Information

Supporting Information

Supporting Information

Supporting Information for. Immobilizing Tetraphenylethylene into Fused Metallacycles: Shape Effects on Fluorescence Emission

Electronic Supporting Information

Electronic Supplementary Information. Ultrafast Charge Separation in Supramolecular Tetrapyrrole- Graphene Hybrids

Unexpected Fluorescence Quenching in a Perylenetetracarboxylate Diimide. Trimer

Diastereoselectivity in the Staudinger reaction of. pentafluorosulfanylaldimines and ketimines

Supporting Information

Supporting Information

Electronic Supplementary Information. Pd(diimine)Cl 2 Embedded Heterometallic Compounds with Porous Structures as Efficient Heterogeneous Catalysts

Supplementary Materials for

Synthesis of Glaucogenin D, a Structurally Unique. Disecopregnane Steroid with Potential Antiviral Activity

Electronic Supplementary Information

Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones

Supporting Information

Supporting Information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles

Highly Luminescent -Conjugated Dithienometalloles: Photophysical Properties and Application to Organic Light-Emitting Diodes

Supporting Information for: Using a Lipase as a High Throughput Screening Method for Measuring the Enantiomeric. Excess of Allylic Acetates

Supporting Information

[Ag-Ag] 2+ Unit-Encapsulated Trimetallic Cages: One-pot Syntheses and Modulation of Argentophilic Interactions by the Uncoordinated Substituents

Supplementary Information

Structural Elucidation of Sumanene and Generation of its Benzylic Anions

White Phosphorus is Air-Stable Within a Self-Assembled Tetrahedral Capsule

How to build and race a fast nanocar Synthesis Information

Supporting Information

A Mixed Crystal Lanthanide Zeolite-like Metal-Organic. Framework as a Fluorescent Indicator for Lysophosphatidic. Acid, a Cancer Biomarker

Catalyst-Free Reaction of Ethynyl-π-Extended Electron Acceptors with Amines

Nanocrystalline Magnesium Oxide-Stabilized Palladium(0): An Efficient and Reusable Catalyst for the Synthesis of N-(2- pyridyl)indoles

Supporting Information

Supporting Information. Yu-Wu Zhong, Yutaka Matsuo,* and Eiichi Nakamura*

Supporting Informations for. 1,8-Naphthyridine-based molecular clips for off-on fluorescence sensing

The oxide-route for the preparation of

Significant improvement of dye-sensitized solar cell. performance by a slim phenothiazine based dyes

Supporting Information

SUPPORTING INFORMATION

Supporting Information

Supporting Text Synthesis of (2 S ,3 S )-2,3-bis(3-bromophenoxy)butane (3). Synthesis of (2 S ,3 S

Supplementary Materials for

Cobalt-Porphyrin /Dansyl Piperazine Complex Coated Filter. Paper for Turn on Fluorescence Sensing of Ammonia Gas

Synthesis and Properties of Endohedral Aza[60]fullerenes: and as Their Dimers and Monomers

Electronic Supplementary Information

Supporting information. Cooperatively Enhanced Ion Pair Binding with a Hybrid Receptor

Electronic Supplementary Information (ESI)

Stabilizing vitamin D 3 by conformationally selective co-crystallization

Supporting Information

Supporting Information

Indium Triflate-Assisted Nucleophilic Aromatic Substitution Reactions of. Nitrosobezene-Derived Cycloadducts with Alcohols

Supplementary Materials

Transcription:

Supporting Information for Controlled Synthesis of C 70 Equatorial Multiadducts with Mixed Addends from an Equatorial Diadduct: Evidence for an Electrophilic Carbanion Shu-Hui Li, Zong-Jun Li,* Wei-Wei Yang, and Xiang Gao* State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China *E-mail: lzj@ciac.ac.cn, xgao@ciac.ac.cn Table of Contents Experimental details and spectral characterization of compounds 1 3 Figure S1. HPLC trace of the crude mixture from the reaction for preparation of 1a Figure S2. HPLC trace of the crude mixture from the reaction for preparation of 1b Figure S3. HPLC trace of the crude mixture from the reaction for preparation of 2a Figure S4. HPLC trace of the crude mixture from the reaction for preparation of 2b Figure S5. HPLC trace of the crude mixture from the control reaction of 7,23-Bn 2 C 70 S6 S17 S18 S19 S20 S21 with 3.1 equiv of MeO (in one shot) followed by quenching with o-brch 2 PhCH 2 Br Figure S6. HPLC trace of the crude mixture from the reaction for preparation of 3a Figure S7. HPLC trace of the crude mixture from the reaction for preparation of 3b Figure S8. (a) Structural illustration of 2a-II; (b) HPLC trace of the crude mixture S22 S23 S24 from the control experiment demonstrating the stability of 2a-II over a Buckyprep column S1

Figure S9. HPLC trace of the crude mixture from the control experiment S25 demonstrating the stability of 2a-II over a silica column Figure S10. Positive ESI FT-ICR MS of 1a Figure S11. 1 H NMR spectrum of 1a Figure S12. 13 C NMR spectrum of 1a Figure S13. UV-vis absorption spectrum of 1a Figure S14. Positive ESI FT-ICR MS of 1b Figure S15. 1 H NMR spectrum of 1b Figure S16. 13 C NMR spectrum of 1b Figure S17. UV-vis absorption spectrum of 1b Figure S18. Positive ESI FT-ICR MS of 2a Figure S19. 1 H NMR spectrum of 2a Figure S20. 13 C NMR spectrum of 2a Figure S21. UV-vis absorption spectrum of 2a Figure S22. Positive ESI FT-ICR MS of 2b Figure S23. 1 H NMR spectrum of 2b Figure S24. 13 C NMR spectrum of 2b Figure S25. UV-vis absorption spectrum of 2b Figure S26. Positive ESI FT-ICR MS of 3a Figure S27. 1 H NMR spectrum of 3a Figure S28. 13 C NMR spectrum of 3a Figure S29. UV-vis absorption spectrum of 3a S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S340 S41 S42 S43 S44 S45 S2

Figure S30. Positive ESI FT-ICR MS of 3b Figure S31. 1 H NMR spectrum of 3b Figure S32. 13 C NMR spectrum of 3b Figure S33. (a) UV-vis absorption and (b) mirror image of the fluorescence and S46 S47 S48 S49 absorption spectra of 3b Figure S34. Positive MALDI TOF MS of 2a and 2a-II mixture Figure S35. 1 H NMR spectrum of 2a and 2a-II mixture Figure S36. UV-vis absorption spectrum of 2a-II Figure S37. In situ vis-nir of control methoxylation experiment with 1,4-Bn 2 C 60 Figure S38. Partial electrophilic Fukui function (f + k ) distribution in 7,23-Bn 2 C 70 S50 S51 S52 S53 S54 calculated at the B3LYP/6-311G(d) level Table S1. Electrophilic Fukui indexes (f k + ) for C 70 carbon atoms in 7,23-Bn 2 C 70 S55 calculated at the B3LYP/6-311G(d) level Figure S39. Partial electrophilic Fukui function (f k + ) distribution in intermediate A S57 calculated at the B3LYP/6-311G(d) level Table S2. Electrophilic Fukui indexes (f k + ) for C 70 carbon atoms in intermediate A S58 calculated at the B3LYP/6-311G(d) level Figure S40. Partial electrophilic Fukui function (f k + ) distribution in S60 1,4-Bn 2-11-MeOC 60 calculated at the B3LYP/6-311G(d) level Table S3. Electrophilic Fukui indexes (f k + ) for C 60 carbon atoms in S61 1,4-Bn 2-11-MeOC 60 calculated at the B3LYP/6-311G(d) level Figure S41. Partial NBO charge distribution in intermediate A calculated at the S63 S3

B3LYP/6-311G(d) level Table S4. NBO charge distribution for C 70 carbon cage in intermediate A calculated at S64 the B3LYP/6-311G(d) level Figure S42. Partial NBO charge distributions in intermediate B calculated at the S66 B3LYP/6-311G(d) level Table S5. NBO charge distribution for C 70 carbon cage in intermediate B calculated at S67 the B3LYP/6-311G(d) level Figure S43. Partial electrophilic Fukui function (f k + ) distribution in compound 2a S69 calculated at the B3LYP/6-311G(d) level Table S6. Electrophilic Fukui function (f k + ) distribution for C 70 carbon cage in S70 compound 2a calculated at the B3LYP/6-311G(d) level Figure S44. Partial NBO charge distributions in intermediate C calculated at the S72 B3LYP/6-311G(d) level Table S7. NBO charge distributions for C 70 carbon cage in intermediate C calculated S73 at the B3LYP/6-311G(d) level Optimized structure, cartesian coordinates and the lowest frequency for 7,23-Bn 2 C 70 S75 obtained at B3LYP/6-31G level Optimized structure, cartesian coordinates, the lowest frequency, and sum of S78 electronic and zero-point energies for intermediate A obtained at B3LYP/6-31G level Optimized structure, cartesian coordinates, the lowest frequency, and sum of S81 electronic and zero-point energies for the isomer of intermediate A obtained at B3LYP/6-31G level S4

Optimized structure, cartesian coordinates and the lowest frequency for S84 1,4-Bn 2-11-MeOC 60 obtained at B3LYP/6-31G level Optimized structure, cartesian coordinates and the lowest frequency for intermediate S87 B obtained at B3LYP/6-31G level Optimized structure, cartesian coordinates and the lowest frequency for 2a obtained at S90 B3LYP/6-31G level Optimized structure, cartesian coordinates and the lowest frequency for intermediate S94 C obtained at B3LYP/6-31G level S5

General Methods. All reactions were carried out under an atmosphere of argon. All reagents were obtained commercially and used without further purification, unless otherwise noted. All spectral measurements were carried out in 1-cm quartz cuvettes. In situ vis-near-ir spectra were measured by first transferring the reaction mixture into a 1-cm cuvette under argon, and the cuvette was sealed with a rubber septum and Parafilm for the measurement. The fluorescence spectra were recorded with the excitation and the emission slit widths set at 10 and 20 nm, respectively. All solvents used in fluorescence spectra studies were of spectroscopic grade. Preparation of Compound 1a. Typically, 30.3 mg of 7,23-Bn 2 C 70 (29.6 μmol) was put into 30 ml of o-dcb solution at 30 C, which was degassed with argon for 20 min under vigorous stirring. Then 1.1 equiv of MeO (1.0 M TBAOH in methanol, 32.6 L, 32.6 μmol) was added in to the 7,23-Bn 2 C 70 o-dcb solution to react for 1.5 h with no significant color change. The reaction mixture was quenched with 50 equiv of o-brch 2 PhCH 2 Br (391.3 mg, 1.48 mmol) for 3 h, and the mixture was dried with a rotary evaporator under reduced pressure. The residue was washed with methanol to remove excess TBAOH and o-brch 2 PhCH 2 Br. The crude product was put into toluene, and the dissolved part was purified using a semipreprative Buckyprep column (10 mm 250 mm) eluted with toluene at a flow rate of 3.7 ml/min with the detector wavelength set at 380 nm. Compound 1a was obtained with an isolated yield of 49% (18.0 mg), along with 8.1 mg of unreacted 7,23-Bn 2 C 70. Spectral Characterization of 1a: Positive ESI FT-ICR MS: calcd for [M CH 3 O] + (C 92 H 22 Br) + : 1205.08994, found 1205.08879; 1 H NMR (600 MHz, CS 2 /CDCl 3 ) ppm, 7.38-7.29 (m, 11H), 7.26-7.22 (m, 3H), 4.78 (d, J = 10.2 Hz, 1H), 4.36 (d, J = 10.2 Hz, 1H), 3.97 (d, J = 12.6 Hz, 1H), 3.95(d, J = 12.0 Hz, 1H), 3.91 (d, J = 13.2 Hz, 1H), 3.85 (d, J = 13.2 Hz, 1H), 3.82 (d, J S6

=13.2 Hz, 1H), 3.75 (s, 3H), 3.73 (d, J = 14.4 Hz, 1H); 13 C NMR (150 MHz, CS 2 /CDCl 3 ) δ ppm, 162.60 (1C), 162.45 (1C), 154.63 (1C), 153.63 (1C), 151.90 (1C), 151.54 (1C), 151.12 (1C), 150.35 (1C), 150.22 (1C), 150.08 (1C), 149.97 (1C), 149.88 (1C), 149.73 (1C), 149.58 (1C), 149.22 (1C), 149.04 (2C), 148.78 (1C), 148.63 (1C), 148.51 (1C), 148.32 (1C), 147.68 (1C), 147.57 (1C), 147.52 (1C), 147.33 (1C), 147.19 (1C), 147.15 (1C), 146.86 (1C), 146.57 (1C), 146.04 (1C), 145.97 (1C), 145.87 (1C), 145.79 (1C), 145.66 (1C), 145.36 (1C), 145.07 (1C), 145.01 (2C), 144.70 (2C), 144.37 (1C), 143.91 (1C), 143.86 (1C), 143.65 (1C), 143.60 (1C), 143.54 (1C), 143.51 (1C), 143.22 (1C), 143.16 (1C), 143.06 (1C), 142.85 (2C), 142.62 (1C), 142.59 (1C), 139.60 (1C), 139.48 (1C), 137.30 (1C), 136.50 (2C), 136.20 (1C), 136.05 (1C), 135.67 (2C), 135.40 (1C), 133.27 (1C, Ph), 132.74 (1C), 131.55 (1C, Ph), 130.94 (4C, Ph), 130.22 (1C), 128.86 (2C, Ph), 128.69 (2C, Ph), 128.65 (1C, Ph), 128.36 (1C, Ph), 127.93 (1C, Ph), 127.84 (1C, Ph), 82.30 (1C, sp 3, C 70 O), 59.14 (1C, sp 3, C 70 CH 2 ), 58.67 (1C, sp 3, C 70 CH 2 ), 58.01 (1C, sp 3, C 70 CH 2 ), 55.55 (1C, O CH 3 ), 49.84 (1C, CH 2 ), 48.87 (1C, CH 2 ), 45.03 (1C, CH 2 ), 33.22 (1C, CH 2 ); UV-vis (toluene): max 365, 400, 450, 539 and 605 nm. X-ray Single Crystal Diffraction of 1a. Black crystals of 1a were obtained by slowly diffusing methanol into a CS 2 solution of 1a at room temperature. Single crystal X-ray diffraction data were collected on an instrument equipped with a CCD area detector using graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) in the scan range 1.68 < θ < 24.00. The structure was solved with the direct method of SHELXS-97 and refined with full-matrix least-squares techniques using the SHELXL-97 program within WINGX. Crystal data of 1a C 93 H 25 BrO, M w = 1238.04, Triclinic, space group P-1, a = 11.357(2) Å, b = 12.542(3)) Å, c = 21.856(4) (14) Å, α = 97.714(4), β = 91.882(4), γ = 101.873(3), V = 3013.3(11) (6) Å 3, Z = 2, D calcd S7

= 1.364 Mg m 3, μ= 0.738 mm 1, T = 188 (2) K, crystal size 0.32 0.18 0.15 mm; reflections collected 12901, independent reflections 9273; 4200 with I > 2σ (I); R1 = 0.1116 [I > 2σ (I)], wr2 = 0.2824 [I > 2σ (I)]; R1 = 0.1859 (all data), wr2 = 0.3197 (all data), GOF (on F 2 ) = 0.981. Preparation of Compound 1b. The procedures were similar to those for generation of 1a, except PhCH 2 Br was used instead of o-brch 2 PhCH 2 Br. Compound 1b was obtained as the predominant product with an isolated yield of 46% (20.7 mg), along with 5.0 mg of unreacted 7,23-Bn 2 C 70. Spectral Characterization of 1b: Positive ESI FT-ICR MS, m/z calcd for [M CH 3 O] + (C 91 H + 21 ): 1113.16378, found 1113.16152; 1 H NMR (600 MHz, CS 2 /CDCl 3 ) δ ppm, 7.38-7.32 (m, 10H), 7.28-7.25 (m, 4H), 4.00 (d, J = 13.2 Hz, 1H), 3.94 (d, J = 13.2 Hz, 1H), 3.85-3.84 (m, 5H), 3.76 (d, J = 12.6 Hz, 1H), 3.62 (d, J = 13.8 Hz, 1H); 13 C NMR (150 MHz, CS 2 /CDCl 3 ) δ ppm, 162.66 (1C), 162.52 (1C), 156.14 (1C), 153.64 (1C), 151.53 (1C), 151.39 (1C), 151.02 (1C), 150.38 (1C), 150.33 (1C), 150.13 (1C), 149.88 (1C), 149.68 (1C), 149.53 (1C), 149.51 (1C), 149.17 (1C), 149.06 (2C), 148.88 (1C), 148.79 (1C), 148.44 (1C), 148.30 (1C), 147.69 (1C), 147.58 (2C), 147.51 (1C), 147.45 (1C), 147.17 (1C), 147.11 (1C), 146.61 (1C), 146.56 (1C), 146.14 (1C), 145.89 (1C), 145.83 (2C), 145.77 (1C), 145.21 (1C), 145.10 (4C), 144.71 (2C), 144.27 (1C), 143.89 (1C), 143.85 (1C), 143.64 (1C), 143.56 (1C), 143.37 (1C), 143.36 (1C), 143.22 (2C), 143.03 (1C), 143.02 (1C), 142.88 (1C), 142.73 (1C), 142.53 (1C), 139.87 (1C), 139.47 (1C), 137.02 (1C, Ph), 136.70 (1C, Ph), 136.54 (1C, Ph), 136.16 (1C), 136.06 (1C), 135.67 (1C), 135.39 (1C), 133.23 (1C), 131.48 (1C), 131.01 (4C, Ph), 130.87 (2C, Ph), 130.50 (1C), 128.85 (2C, Ph), 128.73 (1C), 128.68 (2C, Ph), 128.52 (2C, Ph), 127.92 (1C, Ph), 127.80 (1C, Ph), 127.64 (1C, Ph), 82.55 (sp 3, C 70 O), 59.04 (sp 3, S8

C 70 CH 2 ), 58.64 (sp 3, C 70 CH 2 ), 58.51 (sp 3, C 70 CH 2 ), 55.30 (O CH 3 ), 49.94 (CH 2 ), 49.52 (CH 2 ), 48.88 (CH 2 ); UV vis (toluene): λ max 365, 400, 450, 539 and 605 nm. Preparation of Compound 2a. Typically, 30.5 mg of 7,23-Bn 2 C 70 (29.8 μmol) was put into 30 ml of o-dcb solution at 30 C, which was degassed with argon for 20 min under vigorous stirring. Then 2.1 equiv of MeO (1.0 M TBAOH in methanol, 62.7 L, 62.7 μmol) was added in to the 7,23-Bn 2 C 70 o-dcb solution to react for 1.5 h, accompanied by a gradual color change of the solution from brown to dark-green. The reaction mixture was quenched with 50 equiv of o-brch 2 PhCH 2 Br (393.9 mg, 1.49 mmol) for 3 h, and the mixture was dried with a rotary evaporator under reduced pressure. The residue was washed with methanol to remove excess TBAOH and o-brch 2 PhCH 2 Br. The crude product was put into toluene, and the dissolved part was purified using a semipreprative Buckyprep column (10 mm 250 mm) eluted with toluene at a flow rate of 3.7 ml/min with the detector wavelength set at 380 nm. Compound 2a was obtained with an isolated yield of 53% (22.9 mg), along with 5.7 mg of unreacted 7,23-Bn 2 C 70. Spectral Characterization of 2a: Positive ESI FT-ICR MS: calcd for [M CH 3 O] + (C 101 H 33 Br 2 O + ): 1419.08927, found 1419.08990; 1 H NMR (600 MHz, CS 2 /CDCl 3 ) δ ppm, 7.45-7.43 (d, 2H), 7.34-7.32 (m, 8H), 7.30-7.28 (m, 2H), 7.26-7.24 (m, 2H), 7.21-7.20 (m, 4H), 4.90 (d, J = 10.8 Hz, 2H), 4.39 (d, J = 10.2 Hz, 2H), 4.04 (d, J = 13.2 Hz, 2H), 4.00-3.91 (m, 6H), 3.73 (s, 6H); 13 C NMR (150 MHz, CS 2 /CDCl 3 ) δ ppm, 162.65 (2C), 156.58 (2C), 154.92 (2C), 152.76 (2C), 152.62 (2C), 151.66 (2C), 151.38 (2C), 150.64 (2C), 149.85 (2C), 149.43 (2C), 148.42 (2C), 147.73 (2C), 147.69 (2C), 147.37 (2C), 146.84 (4C), 146.45 (2C), 146.19 (2C), 145.57 (2C), 145.04 (2C), 143.72 (2C), 143.44 (2C), 143.00 (2C), 142.76 (2C), 141.34 (2C), 138.54 (2C), 137.50 (2C), 137.26 (2C), 137.18 (2C), 136.85 (2C), 136.63 (2C), 135.60 (2C), 133.52 (2C, Ph), 131.66 S9

(2C, Ph), 130.90 (4C, Ph), 128.75 (4C, Ph), 128.61 (2C, Ph), 128.35 (2C, Ph), 127.76 (2C, Ph), 82.79 (2C, sp 3, C 70 O), 59.73 (2C, sp 3, C 70 CH 2 ), 58.41 (2C, sp 3, C 70 CH 2 ), 55.72 (2C, O CH 3 ), 48.62 (2C, CH 2 ), 45.81 (2C, CH 2 ), 33.46 (2C, CH 2 ); UV-vis (toluene): max 410, 449, 475, 562, 650 and 716 nm. X-ray Single Crystal Diffraction of 2a. Black crystals of 2a were obtained by slowly diffusing n-hexane into a CS 2 solution of 2a at room temperature. Single crystal X-ray diffraction data were collected on an instrument equipped with a CCD area detector using graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) in the scan range 1.49 < θ < 25.04. The structure was solved with the direct method of SHELXS-97 and refined with full-matrix least-squares techniques using the SHELXL-97 program within WINGX. Crystal data of 2a CS 2 ; C 103 H 36 Br 2 O 2 S 2, M w = 1529.26, Triclinic, space group P 1, a = 11.2942(6) Å, b = 17.1173(9) Å, c = 20.2451(11) Å, α = 80.8280(10), β = 85.9090(10), γ = 74.7020(10), V = 3725.2(3) Å 3, Z = 2, D calcd = 1.363 Mg m 3, μ= 1.199 mm 1, T = 187 (2) K, crystal size 0.21 0.19 0.11 mm; reflections collected 18717, independent reflections 12954; 8011 with I > 2σ (I); R1 = 0.0628 [I > 2σ (I)], wr2 = 0.1715 [I > 2σ (I)]; R1 = 0.0980 (all data), wr2 = 0.1918 (all data), GOF (on F 2 ) = 0.985. Preparation of Compound 2b. The procedures were similar to those for generation of 2a, except PhCH 2 Br was used instead of o-brch 2 PhCH 2 Br. Compound 2b was obtained as the predominant product with an isolated yield of 40% (18.5 mg), along with 4.4 mg of unreacted 7,23-Bn 2 C 70. Spectral Characterization of 2b: Positive ESI FT-ICR MS: calcd for M + (C 100 H 34 O + 2 ): 1266.25533, found 1266.25486; 1 H NMR (600 MHz, CS 2 /CDCl 3 ) δ ppm, 7.35-7.34 (m, 5H), 7.31-7.25 (m, 15H), 4.02, 3.99 (ABq, 4H, J AB = 13.8 Hz), 3.94-3.92 (m, 8H), 3.80 (d, 2H, J AB = S10

12.6 Hz); 13 C NMR (150 MHz, CS 2 /CDCl 3 ) δ ppm, 162.55 (2C), 156.78 (2C), 156.71 (2C), 152.71 (2C), 152.33 (2C), 151.63 (2C), 150.60 (2C), 150.34 (2C), 149.60 (2C), 149.33 (2C), 148.16 (2C), 148.01 (2C), 147.72 (2C), 147.70 (2C), 147.57 (2C), 147.33 (2C), 146.95 (2C), 146.39 (2C), 146.09 (2C), 145.15 (2C), 145.07 (2C), 143.66 (2C), 143.55 (2C), 143.20 (2C), 142.70 (2C), 141.17 (2C), 138.36 (2C), 137.91 (2C), 137.19 (2C), 137.10 (2C), 137.04 (2C, Ph), 136.86 (2C, Ph), 131.66 (2C), 131.00 (4C, Ph), 130.98 (4C, Ph), 128.73 (2C), 128.64 (4C, Ph), 128.53 (4C, Ph), 127.63 (2C, Ph), 127.60 (2C, Ph), 83.12 (2C, sp 3, C 70 O), 59.54 (2C, sp 3, C 70 CH 2 ), 58.89 (2C, sp 3, C 70 CH 2 ), 55.48 (2C, O CH 3 ), 50.27 (2C, CH 2 ), 48.71 (2C, CH 2 ); UV vis (toluene): max 410, 449, 475, 562, 650 and 716 nm. Control Experiment of 7,23-Bn 2 C 70 with 3.1 Equiv of MeO in One Shot. The procedures were similar to that for generation of 2a, except 3.1 equiv of MeO was used instead of 2.1 equiv of MeO. The result is similar to that when 2.1 equiv of MeO was used, where the major product is the hexaadduct 2a. Preparation of Compound 3a. Typically, 19.7 mg of 7,23-Bn 2 C 70 (19.3 μmol) was put into 20 ml of o-dcb solution at 30 C, which was degassed with argon for 20 min under vigorous stirring. Then 2.1 equiv of MeO (1.0 M TBAOH in methanol, 40.5 L, 40.5 μmol) was added in to the 7,23-Bn 2 C 70 o-dcb solution to react for 1.5 h, accompanied by a gradual color change of the solution from brown to dark-green. o-brch 2 PhCH 2 Br (50 equiv, 254.4 mg, 0.96 mmol) was added into the reaction mixture to react for 3 h, with the formation of 2a. Then 1.1 equiv of MeO (1.0 M TBAOH in methanol, 21.2 L, 21.2 μmol) was added into this in situ generated 2a solution and reacted for 2 h. The mixture was dried with a rotary evaporator under reduced pressure, and the residue was washed with methanol to remove excess TBAOH and o-brch 2 PhCH 2 Br. The crude S11

product was put into toluene, and the dissolved part was purified using a semipreprative Buckyprep column (10 mm 250 mm) eluted with toluene at a flow rate of 3.7 ml/min with the detector wavelength set at 380 nm. Compound 3a was obtained with an isolated yield of 41% (13.3 mg), along with 4.1 mg of unreacted 7,23-Bn 2 C 70. Spectral Characterization of 3a: Positive ESI FT-ICR MS: calcd for M + (C 111 H 47 Br 3 O + 3 ): 1664.10698, found 1664.10651; 1 H NMR (600 MHz, CS 2 /CDCl 3 ) δ ppm, 7.49-7.46 (m, 2H), 7.39-7.38 (m, 4H), 7.34-7.29 (m, 12H), 7.26-7.23 (m, 4H), 4.95, 4.94 (ABq, J = 7.2 Hz, 2H), 4.86 (d, J = 10.8 Hz, 1H), 4.50 (d, J = 9.0 Hz, 1H), 4.42 (d, J = 10.2 Hz, 1H), 4.38 (d, J = 10.8 Hz, 1H), 4.18 (d, J = 13.8 Hz, 1H), 4.14-4.07 (m, 6H), 4.05-3.99 (m, 5H), 3.93 (d, J = 13.8 Hz, 1H), 3.88 (s, 3H), 3.62 (s, 3H); 13 C NMR (150 MHz, CS 2 /CDCl 3 ) δ ppm, 160.35 (1C), 160.30 (1C), 159.72 (1C), 157.60 (1C), 156.89 (1C), 156.68 (1C), 155.57 (1C), 154.69 (1C), 154.63 (1C), 154.17 (1C), 153.74 (1C), 153.08 (1C), 152.86 (1C), 152.29 (1C), 151.96 (1C), 150.37 (1C), 150.29 (1C), 150.14 (1C), 149.91 (1C), 149.74 (1C), 149.73 (1C), 149.54 (1C), 149.43 (2C), 149.12 (1C), 149.09 (1C), 148.85 (1C), 148.83 (1C), 148.70 (1C), 147.95 (1C), 147.59 (1C), 147.31 (1C), 147.16 (2C), 146.83 (1C), 146.67 (1C), 146.64 (1C), 146.37 (1C), 145.75 (1C), 145.65(1C), 145.56 (1C), 145.53 (1C), 145.50 (1C), 145.42 (1C), 145.37 (1C), 144.56 (1C), 144.43 (3C), 143.54 (1C), 143.33 (1C), 143.11 (1C), 139.05(1C), 138.41 (1C), 137.51 (1C), 137.44 (1C), 137.35 (1C), 136.81 (1C), 136.75 (1C), 136.57 (1C), 136.42 (1C), 136.35 (1C), 136.03 (1C, Ph), 135.76 (1C, Ph), 133.65 (1C, Ph), 133.56(1C, Ph), 133.54 (1C, Ph), 133.33 (1C, Ph), 132.87 (1C, Ph), 132.49 (1C, Ph), 131.73 (1C, Ph), 131.67 (1C, Ph), 131.61 (1C, Ph), 131.52 (1C, Ph), 131.47 (1C, Ph), 131.04 (2C, Ph), 130.90 (2C, Ph), 128.81 (2C, Ph), 128.74 (3C, Ph), 128.70 (2C, Ph), 128.64(1C, Ph), 128.33 (1C, Ph), 128.29 (2C, Ph), 127.79 (1C, Ph), 127.72 (1C, Ph), 83.04 (1C, sp 3, C 70 O), 83.00 (1C, sp 3, C 70 O), 82.49 (1C, sp 3, S12

C 70 O), 59.97 (1C, sp 3, C 70 CH 2 ), 59.84 (1C, sp 3, C 70 CH 2 ), 58.90 (1C, sp 3, C 70 CH 2 ), 58.80 (1C, sp 3, C 70 CH 2 ), 58.60 (1C, sp 3, C 70 CH 2 ), 55.97 (1C, O CH 3 ), 55.74 (1C, O CH 3 ), 55.52 (1C, O CH 3 ), 49.54 (1C, CH 2 ), 48.47 (1C, CH 2 ), 46.22 (1C, CH 2 ), 46.04 (1C, CH 2 ), 45.80 (1C, CH 2 ), 33.53 (1C, CH 2 ), 33.40 (2C, CH 2 ); UV-vis (toluene): max 390, 430, 455 and 502 nm. X-ray Single Crystal Diffraction of 3a. Orange crystals of 3a were obtained by slowly diffusing ethanol into a CS 2 solution of 3a at room temperature. Single crystal X-ray diffraction data were collected on an instrument equipped with a CCD area detector using graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) in the scan range 1.44 < θ < 26.13. The structure was solved with the direct method of SHELXS-97 and refined with full-matrix least-squares techniques using the SHELXL-97 program within WINGX. Crystal data of 3b; C 111 H 47 Br 3 O 3, M w = 1668.22, Triclinic, space group P-1, a = 14.508(3) (11) Å, b = 15.996(3) Å, c = 19.029(4) Å, α = 96.349(3), β = 90.552(4), γ =103.093(3), V = 4272.2(15) Å 3, Z = 2, D calcd = 1.297 Mg m 3, μ= 1.470 mm 1, T = 188 (2) K, crystal size 0.24 0.20 0.15 mm; reflections collected 22710, independent reflections 16462; 8139 with I > 2σ (I); R1 = 0.0772 [I > 2σ (I)], wr2 = 0.2034 [I > 2σ (I)]; R1 = 0.1297 (all data), wr2 = 0.2238 (all data), GOF (on F 2 ) = 0.900. Preparation of Compound 3b. The procedures were similar to those for generation of 3a, except PhCH 2 Br was used instead of o-brch 2 PhCH 2 Br. Compound 3b was obtained as the predominant product with an isolated yield of 34% (12.2 mg), along with 4.5 mg of unreacted 7,23-Bn 2 C 70. Spectral Characterization of 3b: Positive ESI FT-ICR MS: calcd for M + (C 108 H 44 O + 3 ): 1388.32850, found 1388.32496; 1 H NMR (600 MHz, CS 2 /CDCl 3 ) δ ppm, 7.39-7.25 (m, 25H), 4.12-4.07 (m, 3H), 4.04 (d, J = 13.2 Hz, 1H), 4.00-3.96 (m, 8H), 3.89-3.82 (m, 7H); 13 C NMR (150 S13

MHz, CS 2 /CDCl 3 ) δ ppm, 160.87 (1C), 160.27 (1C), 160.07 (1C), 158.62 (1C), 157.75 (1C), 156.82 (1C), 155.52 (1C), 154.88 (1C), 154.65 (1C), 154.61 (1C), 153.89 (1C), 152.99 (1C), 152.80 (1C), 151.22 (1C), 150.99 (1C), 150.13 (1C), 150.10 (1C), 150.07 (1C), 149.87 (1C), 149.80 (1C), 149.53 (4C), 149.44 (1C), 149.05 (1C), 148.96 (1C), 148.88 (1C), 148.85 (1C), 148.70 (1C), 148.30 (1C), 147.40 (1C), 147.35 (2C), 147.17 (1C), 146.88 (4C), 146.26 (1C), 145.93 (1C), 145.79 (1C), 145.50 (2C), 145.41 (1C), 145.24 (1C), 145.18 (2C), 145.00 (1C), 144.32 (1C), 144.22 (1C), 143.60 (1C), 143.14 (1C), 142.76 (1C), 139.36 (1C), 139.10 (1C), 137.33 (1C), 137.22 (1C), 137.17 (1C), 137.11 (1C), 136.99 (1C), 136.83 (2C), 136.46 (1C), 132.89 (1C, Ph), 132.29 (1C, Ph), 132.10 (1C, Ph), 131.83 (1C, Ph), 131.64 (1C, Ph), 131.14 (4C, Ph), 131.09 (2C, Ph), 131.03 (2C, Ph), 131.00 (2C, Ph), 128.67 (2C, Ph), 128.60 (2C, Ph), 128.48 (4C, Ph), 128.44 (2C, Ph), 127.60 (1C, Ph), 127.58 (1C, Ph), 127.49 (2C, Ph), 127.35 (1C, Ph), 83.24 (1C, sp 3, C 70 O), 83.07 (1C, sp 3, C 70 O), 82.84 (1C, sp 3, C 70 O), 59.76 (1C, sp 3, C 70 CH 2 ), 59.62 (1C, sp 3, C 70 CH 2 ), 59.36 (1C, sp 3, C 70 CH 2 ), 59.07 (1C, sp 3, C 70 CH 2 ), 58.91 (1C, sp 3, C 70 CH 2 ), 55.47 (2C, O CH 3 ), 55.35 (1C, O CH 3 ), 50.73 (1C, CH 2 ), 50.54 (1C, CH 2 ), 50.13 (1C, CH 2 ), 49.62 (1C, CH 2 ), 48.63 (1C, CH 2 ); UV-vis (toluene): max 390, 430, 455 and 502 nm. Control Experiment Showing the Existence of Another Stable Hexaadduct (2a-II). 7,23-Bn 2 C 70 (23.5 mg, 23.0 μmol) was put into 20 ml of o-dcb solution at 30 C, which was degassed with argon for 20 min under vigorous stirring. Then 1.1 equiv of MeO (1.0 M TBAOH in methanol, 25.3 L, 25.3 μmol) was added in to the 7,23-Bn 2 C 70 o-dcb solution to react for 1.5 h, followed by addition of 50 equiv of o-brch 2 PhCH 2 Br (303.5 mg, 1.15 mmol) into the reaction mixture to react for 3 h, with the formation of 1a. Then 1.0 equiv of MeO (1.0 M TBAOH in methanol, 23.0 L, 23.0 μmol) was added into the in situ generated 1a solution and the reaction was S14

continued for another 2 h. A mixture of hexaadducts was obtained (Figures S8 and S9) along with a significant amount of octaadduct(s) and 1a. The (RR') n C 70 (n = 6 or 8) obtained in this manner should be formed via the addition to (RR') n 2 C 70 precursors, rather than direct reaction of 7,23-Bn 2 C 70. The mixture of the hexaadducts could not be separated when eluting over a Buckyprep column with toluene (Figure S8), but could be partially resolved into two fractions when eluting over a silica column with a mixture of 70:30 v/v toluene/hexane (Figure S9). The 1 H NMR (Figure S35) confirmed the formation of two regioisomeric hexaadducts. Four sets of doublets with equal intensity were shown in the region of 4.3 5.0 ppm, which corresponded to the two sets of nonequivalent Br-bound methylene protons by comparing the spectra of 1a and 1b, in agreement with the formation of 2a-II with C 1 symmetry. The spectrum also exhibited two doublets at 4.90 and 4.38 ppm, confirming the formation of 2a with the C 2 symmetry. However, the peak intensity of 2a is lower than that of 2a-II, indicating that 2a is less favored compared with 2a-II for hexaaddition when starting from the tetraadduct. Spectral Characterizations of 2a and 2a-II Mixture: Positive MALDI TOF MS: m/z calculated for [M + H] + (C 102 H 36 Br 2 O 2 + H) + : 1451.1155, found: 1451.1139; 1 H NMR (600 MHz, CS 2 /CDCl 3 ) δ ppm, 7.46-7.43 (m), 7.38-7.32(m), 7.30-7.27 (m), 7.25-7.23 (m), 7.21-7.20 (m), 4.90 (d, J = 9.6 Hz), 4.88 (d, J = 9.6 Hz) 4.75 (d, J = 10.2 Hz), 4.45(d, J = 10.8 Hz), 4.38 (d, J = 10.8 Hz), 4.33(d, J = 10.2 Hz), 4.17 (d, J = 12.6 Hz), 4.11 (d, J = 13.2 Hz), 4.10 (d, J = 13.2 Hz), 4.04(d, 13.2 Hz), 4.02-3.91 (m), 3.94 (s), 3.85 (d, J = 13.8 Hz), 3.73 (s), 3.68 (s); UV-vis (toluene): max 410, 449, 475, 562, 650 and 716 nm. Computational Details. All calculations were performed with the Gaussian 09 software package. All geometries were optimized at the DFT B3LYP/6-31G level of theory, and sum of S15

electronic and zero-point energies for intermediate A and its isomer were obtained at the same level. The electrophilic Fukui function (f k + ) distributions of 7,23-Bn 2 C 70, intermediate A, 1,4-Bn 2-11-MeOC 60 and 2a were calculated at B3LYP/6-311G(d,p) level. NBO charge distributions for intermediate A, B and C were performed at B3LYP/6-311G(d,p) level. S16

1a 7,23-Bn 2 C 70 0 2 4 6 8 10 12 14 Time (min) Figure S1. HPLC trace of the crude mixture from the reaction for preparation of 1a. The crude product was eluted with toluene over a semi-preparative Buckyprep column at a flow rate of 3.7 ml/min with the detector wavelength set at 380 nm. S17

1b 7,23-Bn 2 C 70 0 2 4 6 8 10 12 14 16 Time (min) Figure S2. HPLC trace of the crude mixture from the reaction for preparation of 1b. The crude product was eluted with toluene over a semi-preparative Buckyprep column at a flow rate of 3.7 ml/min with the detector wavelength set at 380 nm. S18

2a 7,23-Bn 2 C 70 0 1 2 3 4 5 6 7 8 9 10 Time (min) Figure S3. HPLC trace of the crude mixture from the reaction for preparation of 2a. The crude product was eluted with toluene over a semi-preparative Buckyprep column at a flow rate of 3.7 ml/min with the detector wavelength set at 380 nm. S19

2b 7,23-Bn 2 C 70 0 1 2 3 4 5 6 7 8 9 10 11 12 Time (min) Figure S4. HPLC trace of the crude mixture from the reaction for preparation of 2b. The crude product was eluted with toluene over a semi-preparative Buckyprep column at a flow rate of 3.7 ml/min with the detector wavelength set at 380 nm. S20

2a 1a 7,23-Bn 2 C 70 0 2 4 6 8 10 Time (min) Figure S5. HPLC trace of the crude mixture from the control reaction of 7,23-Bn 2 C 70 with 3.1 equiv of MeO (one shot) followed by quenching with o-brch 2 PhCH 2 Br. The crude product was eluted with toluene over a semi-preparative Buckyprep column at a flow rate of 3.7 ml/min with the detector wavelength set at 380 nm. S21

3a 7,23-Bn 2 C 70 0 2 4 6 8 10 12 14 16 Time (min) Figure S6. HPLC trace of the crude mixture from the reaction for preparation of 3a. The crude mixture was eluted by toluene over a semi-preparative Buckyprep column at a flow rate of 3.7 ml/min with the detector wavelength set at 380 nm. S22

3b 7,23-Bn 2 C 70 0 2 4 6 8 10 12 14 Time (min) Figure S7. HPLC trace of the crude mixture from the reaction for preparation of 3b. The crude mixture was eluted by toluene over a semi-preparative Buckyprep column at a flow rate of 3.7 ml/min with the detector wavelength set at 380 nm. S23

(a) (a) (b) octaadduct(s) 2a-II and 2a 1a 7,23-Bn 2 C 70 0 2 4 6 8 10 12 14 Time (min) Figure S8. (a) Structural illustration of 2a-II. (b) HPLC trace of the crude mixture from the control experiment demonstrating the stability of 2a-II over a semi-preparative Buckyprep column. The crude mixture was eluted by toluene at a flow rate of 3.7 ml/min with the detector wavelength set at 380 nm. S24

octaadduct(s) 2a-II 2a 1a 7,23-Bn 2 C 70 0 2 4 6 8 10 12 14 16 18 Time (min) Figure S9. HPLC trace of the crude mixture from the control experiment showing the stability of 2a-II over a semi-preparative silica column. The mixture was eluted with a 70:30 v/v mixture of toluene/hexane at a flow rate of 3.7 ml/min with the detector wavelength set at 380 nm. S25

Figure S10. Positive ESI FT-ICR MS of compound 1a. S26

Figure S11. 1 H NMR spectrum (600 MHz) of compound 1a recorded in CS 2 /CDCl 3. The resonance at 1.4 ppm is due to H 2 O residue in the solvent, and the resonance at around 1.3 ppm is due to an unknown impurity. S27

Figure S12. 13 C NMR spectrum (150 MHz) of 1a in CS 2 /CDCl 3. S28

0.6 0.5 Absorption 0.4 0.3 0.2 365 400 0.1 0.0 450 539 605 300 400 500 600 700 800 Wavelength (nm) Figure S13. UV-vis absorption spectrum of compound 1a in toluene. S29

Figure S14. Positive ESI FT-ICR MS of compound 1b. S30

Figure S15. 1 H NMR spectrum (600 MHz) of compound 1b recorded in CS 2 /CDCl 3. The resonances at around 0.9 and 1.3 ppm are due to unknown impurities. S31

Figure S16. 13 C NMR spectrum (150 MHz) of 1b in CS 2 /CDCl 3. S32

0.4 0.3 Absorption 0.2 365 400 0.1 450 539 605 0.0 300 400 500 600 700 800 Wavelength (nm) Figure S17. UV-vis absorption and fluorescence spectra of compound 1b in toluene. S33

Figure S18. Positive ESI FT-ICR MS of compound 2a. S34

Figure S19. 1 H NMR spectrum (600 MHz) of compound 2a recorded in CS 2 /CDCl 3. S35

Figure S20. 13 C NMR spectrum (150 MHz) of 2a in CS 2 /CDCl 3. S36

0.7 0.6 0.5 Absorption 0.4 0.3 0.2 410 0.1 449 475 562 650 716 0.0 300 400 500 600 700 800 Wavelength (nm) Figure S21. UV-vis absorption and fluorescence spectra of compound 2a in toluene. S37

Figure S22. Positive ESI FT-ICR MS of compound 2b. S38

Figure S23. 1 H NMR spectrum (600 MHz) of compound 2b recorded in CS 2 /CDCl 3. The resonances at around 0.9 and 1.3 ppm are due to unknown impurities. S39

Figure S24. 13 C NMR spectrum (150 MHz) of 2b in CS 2 /CDCl 3. S40

Absorption 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 410 449 475 562 650 716 300 400 500 600 700 800 Wavelength (nm) Figure S25. UV-vis absorption spectrum of compound 2b in toluene. S41

Figure S26. Positive ESI FT-ICR MS of compound 3a. S42

Figure S27. 1 H NMR spectrum (600 MHz) of compound 3a recorded in CS 2 /CDCl 3. S43

Figure S28. 13 C NMR spectrum (150 MHz) of 3a in CS 2 /CDCl 3. S44

0.40 0.35 0.30 Absorption 0.25 0.20 0.15 0.10 0.05 390 430 455 502 0.00 300 400 500 600 700 800 Wavelength (nm) Figure S29. UV-vis absorption spectrum of compound 3a in toluene. S45

Figure S30. Positive ESI FT-ICR MS of compound 3b. S46

Figure S31. 1 H NMR spectrum (600 MHz) of compound 3b recorded in CS 2 /CDCl 3. S47

Figure S32. 13 C NMR spectrum (150 MHz) of 3b in CS 2 /CDCl 3. S48

(a) 0.5 0.4 Absorption 0.3 0.2 0.1 0.0 390 430 455 502 300 400 500 600 700 800 Wavelength (nm) (b) absorption 594 625 fluorescence 500 550 600 650 700 750 800 850 Wavelength (nm) Figure S33. (a) UV-vis absorption and (b) mirror image of the fluorescence (red line) and absorption spectra (black line) of compound 3b in toluene. S49

Figure S34. Positive MALDI TOF MS of the Buckyprep HPLC fraction containing 2a-II and 2a. S50

Figure S35. 1 H NMR spectrum (600 MHz) of the Buckyprep HPLC fraction containing 2a-II and 2a recorded in CS 2 /CDCl 3. S51

1.4 1.2 1.0 Absorption 0.8 0.6 0.4 410 0.2 0.0 449 475 562 650 716 300 400 500 600 700 800 Wavelength (nm) Figure S36. UV-vis absorption spectrum of compound 2a-II in toluene. S52

1.0 0.8 580 a b c Absorption 0.6 0.4 699 999 0.2 0.0 500 600 700 800 900 1000 1100 Wavelength (nm) Figure S37. In situ vis-nir spectra of (a) 1,4-Bn 2 C 60 (2.5 10 4 M), (b) 1,4-Bn 2 C 60 (2.5 10 4 M) after mixing with 1.0 equiv of MeO for 1.5 h, and (c) 1,4-Bn 2 C 60 (2.6 10 4 M) after mixing with 2.1 equiv of MeO for 1.5 h. The measurements were performed with a 1-cm cuvette in o-dcb at 30 C under argon. S53

Figure S38. Partial electrophilic Fukui function (f k + ) distribution in 7,23-Bn 2 C 70 calculated at the B3LYP/6-311G(d) level. S54

Table S1. Electrophilic Fukui indexes (f k + ) for C 70 carbon atoms in 7,23-Bn 2 C 70 calculated at the B3LYP/6-311G(d) level. Atomic number in Figure S38 Atomic number in the cartesian coordinates Fukui Index 1 36 0.005 2 37 0.043 3 45 0.002 4 46 0.007 5 70 0.009 6 35 0.025 7 34-0.004 8 29 0.005 9 28 0.011 10 27 0.015 11 26 0.009 12 38 0.000 13 39 0.026 14 44 0.023 15 43 0.019 16 48 0.020 17 47 0.022 18 63 0.011 19 64 0.036 20 65 0.000 21 33 0.017 22 32 0.005 23 31-0.004 24 30 0.017 25 3 0.000 26 2 0.012 27 1 0.016 28 25 0.018 29 24 0.021 30 40 0.021 31 41 0.005 32 42 0.004 33 50 0.027 34 49 0.004 35 61 0.007 36 62 0.005 37 67 0.016 38 66 0.012 39 68 0.015 S55

40 69 0.011 41 14 0.005 42 13 0.025 43 12 0.009 44 4 0.036 45 5 0.011 46 6 0.005 47 7 0.007 48 23 0.004 49 22 0.024 50 21 0.001 51 51 0.001 52 52 0.024 53 60 0.004 54 59 0.021 55 58 0.018 56 57 0.009 57 56 0.000 58 15 0.043 59 16 0.002 60 11 0.007 61 10 0.022 62 9 0.020 63 8 0.004 64 20 0.027 65 19 0.004 66 53 0.024 67 54 0.005 68 55 0.021 69 17 0.023 70 18 0.019 S56

Figure S39. Partial electrophilic Fukui function (f k + ) distribution in intermediate A calculated at the B3LYP/6-311G(d) level. S57

Table S2. Electrophilic Fukui indexes (f k + ) for C 70 carbon atoms in intermediate A calculated at the B3LYP/6-311G(d) level. Atomic number in Figure S39 Atomic number in the Cartesian coordinates Fukui Index 1 15 0.006 2 16 0.027 3 17 0.003 4 12 0.014 5 13 0.000 6 14 0.016 7 32-0.002 8 33 0.010 9 70 0.015 10 69 0.010 11 58 0.004 12 57 0.012 13 56 0.012 14 18 0.024 15 19 0.024 16 10 0.003 17 11 0.006 18 6 0.016 19 5 0.000 20 4 0.014 21 31 0.007 22 30 0.010 23 35-0.004 24 34 0.015 25 66-0.005 26 67 0.020 27 68 0.017 28 59 0.026 29 60 0.034 30 55 0.005 31 54 0.007 32 20-0.002 33 21 0.010 34 9 0.021 35 8 0.003 36 7 0.004 37 2 0.017 38 3 0.004 39 28 0.009 S58

40 29 0.004 41 37 0.010 42 36 0.032 43 71 0.001 44 65 0.058 45 64 0.006 46 63 0.004 47 62 0.002 48 61 0.007 49 53 0.043 50 52-0.003 51 22 0.005 52 23 0.002 53 24 0.024 54 25 0.004 55 26 0.006 56 27 0.017 57 39 0.001 58 38 0.029 59 46 0.013 60 47 0.005 61 48 0.033 62 9 0.020 63 8 0.004 64 20 0.027 65 19 0.004 66 53 0.024 67 54 0.005 68 55 0.021 69 17 0.023 70 18 0.019 S59

Figure S40. Partial electrophilic Fukui function (f k + ) distribution in 1,4-Bn 2-11-MeOC 60 calculated at the B3LYP/6-311G(d) level. S60

Table S3. Electrophilic Fukui indexes (f k + ) for C 60 carbon atoms in 1,4-Bn 2-11-MeOC 60 calculated at the B3LYP/6-311G(d) level. Atomic number in Figure S40 Atomic number in the Cartesian coordinates Fukui Index 1 2-0.003 2 1 0.029 3 3 0.004 4 8-0.002 5 12 0.020 6 5 0.008 7 13 0.017 8 14 0.014 9 6 0.008 10 15 0.015 11 11 0.000 12 4 0.004 13 10 0.021 14 9 0.027 15 21 0.016 16 31 0.031 17 19 0.020 18 30 0.026 19 24 0.006 20 39 0.002 21 25 0.024 22 40 0.005 23 41 0.003 24 26 0.023 25 42 0.005 26 27 0.005 27 38 0.026 28 23 0.017 29 36 0.031 30 22 0.016 31 37 0.006 32 35 0.005 33 51 0.021 34 28-0.000 35 63 0.006 36 47 0.022 37 62 0.027 38 55 0.029 39 56 0.030 S61

40 72 0.026 41 73 0.030 42 57 0.034 43 58 0.025 44 71 0.027 45 54 0.024 46 69 0.005 47 52 0.005 48 53 0.023 49 70 0.006 50 68 0.006 51 80 0.011 52 76 0.022 53 75 0.005 54 84 0.002 55 88 0.031 56 85 0.001 57 83 0.005 58 81 0.025 59 82 0.013 60 87 0.011 S62

Figure S41. Partial NBO charge distribution in intermediate A calculated at the B3LYP/6-311G(d) level. S63

Table S4. NBO charge distribution for C 70 carbon cage in intermediate A calculated at the B3LYP/6-311G(d) level Atomic number in Figure S41 Atomic number in the cartesian coordinates Charge 1 15-0.020 2 16-0.011 3 17-0.015 4 12-0.013 5 13 0.265 6 14-0.065 7 32-0.059 8 33 0.024 9 70-0.018 10 69-0.018 11 58-0.020 12 57 0.001 13 56-0.017 14 18-0.018 15 19 0.005 16 10-0.073 17 11 0.009 18 6-0.065 19 5 0.265 20 4-0.013 21 31-0.011 22 30-0.003 23 35-0.064 24 34 0.000 25 66-0.027 26 67-0.007 27 68-0.010 28 59-0.014 29 60 0.002 30 55-0.031 31 54-0.027 32 20-0.059 33 21 0.024 34 9 0.016 35 8-0.023 36 7-0.005 37 2-0.073 38 3 0.012 39 28-0.032 S64

40 29-0.015 41 37-0.021 42 36 0.041 43 71-0.031 44 65 0.010 45 64-0.017 46 63-0.014 47 62-0.013 48 61-0.028 49 53 0.005 50 52-0.003 51 22 0.005 52 23 0.002 53 24 0.024 54 25 0.004 55 26 0.006 56 27 0.017 57 39 0.001 58 38 0.029 59 46 0.013 60 47 0.005 61 48 0.033 62 9 0.020 63 8 0.004 64 20 0.027 65 19 0.004 66 53 0.024 67 54 0.005 68 55 0.021 69 17 0.023 70 18 0.019 S65

Figure S42. Partial NBO charge distributions in intermediate B calculated at the B3LYP/6-311G(d) level. S66

Table S5. NBO charge distribution for C 70 carbon cage in intermediate B calculated at the B3LYP/6-311G(d) level. Atomic number in Figure S42 Atomic number in the cartesian coordinates Charge 1 15-0.024 2 16-0.024 3 17-0.017 4 12-0.027 5 13-0.014 6 14 0.006 7 32-0.056 8 33-0.013 9 70-0.023 10 69-0.037 11 58-0.018 12 57-0.006 13 56-0.042 14 18-0.027 15 19-0.023 16 10-0.072 17 11 0.004 18 6-0.087 19 5 0.263 20 4-0.030 21 31-0.014 22 30-0.013 23 35-0.056 24 34-0.014 25 56-0.042 26 67 0.009 27 68-0.096 28 59-0.000 29 60-0.067 30 55-0.027 31 54-0.028 32 20-0.025 33 21-0.051 34 9-0.011 35 8-0.022 36 7-0.005 37 2-0.096 38 3 0.009 39 28-0.037 S67

40 29-0.022 41 37-0.024 42 36 0.006 43 71-0.015 44 65 0.263 45 64-0.086 46 63-0.005 47 62-0.022 48 61-0.010 49 53-0.054 50 52-0.008 51 22-0.008 52 23-0.054 53 24-0.010 54 25-0.067 55 26-0.000 56 27-0.018 57 39-0.006 58 38-0.023 59 46-0.018 60 47-0.027 61 48 0.004 62 49-0.072 63 50-0.011 64 51-0.051 65 43-0.025 66 42-0.028 67 41-0.028 68 40-0.042 69 45-0.027 70 44-0.023 S68

Figure S43. Partial electrophilic Fukui function (f k + ) distribution in compound 2a calculated at the B3LYP/6-311G(d) level. S69

Table S6. Electrophilic Fukui function (f k + ) distribution for C 70 carbon cage in compound 2a calculated at the B3LYP/6-311G(d) level. Atomic number in Figure S43 Atomic number in the cartesian coordinates Fukui Index 1 18 0.011 2 19-0.001 3 20 0.024 4 15 0.007 5 16 0.007 6 17 0.021 7 35-0.003 8 36 0.005 9 73 0.013 10 72 0.001 11 61 0.016 12 60 0.026 13 59 0.011 14 21 0.011 15 22 0.002 16 13 0.014 17 14 0.012 18 9 0.011 19 8 0.000 20 7 0.006 21 34 0.011 22 33 0.005 23 38-0.003 24 37 0.011 25 69 0.006 26 70 0.005 27 71-0.004 28 62 0.029 29 63 0.005 30 58 0.005 31 57 0.035 32 23 0.024 33 24 0.026 34 12 0.016 35 11-0.004 36 10 0.015 37 5-0.004 38 6 0.005 39 31 0.001 S70

40 32 0.013 41 40 0.011 42 39 0.021 43 74 0.007 44 68 0.000 45 67 0.011 46 66 0.015 47 65-0.004 48 64 0.057 49 56 0.003 50 55 0.003 51 25 0.003 52 26 0.003 53 27 0.057 54 28 0.005 55 29 0.029 56 30 0.016 57 42 0.026 58 41-0.001 59 49 0.024 60 50 0.007 61 51 0.012 62 52 0.014 63 53 0.016 64 54 0.026 65 46 0.024 66 45 0.035 67 44 0.005 68 43 0.011 69 48 0.011 70 47 0.002 S71

Figure S44. Partial NBO charge distributions in intermediate C calculated at the B3LYP/6-311G(d) level. S72

Table S7. NBO charge distributions for C 70 carbon cage in intermediate C calculated at the B3LYP/6-311G(d) level. Atomic number in Figure Atomic number in the cartesian Charge S43 coordinates 1 68-0.026 2 30-0.002 3 21-0.023 4 43-0.001 5 27-0.024 6 16 0.022 7 110-0.060 8 45 0.027 9 47-0.024 10 96-0.011 11 12-0.027 12 36-0.018 13 55-0.033 14 22-0.002 15 32 0.001 16 52-0.038 17 11-0.006 18 46-0.052 19 33 0.273 20 44-0.022 21 37-0.011 22 67 0.027 23 56-0.059 24 58-0.016 25 14-0.022 26 42 0.033 27 64-0.065 28 74 0.026 29 57-0.027 30 7-0.013 31 93-0.055 32 34 0.009 33 20-0.093 34 10 0.021 35 39-0.064 36 5 0.009 37 8-0.061 38 54 0.039 S73

39 69-0.018 40 65-0.021 41 35-0.020 42 31 0.010 43 62-0.017 44 70 0.275 45 41-0.021 46 15 0.020 47 19-0.021 48 38-0.054 49 53 0.007 50 28-0.014 51 24-0.004 52 18-0.027 53 85 0.263 54 23-0.006 55 51 0.006 56 49-0.003 57 82-0.017 58 50-0.005 59 25-0.026 60 73-0.015 61 13-0.017 62 71-0.024 63 9-0.027 64 40 0.003 65 17-0.063 66 84 0.013 67 48-0.003 68 89-0.018 69 83-0.020 70 29 0.008 S74

Optimized structure, cartesian coordinates and the lowest frequency for 7,23-Bn 2 C 70 obtained at B3LYP/6-31G level. Geometry for 7,23-Bn 2 C 70 Charge = 0 Multiplicity = 1 C 0.75478200-1.94606200-3.11602200 C -0.61669600-1.58657500-2.82532800 C -1.27793900-2.04080300-1.65151200 C -0.62432700-3.09200200-0.94356800 C 0.72988300-3.44073700-1.21974100 C 1.49114000-2.76565800-2.22895900 C 2.89346600-2.41554400-1.94146300 C 3.43860700-2.76905000-0.67356400 C 2.67402100-3.54638000 0.29417600 C 1.34997500-3.86885700 0.02873200 C 0.35632800-3.79871400 1.08498700 C -0.87147300-3.30914000 0.48875400 C -1.69713500-2.45647100 1.18889200 C -1.29856000-2.00856100 2.49605900 C -0.12176900-2.48263100 3.10169400 C 0.72691400-3.40666900 2.37667400 C 2.11559000-3.05924700 2.65668300 C 3.06550700-3.12950100 1.63272000 C 4.05372300-2.07594100 1.47600100 C 4.28448200-1.86489600 0.05394800 C 4.60803500-0.57501500-0.46271400 C 4.29351700-0.35010500-1.83109900 C 3.44787600-1.25971000-2.56399600 C 2.69418600-0.48827100-3.53702300 C 1.36975900-0.82456300-3.80547700 C 0.37180000 0.22137800-3.96380100 C -0.85005500-0.26254200-3.33977400 C -1.65812900 0.60728700-2.61107100 C -2.31083500 0.17169900-1.40148300 C -2.16670500-1.12100600-0.93212000 S75

C -2.61094400-1.41796700 0.51134900 C -2.31092000-0.17139400 1.40133700 C -2.16660100 1.12127900 0.93198600 C -2.61072700 1.41831000-0.51150500 C -1.69676300 2.45669500-1.18899700 C -1.29818000 2.00873000-2.49614700 C -0.12130300 2.48265100-3.10172500 C 0.73402800 1.56506400-3.84628300 C 2.12059700 1.92016600-3.56876100 C 3.07717400 0.91021400-3.41550900 C 4.06049400 0.99071300-2.34689100 C 4.05405700 2.07544400-1.47584300 C 3.06598600 3.12913100-1.63261300 C 2.11610800 3.05899200-2.65661700 C 0.72745800 3.40658500-2.37667300 C 0.35686100 3.79867300-1.08500000 C 1.35046700 3.86870000-0.02870500 C 2.67448800 3.54606800-0.29408300 C 3.43892500 2.76863700 0.67369400 C 4.28472200 1.86437600-0.05377800 C 4.60808000 0.57445400 0.46289900 C 4.29347500 0.34958200 1.83127300 C 4.06024900-0.99120700 2.34704800 C 3.07689300-0.91058800 3.41562100 C 2.12018100-1.92042100 3.56882700 C 0.73364200-1.56515000 3.84628400 C 0.37158300-0.22141400 3.96378100 C 1.36968000 0.82440300 3.80551000 C 2.69407400 0.48794700 3.53711600 C 3.44790700 1.25929400 2.56412600 C 2.89368900 2.41520800 1.94156900 C 1.49138900 2.76549900 2.22900700 C 0.73026200 3.44067900 1.21974900 C -0.62396700 3.09209400 0.94351300 C -1.27775700 2.04098000 1.65142200 C -0.61663100 1.58666500 2.82526900 C 0.75487400 1.94598400 3.11602600 C -0.85017500 0.26265200 3.33969600 C -1.65833400-0.60707400 2.61097000 C -0.87102800 3.30926500-0.48882700 C -4.13002100-1.85188300 0.59618300 H -4.37031900-1.96567600 1.65978800 H -4.72999500-1.01905200 0.21545000 C -4.48036900-3.11997500-0.15511400 S76

C -4.42379600-4.37220400 0.48116100 H -4.12927000-4.42833700 1.52509700 C -4.74635600-5.54334900-0.21260200 H -4.69948500-6.50133600 0.29565200 C -5.13269300-5.47974600-1.55632600 H -5.38501800-6.38754400-2.09502300 C -5.19796100-4.23852300-2.19996100 H -5.50277700-4.18012100-3.24014400 C -4.87595600-3.06917900-1.50345200 H -4.93346100-2.10874900-2.00731400 C -4.12976300 1.85239400-0.59635700 H -4.37003500 1.96621300-1.65996500 H -4.72981000 1.01961900-0.21562500 C -4.47996000 3.12050800 0.15496700 C -4.42270700 4.37281600-0.48109300 H -4.12779200 4.42900800-1.52491400 C -4.74509100 5.54396300 0.21274600 H -4.69769500 6.50201500-0.29533400 C -5.13192900 5.48028500 1.55632400 H -5.38411600 6.38808900 2.09507500 C -5.19786800 4.23898500 2.19974300 H -5.50306700 4.18053100 3.23981100 C -4.87603300 3.06963900 1.50316000 H -4.93402900 2.10914400 2.00684300 Lowest frequency = 18.61 cm 1 S77

Optimized structure, cartesian coordinates, the lowest frequency and sum of electronic and zero-point energies for intermediate A obtained at B3LYP/6-31G level. Geometry for intermediate A Charge = -1 Multiplicity = 1 O 3.57879800 0.14356000-1.72485100 C 2.30466200-1.58348800 1.08031300 C 1.95087000-0.07797800 0.90764800 C 1.72169800 0.55989100-0.30966200 C 2.16462400-0.19392500-1.55987000 C 1.90912100-1.71852700-1.37806900 C 1.82057200-2.35545400-0.15659500 C 0.97272200-3.54265600-0.03179700 C 0.28118300-4.01486700-1.18156800 C 0.45721700-3.38214500-2.46267000 C 1.23340700-2.22848200-2.53808900 C 0.82775600-1.12296400-3.38511600 C 1.24075800 0.10819700-2.75198800 C 0.40444000 1.19808200-2.79380400 C -0.86096300 1.09879000-3.48266300 C -1.23733600-0.06662100-4.16487100 C -0.36438300-1.21531800-4.11463900 C -1.19617400-2.41362100-4.01850200 C -0.78829700-3.47450700-3.20768400 C -1.74344800-4.15780500-2.35177600 C -1.07864200-4.50217100-1.10490500 C -1.77242100-4.51332100 0.12831700 C -0.97514900-4.31068000 1.30241100 C 0.36941100-3.84611900 1.22382300 C 0.64837400-3.03090000 2.41635200 C 1.45235100-1.91311400 2.32347100 C 1.04654700-0.70508200 2.99078200 C 1.34656300 0.40183500 2.09535300 C 0.49839100 1.51509600 2.04212300 C 0.25491700 2.16778000 0.80631700 S78

C 0.86628900 1.71889400-0.36626400 C 0.32519300 2.26898800-1.69322900 C -1.22556900 2.42678300-1.56662800 C -1.92139600 2.58769500-0.38190700 C -1.11426800 2.91187300 0.88413900 C -1.71171800 2.23892300 2.13455000 C -0.68502900 1.56983900 2.88610000 C -0.98330300 0.50184900 3.74152600 C -0.09866300-0.66066500 3.79530300 C -0.92259100-1.84541000 3.92367600 C -0.55505800-3.00491700 3.22793900 C -1.56099100-3.78634400 2.53203700 C -2.89127500-3.38837200 2.55156500 C -3.27889800-2.18361300 3.26504300 C -2.31847100-1.42271900 3.94198300 C -2.35024200 0.03148200 3.83814100 C -3.33787000 0.65214600 3.06091000 C -4.32872400-0.14716900 2.36499900 C -4.30379500-1.53182900 2.46679500 C -4.56305800-2.35054300 1.28554000 C -3.69728600-3.48886000 1.33762000 C -3.18338300-4.08626300 0.14776600 C -3.78956500-3.67654200-1.07218500 C -3.07627500-3.75415400-2.33801400 C -3.51135300-2.65540800-3.18357200 C -2.59040300-1.99380300-4.00999200 C -2.61767300-0.54048400-4.10305100 C -3.56185400 0.18286500-3.37188400 C -4.51463300-0.50482500-2.51688900 C -4.48762100-1.89404800-2.42252200 C -4.66171600-2.52831400-1.12474900 C -4.94672600-1.76542800 0.04141900 C -4.97723400-0.29538000-0.06513600 C -4.61962800 0.48610300 1.08182300 C -3.80767000 1.65133500 0.97107600 C -3.29515800 2.08047000-0.28916100 C -3.88522700 1.47377300-1.43107500 C -4.72365400 0.29878500-1.32365200 C -3.17183600 1.40083000-2.67903000 C -1.84886800 1.83686900-2.72199200 C -3.00483100 1.76877000 2.19729100 C 0.99778800 3.62990300-2.13010800 H 0.47175400 3.96364900-3.03246000 H 0.78690800 4.36449800-1.34669200 S79

C 2.48882600 3.58397800-2.38977100 C 2.98674000 3.33279600-3.67990100 H 2.29129800 3.16217500-4.49689600 C 4.36418600 3.31347300-3.92459200 H 4.73146500 3.12711800-4.92917800 C 5.26630900 3.54615900-2.87994900 H 6.33498200 3.53565500-3.06911100 C 4.78189500 3.80276900-1.59220700 H 5.47519400 3.99654600-0.77933700 C 3.40471600 3.82236200-1.35087000 H 3.03492000 4.02810000-0.35048900 C -0.93631100 4.46737900 1.11043600 H -0.27441700 4.58831600 1.97603400 H -0.40843200 4.86917400 0.24008800 C -2.22214800 5.23883400 1.32767500 C -2.73957500 5.42436400 2.62154900 H -2.20856800 5.01013300 3.47368400 C -3.92570000 6.13781300 2.82338100 H -4.30896600 6.27289100 3.82993300 C -4.61367700 6.67959800 1.73153400 H -5.53299300 7.23517500 1.88697600 C -4.10650000 6.50613900 0.43856100 H -4.63086700 6.92837400-0.41296100 C -2.91971000 5.79299000 0.23997700 H -2.52908900 5.66714600-0.76565400 C 4.26167700-0.40768900-2.89549700 H 5.31893400-0.28890700-2.66490900 H 3.98857200 0.14484100-3.79923700 H 4.03870600-1.47311000-3.02211700 Lowest frequency = 21.30 cm 1 Sum of electronic and zero-point energies = -3322.8663 hartree (1 hartree = 627.5095 kcal/mol) S80

Optimized structure, cartesian coordinates, the lowest frequency and sum of electronic and zero-point energies for the isomer of intermediate A obtained at B3LYP/6-31G level. Geometry for the isomer of intermediate A Charge = -1 Multiplicity = 1 C 0.78275400 1.22720700 3.37766200 C -0.60227400 1.04012500 2.98644900 C -1.18794200 1.82922800 1.94983500 C -0.44929900 2.96722400 1.53804600 C 0.92194100 3.15169000 1.91892700 C 1.59948400 2.19434100 2.73821300 C 2.98928700 1.83183300 2.40342900 C 3.60385600 2.44797500 1.27457700 C 2.92525100 3.48644200 0.51229900 C 1.60891600 3.81826100 0.82538500 C 0.65272100 4.07112500-0.23888700 C -0.62404600 3.53526300 0.19294600 C -1.48048200 2.94894200-0.71569100 C -1.05873700 2.80373400-2.08265900 C 0.16870300 3.32785000-2.52791400 C 1.04527900 3.98228500-1.58065100 C 2.42349200 3.62523300-1.91355500 C 3.33788700 3.38137400-0.87743000 C 4.25629700 2.25982600-0.96449100 C 4.42767500 1.69366700 0.36711500 C 4.65623100 0.30081300 0.55833700 C 4.27376900-0.23289000 1.82384400 C 3.45195000 0.52445500 2.73487600 C 2.61688000-0.41160600 3.47010700 C 1.29956800-0.06359500 3.77132600 C 0.23511600-1.04974900 3.65852000 C -0.94890000-0.33705100 3.17631200 C -1.74655300-0.95716400 2.20837500 C -2.32908200-0.17994700 1.13580500 S81

C -2.10642400 1.17293900 1.00542700 C -2.48064400 1.83994500-0.33200600 C -2.22468200 0.83061100-1.49667300 C -2.16138700-0.54613400-1.35164400 C -2.65981900-1.14943400-0.03131500 C -1.83658300-2.37940300 0.40629600 C -1.50734700-2.29824000 1.76646000 C -0.48250800-3.19262100 2.42566600 C 0.51892600-2.34793300 3.24965300 C 1.87223000-2.68262200 2.88466700 C 2.91662400-1.75111200 3.02349200 C 3.93696800-1.63664700 1.98948200 C 3.90255300-2.47365100 0.87942900 C 2.84721400-3.47100200 0.74665100 C 1.83553600-3.56416600 1.72211500 C 0.46229500-3.78482700 1.35603200 C 0.11862700-3.80171300 0.00660500 C 1.15010400-3.66624500-1.01189900 C 2.48924900-3.52138100-0.64737400 C 3.32954200-2.58125900-1.37842900 C 4.21164000-1.94347200-0.43702100 C 4.62497800-0.58835500-0.61960800 C 4.37444600-0.01802500-1.89747600 C 4.23006900 1.41945600-2.07476000 C 3.28241100 1.66328500-3.15095700 C 2.39387100 2.75034200-3.07215100 C 0.99786200 2.55889700-3.45075900 C 0.56103200 1.30953500-3.89709600 C 1.48786700 0.18964600-3.97883600 C 2.82786100 0.36921700-3.61964800 C 3.49531800-0.66265800-2.84450100 C 2.84968700-1.89475700-2.53131700 C 1.43670100-2.07276800-2.92018000 C 0.60892700-2.92401800-2.12392300 C -0.74816000-2.56603200-1.78181000 C -1.30489900-1.32361800-2.24384100 C -0.57528500-0.64761900-3.25644600 C 0.78578900-1.01836100-3.60971900 C -0.71178400 0.77323400-3.43855900 C -1.49987600 1.49929300-2.54465300 C -1.07551700-3.13185800-0.49738300 C -3.96579900 2.37541200-0.34376800 H -4.16264400 2.74909300-1.35609000 H -4.62546300 1.51675200-0.18040500 S82

C -4.27842200 3.45428000 0.67236900 C -4.13328900 4.81426400 0.34677200 H -3.78617100 5.08866000-0.64501000 C -4.42484100 5.81228000 1.28270100 H -4.30434600 6.85708100 1.01181800 C -4.86879000 5.46583900 2.56402700 H -5.09449000 6.23928000 3.29213000 C -5.01843500 4.11553500 2.90122800 H -5.35983700 3.83648000 3.89362300 C -4.72685800 3.12027000 1.96266800 H -4.84018700 2.07439600 2.23166800 C -4.20217000-1.49397300-0.07128000 H -4.47602900-1.81487100 0.94046500 H -4.74335000-0.56502100-0.27991900 C -4.61320400-2.55137300-1.07532200 C -4.59866700-3.91458200-0.73033200 H -4.27141700-4.20694500 0.26270400 C -4.98720100-4.89064700-1.65349400 H -4.96561100-5.93862500-1.36962000 C -5.39775500-4.51984000-2.93955300 H -5.69806200-5.27774700-3.65714000 C -5.41568200-3.16652600-3.29568800 H -5.72955900-2.86921200-4.29203900 C -5.02749600-2.19218100-2.36963200 H -5.03997600-1.14324000-2.65129400 O -1.23558100-4.19837600 3.21571400 C -0.41894800-5.16483400 3.92705300 H 0.23192100-4.68333300 4.66860900 H -1.12568600-5.82289900 4.43773700 H 0.20197600-5.75653800 3.24195400 Lowest frequency = 17.91 cm 1 Sum of electronic and zero-point energies = -3322.8641 hartree (1 hartree = 627.5095 kcal/mol) S83

Optimized structure, cartesian coordinates and the lowest frequency for 1,4-Bn 2-11-MeOC 60 obtained at B3LYP/6-31G level Geometry for intermediate 1,4-Bn 2-11-MeOC 60 Charge = -1 Multiplicity = 1 C 1.35256800 1.85317300-0.61588200 C 1.60971000 2.03629700 0.86808500 C 1.76845000 0.71961700-1.34592300 C 0.32394000 2.55839000-1.31458800 C 1.78493300 0.62558300 1.50245700 C 0.28343700 2.48776500 1.53310400 C 2.72347900 3.09578100 1.21554900 C 2.44259100-0.50130000-0.73642500 C 0.92286700 0.63180700-2.49843100 C 0.01251600 1.79521100-2.47347400 C -0.67024600 3.45742200-0.65348600 C 2.14448100-0.50458000 0.78702100 C 0.88185200 0.49029200 2.62504500 C -0.02313800 1.63139400 2.64826600 C -0.72983700 3.13967400 0.86247300 H 2.35297400 4.05139100 0.82564100 H 2.76028100 3.18119100 2.30895500 C 4.11308400 2.83565500 0.68077700 C 1.66063800-1.77328100-1.17434500 C 3.97296800-0.58889500-1.10574600 C 0.47646400-0.58731400-3.02649700 C -1.29176700 1.66943600-2.98742600 C -2.11209000 3.06027000-1.08208400 C 1.61435500-1.79331000 1.17505800 C 0.42311100-0.76287000 3.05601300 C -1.34122100 1.48100700 3.10209400 C -2.09744500 2.93854000 1.27527900 C 5.09817300 2.24184000 1.48938500 C 4.45952500 3.21136000-0.63026100 C 1.32496000-2.56937200-0.02589900 S84

C 0.84371900-1.82086200-2.29515500 H 4.02566800-0.53244800-2.19946000 H 4.45190500 0.31289500-0.71471400 C 4.70368300-1.82325600-0.62019500 C -0.87808500-0.72448900-3.48590500 C -2.37859500 2.29812100-2.21653200 C -1.75515800 0.39598100-3.46223300 C -2.94157700 2.88152100 0.08440800 C 0.79756800-1.93954300 2.30599900 C -0.95882800-0.92807900 3.50267600 C -1.82348700 0.17076300 3.52838800 C -2.40888800 2.14856200 2.39253500 H 4.84532000 1.95131800 2.50559400 C 6.39434600 2.02759700 1.00504000 C 5.75376000 2.99809000-1.11692100 H 3.70574500 3.66490800-1.26585600 C 0.23496600-3.45678500-0.04720900 C -0.30526200-2.70794900-2.32615000 C 5.32562900-1.84670200 0.64119400 C 4.77470300-2.98036400-1.41699800 C -1.37518300-2.02783300-3.05011400 C -3.51735000 1.39220900-2.24128100 C -3.13191100 0.20960100-3.00610700 C -4.06252100 2.03494600 0.06850700 C -0.34616700-2.84528500 2.27850900 C -1.43514200-2.21715300 3.02161300 C -3.19885200 0.03030600 3.07208600 C -3.56307800 1.25815600 2.36750800 H 7.14204200 1.56886100 1.64562700 C 6.72619900 2.40584500-0.30138300 H 6.00142900 3.29219500-2.13255500 C -0.62332900-3.58362300 1.12552100 C -0.60069600-3.52665500-1.22836800 H 5.28266400-0.95997600 1.26591200 C 5.99549800-2.98897700 1.09280600 C 5.44369500-4.12473100-0.96947400 H 4.29545700-2.98111800-2.39171100 C -2.70315700-2.20002100-2.64751000 C -4.35623900 1.27087700-1.12817600 C -3.60363500-1.04944900-2.62304200 C -4.36663600 1.19857900 1.22673700 C -2.75729500-2.35422600 2.57654300 C -3.65689900-1.20750200 2.60158900 H 7.73041000 2.23961600-0.67977100 S85

C -1.99922600-3.72792800 0.66171200 C -1.98481200-3.69356300-0.79726100 H 6.46839200-2.98555000 2.07098800 C 6.05731100-4.13343000 0.28867400 H 5.48391900-5.00768700-1.60110200 C -3.00793800-3.03478700-1.48810100 C -4.83998400-0.04543600-0.71876200 C -4.46187600-1.17780500-1.44797500 C -4.84687300-0.08970000 0.73831700 C -3.04514800-3.12739500 1.37238500 C -4.50018500-1.26861700 1.41174900 H 6.57652200-5.02111500 0.63847700 C -4.09659900-2.40468900-0.75003600 C -4.11825600-2.45186800 0.65094600 O -0.31177500 4.87600200-0.93392100 C -1.23781000 5.87205500-0.42777700 H -0.82497500 6.83762700-0.73018700 H -2.24030500 5.75500300-0.85958300 H -1.31979000 5.84029200 0.66759900 Lowest frequency = 18.44cm 1 S86

Optimized structure, cartesian coordinates and the lowest frequency for intermediate B obtained at B3LYP/6-31G level. Geometry for intermediate B Charge = -2 Multiplicity = 1 O -4.22422300 2.26241400-1.29158400 C -2.38066600-0.45701800-2.95167300 C -1.72793600 0.82215500-2.64321900 C -1.94591500 1.54018100-1.45180000 C -3.26025600 1.26096900-0.73625800 C -3.69588000-0.21712100-0.91035200 C -3.21330000-1.05248300-1.95128700 C -3.06519700-2.50279700-1.69567600 C -3.39334700-3.00858700-0.40359000 C -3.93083700-2.14964200 0.61909900 C -4.01245400-0.77124400 0.35919800 C -3.68325700 0.18212300 1.41422100 C -3.09905200 1.34572300 0.78968900 C -2.04476500 1.98579400 1.39728200 C -1.53835000 1.48222700 2.65170300 C -2.13702300 0.39498500 3.29901600 C -3.24484400-0.27738700 2.66082200 C -3.12155000-1.71318500 2.92816800 C -3.45486600-2.62223400 1.90960000 C -2.61489800-3.77850200 1.66260900 C -2.58809300-4.03275200 0.23878300 C -1.42728500-4.55343600-0.40382000 C -1.28333200-4.26694600-1.79419100 C -2.09400100-3.24449200-2.43331800 C -1.30936700-2.63059900-3.48021200 C -1.44255900-1.24275900-3.69271700 C -0.24088300-0.44685500-3.93876100 C -0.43789200 0.82636000-3.26870200 C 0.62886200 1.46725500-2.63033300 C 0.43115900 2.16530700-1.40626900 S87

C -0.84303600 2.21646300-0.82283900 C -0.92090300 2.70882000 0.62935800 C 0.33423100 2.18410100 1.40266400 C 1.54913300 1.79694700 0.81930000 C 1.79011500 2.23169800-0.63318400 C 2.59992400 1.16783100-1.40019900 C 1.95211200 0.86601700-2.65466000 C 2.14372300-0.36128300-3.30015600 C 1.02225100-1.03983600-3.95407200 C 1.16369700-2.47286400-3.72700800 C 0.00364400-3.24480600-3.48226600 C 0.01391800-4.24870500-2.43232400 C 1.17026500-4.44625100-1.65821300 C 2.35390500-3.64567400-1.90638900 C 2.35036500-2.67866600-2.92621000 C 2.95569700-1.37054500-2.66046900 C 3.52389600-1.08632000-1.41425600 C 3.50911400-2.09346600-0.35824100 C 2.96253200-3.36188000-0.61644400 C 2.16486200-3.98479200 0.40717900 C 1.05875600-4.67457300-0.23391000 C -0.21004300-4.76692600 0.40887200 C -0.24745400-4.44645800 1.79877500 C -1.46074800-3.98686500 2.43695100 C -1.10849800-3.04499400 3.48555200 C -1.93563800-1.92346500 3.72908400 C -1.31393400-0.62433000 3.95416800 C 0.07566700-0.49738400 3.93866800 C 0.93372100-1.65569200 3.69367800 C 0.33538300-2.91528100 3.48302900 C 0.86345400-3.76089600 2.43676900 C 2.02944700-3.39608700 1.69876200 C 2.66311700-2.08266000 1.95280300 C 3.39985100-1.46283800 0.91027800 C 3.49514400 0.07431400 0.73471800 C 2.35537800 0.78604900 1.44949600 C 1.90594500 0.18680200 2.64182700 C 2.08339000-1.23780400 2.95216200 C 0.69483800 0.63145700 3.26699800 C -0.08958600 1.59682800 2.62749800 C 3.37269600 0.20765500-0.79141300 C -1.03756200 4.27829900 0.74748700 H -0.92439200 4.52004200 1.81173100 H -0.17759300 4.71022400 0.22470300 S88

C -2.30950100 4.90746000 0.22069200 C -3.38509300 5.18058100 1.08348800 H -3.30269100 4.90924100 2.13214700 C -4.55384900 5.78518300 0.60885600 H -5.37415400 5.98568700 1.29332600 C -4.66764600 6.12751300-0.74365100 H -5.57542200 6.59524800-1.11587200 C -3.60728100 5.85313100-1.61496200 H -3.69199800 6.09796300-2.66999800 C -2.44073000 5.25033300-1.13593600 H -1.62726800 5.02533400-1.81860200 C 2.43518600 3.66771300-0.75426300 H 2.41431700 3.92946800-1.81953000 H 1.77314700 4.36952000-0.23574300 C 3.84389100 3.82806500-0.22378600 C 4.95116500 3.71983800-1.08306900 H 4.78503200 3.49170400-2.13221200 C 6.25420900 3.89218300-0.60426500 H 7.09608100 3.80172900-1.28591300 C 6.47311200 4.17577700 0.74891800 H 7.48458600 4.30727900 1.12442900 C 5.37965200 4.27946500 1.61632700 H 5.53901000 4.48199400 2.67167200 C 4.07941400 4.10837700 1.13312400 H 3.23580400 4.17393800 1.81288500 C -5.58234400 2.13579300-0.80973200 H -6.15221500 2.90796300-1.33366600 H -5.65086000 2.31076600 0.27317300 H -6.00204400 1.14638600-1.03468600 O 4.74312800 0.68571700 1.29001500 C 5.97636700 0.11261600 0.79724200 H 6.03875500-0.96251800 1.01138100 H 6.09561300 0.26514600-0.28460200 H 6.77583500 0.64180600 1.32301800 Lowest frequency = 22.35 cm 1 S89

Optimized structure, cartesian coordinates and the lowest frequency for 2a obtained at B3LYP/6-31G level. Geometry for 2a Charge = 0 Multiplicity = 1 Br 7.82709600-1.16163600 1.03621800 Br -7.82723100-1.16163300-1.03631800 O 4.28969500-1.14238200 1.99691300 O -4.28976000-1.14212000-1.99696800 C 3.92344400 1.08757700-0.71767700 C 3.14625800-0.26034100-0.75174000 C 2.59189400-0.89747800 0.35669400 C 3.05782200-0.40133200 1.72318900 C 3.25599000 1.14246200 1.68506800 C 3.51021900 1.86895800 0.53938000 C 3.04621600 3.25566000 0.45625300 C 2.35943500 3.81658100 1.57110800 C 2.18053500 3.06227700 2.78821200 C 2.59632300 1.73327300 2.81702300 C 1.79745000 0.72860600 3.49102400 C 1.93982100-0.51770200 2.77331400 C 0.83779600-1.32096700 2.60345500 C -0.43124500-0.91196600 3.15485200 C -0.56419100 0.25105600 3.91656600 C 0.58858400 1.10136100 4.09586400 C 0.13591100 2.49007900 4.04659000 C 0.92383600 3.44836300 3.40231000 C 0.31475200 4.43661800 2.52810200 C 1.21409000 4.67411500 1.40353600 C 0.72776200 4.98797900 0.11148500 C 1.59318600 4.66000200-0.98390700 S90

C 2.73149800 3.81931900-0.81243300 C 2.92827300 3.05104200-2.05523100 C 3.36960000 1.74373100-2.00055200 C 2.73289000 0.76017100-2.83319800 C 2.59125200-0.45080400-2.03995700 C 1.46349300-1.26713900-2.19761000 C 0.88943800-1.91545900-1.07750400 C 1.44917000-1.75931700 0.19334500 C 0.61020500-2.23134500 1.38523700 C -0.88948900-1.91548500 1.07741400 C -1.44921400-1.75927300-0.19343100 C -0.61026000-2.23127800-1.38533600 C -0.83783200-1.32085600-2.60353200 C 0.43122200-0.91186200-3.15491000 C 0.56420600 0.25118800-3.91657700 C 1.73857400 1.10909900-3.75480400 C 1.30407100 2.48709600-3.84035200 C 1.88913700 3.43931700-2.98795800 C 1.05993900 4.42593000-2.32288200 C -0.31461900 4.43672500-2.52795200 C -0.92372800 3.44851800-3.40219700 C -0.13583400 2.49023600-4.04651600 C -0.58854500 1.10152900-4.09584200 C -1.79742200 0.72878600-3.49101600 C -2.59626100 1.73345100-2.81697100 C -2.18043600 3.06244200-2.78811400 C -2.35931700 3.81670300-1.57098200 C -1.21395000 4.67420100-1.40337600 C -0.72761100 4.98800200-0.11131300 C -1.59304600 4.66000900 0.98406600 C -1.05980500 4.42586900 2.32303100 C -1.88903200 3.43925600 2.98806700 C -1.30399400 2.48699000 3.84043000 C -1.73853500 1.10900700 3.75482600 C -2.73286300 0.76013800 2.83321000 C -3.36954500 1.74375000 2.00060300 C -2.92817900 3.05104600 2.05532700 C -2.73138200 3.81936600 0.81256000 C -3.04611200 3.25576000-0.45614700 C -3.51014800 1.86907400-0.53932300 C -3.25593800 1.14261600-1.68503800 C -3.05783100-0.40117900-1.72322400 C -2.59191800-0.89740200-0.35674600 C -3.14626500-0.26028800 0.75171300 S91

C -3.92341100 1.08766000 0.71770400 C -2.59126000-0.45081100 2.03992300 C -1.46352700-1.26718700 2.19754400 C -1.93983300-0.51755000-2.77336100 C 5.50056200 0.94284900-0.72902800 H 5.90207600 1.96165000-0.79347300 H 5.81346200 0.54372400 0.23729100 C 6.08623000 0.10383400-1.84854600 C 6.24116300 0.65951100-3.12877700 H 5.92058200 1.68237100-3.30030400 C 6.80317000-0.07075000-4.18026700 H 6.90816900 0.38423700-5.15991300 C 7.23710300-1.38144000-3.95967200 H 7.68032300-1.95704200-4.76567000 C 7.10875100-1.94182300-2.68767700 H 7.46294400-2.95264500-2.50656800 C 6.53441700-1.22272300-1.62296200 C 6.41785300-1.89101000-0.29705900 H 6.64975100-2.95272700-0.34133600 H 5.49900200-1.71295700 0.25669700 C -5.50054100 0.94300100 0.72903100 H -5.90201900 1.96181400 0.79353100 H -5.81343900 0.54395600-0.23732100 C -6.08627600 0.10392300 1.84848100 C -6.53443400-1.22263600 1.62283000 C -7.10873300-1.94180800 2.68751700 H -7.46287300-2.95264200 2.50636500 C -7.23713800-1.38147400 3.95952800 H -7.68034300-1.95712300 4.76549900 C -6.80327500-0.07077100 4.18018100 H -6.90832500 0.38417300 5.15984000 C -6.24126800 0.65955000 3.12872900 H -5.92072300 1.68241400 3.30030000 C -6.41784200-1.89087500 0.29690700 H -6.64965000-2.95261100 0.34116200 H -5.49902900-1.71273400-0.25688200 C 0.81432500-3.75740300 1.73768600 H 0.08991700-3.99489500 2.52583100 H 0.53083500-4.33997600 0.85602900 C 2.20573600-4.15865500 2.18070100 C 2.55610400-4.14957400 3.54187000 H 1.82035300-3.84371700 4.28032900 C 3.83416700-4.54062200 3.95544700 H 4.08467500-4.53585900 5.01187300 S92

C 4.78344600-4.94835800 3.01098500 H 5.77409800-5.25609100 3.33019500 C 4.44430400-4.96644300 1.65331600 H 5.17161000-5.29293600 0.91614200 C 3.16565400-4.57611600 1.24310800 H 2.90680800-4.59932400 0.18847700 C -0.81437700-3.75734300-1.73775900 H -0.08995700-3.99488300-2.52588000 H -0.53090300-4.33986600-0.85606300 C -2.20579200-4.15864400-2.18072100 C -2.55622700-4.14962000-3.54187400 H -1.82051800-3.84378500-4.28038200 C -3.83428700-4.54075000-3.95537800 H -4.08484100-4.53605700-5.01179400 C -4.78350800-4.94848900-3.01085400 H -5.77416500-5.25626700-3.33000600 C -4.44430300-4.96650900-1.65320300 H -5.17155700-5.29301800-0.91598300 C -3.16564500-4.57612400-1.24307200 H -2.90674700-4.59929300-0.18845100 C 4.94164000-0.88866500 3.28177300 H 5.93134600-1.32774600 3.16950500 H 4.38955800-1.36291300 4.09864100 H 5.04396500 0.18612600 3.46987100 C -4.94170700-0.88828800-3.28180800 H -5.93147400-1.32722400-3.16950600 H -4.38971700-1.36261600-4.09868900 H -5.04387600 0.18651900-3.46989300 Lowest frequency = 20.40 cm 1 S93

Optimized structure, cartesian coordinates and the lowest frequency for intermediate C obtained at B3LYP/6-31G level. Geometry for intermediate C Charge = -1 Multiplicity = 1 Br 8.02568200-0.86386500-1.11277600 Br -7.69011400-1.77660200 1.00345200 O -4.10084400 4.87297000-0.63570900 O -4.10871600-1.58006400 1.95262200 C -3.46501200 1.58692800 0.65619600 O 4.44792200-0.92183500-2.06072400 C 1.83387400 3.27013300 3.17896100 C -3.86453700 0.84954500-0.63175700 C 2.31124600 3.91661700-1.34553200 C -2.42722900 3.50131000 1.78814000 C -2.56552500 1.33693900 2.91670100 C 2.81994200 0.64278600 2.88219400 C 2.63043400 1.91613900-2.70972300 C 2.74809500-0.84712900-0.39657200 C 3.53719000 1.97144100-0.42457900 C -0.65120000-1.60431500 2.54283000 C 0.22699400 4.50052700-2.24739600 C -1.69582100 4.57556100-0.70897200 C 3.01772100 3.32965600-0.26012300 C -1.33621400 4.47121700 1.69924000 C -0.52160800 0.74376000 4.15842900 C -0.13616700 2.15788600 4.17864500 C -3.00116400 2.94667900-1.86456000 C -0.85837400 4.84242300 0.39982100 C 0.63532000 1.27860700-4.00704400 C -5.96289200-0.23769600-1.78033200 C -1.79403300-0.86964500 2.75886600 C 0.59950600 4.90563800 0.18342000 C 0.86667800 3.58694000-3.16923200 S94