Similar documents

Synchronous Machine Modeling

Fun and Fascinating Bible Reference for Kids Ages 8 to 12. starts on page 3! starts on page 163!

Scripture quotations marked cev are from the Contemporary English Version, Copyright 1991, 1992, 1995 by American Bible Society. Used by permission.

Math 2930 Worksheet Introduction to Differential Equations

Application of Thermodynamics in Phase Diagrams. Today s Topics

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

1. Consider the initial value problem: find y(t) such that. y = y 2 t, y(0) = 1.

Sec. 1.1: Basics of Vectors

Surface x(u, v) and curve α(t) on it given by u(t) & v(t). Math 4140/5530: Differential Geometry

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v

Supplement to Chapter 6

CURVILINEAR MOTION: RECTANGULAR COMPONENTS (Sections )

CURVILINEAR MOTION: GENERAL & RECTANGULAR COMPONENTS

Math 234. What you should know on day one. August 28, You should be able to use general principles like. x = cos t, y = sin t, 0 t π.

Name: SOLUTIONS Date: 11/9/2017. M20550 Calculus III Tutorial Worksheet 8

Modeling with first order equations (Sect. 2.3). The mathematical modeling of natural processes.

CURVILINEAR MOTION: GENERAL & RECTANGULAR COMPONENTS

Quiz # 6 Date: Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

µ = e R p(t)dt where C is an arbitrary constant. In the presence of an initial value condition

CURVILINEAR MOTION: GENERAL & RECTANGULAR COMPONENTS APPLICATIONS

CURVILINEAR MOTION: GENERAL & RECTANGULAR COMPONENTS

Review Let A, B, and C be matrices of the same size, and let r and s be scalars. Then

ChE 344 Winter 2011 Final Exam + Solution. Open Book, Notes, and Web

6.641, Electromagnetic Fields, Forces, and Motion Prof. Markus Zahn Lecture 5: Method of Images Φ Φ Φ. x y z

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like)

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

Last 4 Digits of USC ID:

Chapter 3 - First Law of Thermodynamics

Exam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses.

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

AMATH 351 Mar 15, 2013 FINAL REVIEW. Instructor: Jiri Najemnik

Chapter 8 Similar Triangles

Solutions to PS 2 Physics 201

The Calculus of Vec- tors

Higher Order Linear Equations

MATH 31BH Homework 5 Solutions

dy dx dx = 7 1 x dx dy = 7 1 x dx e u du = 1 C = 0

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 2 Solutions

Narayana IIT Academy

Answer Keys For Math 225 Final Review Problem

An Overview of Mechanics

Design appropriate modeling for determining optimal friction reduction with surface textures

Properties of Transformations

Parts Manual. EPIC II Critical Care Bed REF 2031

,. *â â > V>V. â ND * 828.

Geometry Chapter 3 & 4 Test

Triangles. Example: In the given figure, S and T are points on PQ and PR respectively of PQR such that ST QR. Determine the length of PR.

Rodless cylinders Series 1600

DIFFERENTIATION RULES

The Friedmann Equation R = GM R 2. R(t) R R = GM R GM R. d dt. = d dt 1 2 R 2 = GM R + K. Kinetic + potential energy per unit mass = constant

Exam Thermodynamics 12 April 2018

MT EDUCARE LTD. SUMMATIVE ASSESSMENT Roll No. Code No. 31/1

Announcements September 19

ANSWER KEY WITH SOLUTION MATHEMATICS 1. C 2. A 3. A 4. A 5. D 6. A 7. D 8. A 9. C 10. D 11. D 12. A 13. C 14. C

ECE 422/522 Power System Operations & Planning/ Power Systems Analysis II 2 Synchronous Machine Modeling

Why is the Universe Expanding?

Section 3.1 Homework Solutions. 1. y = 5, so dy dx = y = 3x, so dy dx = y = x 12, so dy. dx = 12x11. dx = 12x 13

2011 Form B Solution. Jim Rahn

Computing inverse Laplace Transforms.

MAE 105 Introduction to Mathematical Physics HOMEWORK 1. Due on Thursday October 1st 2015

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 133 Part 2. I. Topics from linear algebra

Mathematics. Exercise 9.3. (Chapter 9) (Sequences and Series) Question 1: Find the 20 th and n th terms of the G.P. Answer 1:

Stochastic Differential Equations

Geometry and Motion Selected answers to Sections A and C Dwight Barkley 2016

Control Design of a Distributed Parameter. Fixed-Bed Reactor

Chemical Reaction Engineering. Dr. Yahia Alhamed

Expanding brackets and factorising

THE TRANSLATION PLANES OF ORDER 49 AND THEIR AUTOMORPHISM GROUPS

ACM/CMS 107 Linear Analysis & Applications Fall 2016 Assignment 4: Linear ODEs and Control Theory Due: 5th December 2016

Unit 2 VCE Specialist Maths. AT 2.1 Vectors Test Date: Friday 29 June 2018 Start Time: Finish Time: Total Time Allowed for Task: 75 min

Math 4381 / 6378 Symmetry Analysis

( ) = CV where C= CV ( ) is the capacitance which can be a function. Notes by MIT Student (and MZB)

Keywords: Acinonyx jubatus/cheetah/development/diet/hand raising/health/kitten/medication

The simplified model now consists only of Eq. 5. Degrees of freedom for the simplified model: 2-1

Final Exam December 20, 2011

Iterative methods to compute center and center-stable manifolds with application to the optimal output regulation problem

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

Chapter 2 Segment Measurement and Coordinate Graphing

Final Exam. Monday March 19, 3:30-5:30pm MAT 21D, Temple, Winter 2018

Homework Solutions: , plus Substitutions

Deconfinement and Polyakov loop in 2+1 flavor QCD

Lecture 7 - Separable Equations

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

FIITJEE JEE(Main)

Geometry Honors Review for Midterm Exam

Ordinary differentiall equations

uv = y2 u/v = x 4 y = 1/x 2 u = 1 y = 2/x 2 u = 2

Mathematical Economics: Lecture 9

C XZ if C XY > C YZ. Answers for the lesson Apply Properties of Chords. AC } DB therefore you can t show C BC > C CD. 4x x 1 8.

6. Linear Differential Equations of the Second Order


Ring Theory Problem Set 2 Solutions


Solutions: Homework 5

1 Solution to Homework 4

Linear Algebra I MAT Fall Alistair Savage. Department of Mathematics and Statistics. University of Ottawa


Transcription:

a 1 y(a) = 0, a [0, a 1 ) a 1 a 1

a 1 a 2 y(a) > 0, a (a 1, a 2 ) a 2 a 3 y(a) = 0, a [a 2, a 3 ] a 3 µ(c) c µ( ) µ(0) = µ(c) c > 0 µ ( ) < 0 µ ( ) > 0 a 3 c(a), a [0, a 3 ] a [0, a 3 ] p(a, c( )) = exp( a t=0 µ(c(t))dt) p(0, c( )) = 1, ṗ(a, c( )) = p(a, c( ))µ(c(a)). p(a, c( )) = 0 a > a 3 C 0 r t 0 a t 0 e ra p(a, c( )) e ra t 0 a p(a, c( )) t 0

a 3 a=0 e ra p(a, c( )) (y(a) c(a)) da t 0 u 0 (c( ), r) a3 a=0 e ra p(a, c( )) (y(a) c(a)) da C 0. u 0 (c( ), r) = 1. u 0 (c( ), r) c( ) r r µ (c(a))v 0 (a) = 1, V 0 (a) 1 a3 e r(t a) p(t, c( )) (y(t) c(t)) dt p(a, c( )) t=a a a 3 a 3 a 2 y(a) = 0 V 0 (a) = 0 c(a) = 0 a 2 a 2 r c( ) y( ) u 0

r a 1 q q a 1

1 q i N i i N i i qr R t 0 b r t 0 a 1 be ra 1 a 1 be ra 1 p(a 1, c( )) (1 q)be ra 1 p(a 1, c( )) t 0 p 1 (a, c( )), a a 1 a 1 a p 1 (a, c( )) = ( exp ) a t=a 1 µ(c(t))dt p 1 (a 1, c( )) = 1, ṗ 1 (a, c( )) = p 1 (a, c( ))µ(c(a)). b p 1 (a, c( )) = p(a,c( )) p(a 1,c( ))

a1 a3 b e ra p(a, )( c(a))da + a=0 e r(a a1) p 1 (a, ) (y(a) c(a)) da = bc 0. a=a 1 a3 u 1 (c( ), r) (1 q)be ra 1 p(a 1, c( )) + qr e r(a a1) p 1 (a, c( ))da a=a 1 = }{{} cf.(7) (1 q) e ra 1 p(a 1, c( )) a 3 a=a 1 e r(a a1) p 1 (a, c( )) (y(a) c(a)) da C 0 + a 1 a=0 e ra p(a, c( ))c(a)da + qr a3 a=a 1 e r(a a 1) p 1 (a, c( ))da. u 1 (c( ), r) = 1 r u 1 (c( ), r) c( ) r u r a [0, a 1 ) a (a 1, a 3 ] e ra 1 p(a 1, c( )) C 0 + a 1 a=0 e ra p(a, c( ))c(a)da

c( ) a 1 t 0 q, R c(a), a > a 1 µ (c(a))v 1 (a) = 1, V 1 (0) = C 0, V c (a) = (µ(c) + r) V 1 (a) + c(a), a [0, a 1 ). r B(r) r B (r) = rb(r) C 0 C 0 + a 1 a=0 e ra p(a)c(a)da < 0. a3 a3 u 2 (c( ), r) (1 q)b(r) e r(a a1) p 1 (a, c( )) (y(a) c(a)) da+qr a=a 1 e r(a a1) p 1 (a, c( ))da a=a 1 q C 0 h q h = 0

c( ) µ (c(a))v 2 (a) = 1, a (a 1, a 3 ], V 2 (a, Q) 1 a3 e r(t a) (y(t) c(t) + Q) p 1 (t, c( ))dt, a [a 1, a 3 ], p 1 (a, c( )) t=a a Q q R 1 q B(r). Q q = Q = 0 r, R c( ) µ(c( )) q a (a 1, a 3 ] q a [a 2, a 3 ]

q Q dq dq > 0 c( ) a (a 1, a 3 ] dv 2 (a) dq = V 2(a) Q = 1 a3 e r(t a) p 1 (t, c( ))dt > 0. p 1 (a, c( )) t=a Q µ (c(a)) c(a) µ( ) a 1 F (c(, Q)) = a3 a=a e r(a a 1 ) p 1 (a,c(,q))(y(a) c(a,q))da 1 C 0 c(, Q) Q p 1 (a, c( )) r, R F (c(, Q(q))) q Q (q) > 0 F (c(, Q)) Q F (c( )) + QG(c( )) c( ) G(c( )) a3 a=a e r(a a 1 ) p 1 (a,c( ))da 1 C 0 Q 1 < Q 2 Q p 1 (a, c(, Q 1 )) < p 1 (a, c(, Q 2 )), a (a 1, a 3 ] G(c(, Q 1 )) < G(c(, Q 2 )) Q F (c(, Q 1 )) F (c(, Q 2 )) Q 1 c(, Q 1 ) c(, Q 2 ) F (c(, Q 2 )) + Q 1 G(c(, Q 2 )) > F (c(, Q 1 )) + Q 1 G(c(, Q 1 )), c(, Q 1 ) Q 1 F (c(, Q 1 )) >

F (c(, Q 2 )) r R r R r R a 1 a 1 C 0 G(c(, Q, r), r) R(Q, r) 1 C 0 G(c(, Q, r), r). r r Q r c(a, Q, r) a (a 1, a 3 ] B(r)C 0 F (c(, Q, r), r) 1 M r (Q, r) ln B(r) + ln C 0 + ln F (c(, Q, r), r) 0. a 1 r a 1

q r Q R r q Q r Q F r B(r) F q q 1 q 2 > q 1 q 1 r Q 1 q 1 q q r R(Q 1, r) ϵ q r

r r Q 2 = q 2 1 q 2 R(Q 1,r) B(r) > q 1 1 q 1 R(Q 1,r) B(r) = Q 1

t

t t 32

t t t [t 5, t + 5]

t

p < 0.05 p < 0.01 p < 0.001

p < 0.05 p < 0.01 p < 0.001 [30, 130] t [1870, 1950] t

t

p < 0.05 p < 0.01 p < 0.001 11300 0.0271 306

s(a) p(a,c( )) p(a 1,c( )), a [0, a 1) s(a 1 ) = 1, ṡ(a) = µ(c(a))s(a), a [0, a 1 ). C 0 s(0) + a1 a=0 e ra s(a)c(a)da, H(s( ), λ( ), c( )) = e ra s(a)c(a) λ(a)µ(c(a))s(a). H c = 0 e ra λ(a)µ (c(a)) = 1.

λ( ) λ(a) = H s = e ra c(a) λ(a)µ(c(a)) λ(0) = C 0 V 1 (a) λ(a)e ra V 0 (0) = C 0 = V 1 (0) a V 0 (a) V 1 (a), a [0, a 1 ) a c(a, Q, r) V 2 (a, Q, r) c( ) dv 2 (a, Q, r) dr = V 2(a, Q, r) r 1 = p 1 (a, c( )) a3 t=a (t a)z(t, r)dt, z(t, r) e r(t a) (y(t) c(t) + Q) p 1 (t, c( )). w 1 z 1 + w 2 z 2 z 1 = a z(t, r)dt t=a a (a, a 3 ) z 2 = a 3 z(t, r)dt t=a a3 t=a 0 < w 1 < w 2 (t a)z(t,r) z 2 z 1+z 2 p 1 = V (a) 2 (a, Q, r) a t=a (t a)z(t,r) z 1 z 1 +z 2 > 0 z 2 p 1 (a ) = V 2(a, Q, r) z 2 > 0 z 1 +z 2 w 1 > 0 (w 2 w 1 )z 2 > 0 w 1 z 1 + w 2 z 2 > 0 r V 2 (a, Q, r) c(a, Q, r)

Q q 1 1 q B(r)C 0 G(c(,Q,r),r) M Q (Q, r) ln B(r) + ln Q + ln C 0 + ln G(c(, Q, r), r) ln q ln(1 q). Q, r q dq dq dr dq M rr M Qr M rq M QQ dr dq = 0 1 q(1 q) dq. M rr = dmr dr = B (r) B(r) + 1 F ( ) df (c(,q,r),r) B (r) < 0 r dr F (c(, Q, r), r) c(, Q, r) Q > 0 r F (c(, Q, r), r) r df dr M rr < 0 < 0 r r M rq = dmr = 1 df ( ) < 0 dq F ( ) dq M Qr = dm Q dr = B (r) + 1 dg( ) B(r) G( ) dr < 0 r M QQ 1 + 1 dg( ) Q G( ) dq > 0 = dm Q dq = Q = 0

q Q, r dr dq dq dq = 1 1 M rr M QQ M rq M Qr q(1 q) M rq M rr < 0 > 0.