Copyright 2000, Kevin Wayne 1

Similar documents
4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

OpenMx Matrices and Operators

CS 103 BFS Alorithm. Mark Redekopp

1 Introduction to Modulo 7 Arithmetic

d e c b a d c b a d e c b a a c a d c c e b

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

Lecture 20: Minimum Spanning Trees (CLRS 23)

Weighted Graphs. Weighted graphs may be either directed or undirected.

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

QUESTIONS BEGIN HERE!

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

CS September 2018

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Tangram Fractions Overview: Students will analyze standard and nonstandard

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

Outline. Binary Tree

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

Multipoint Alternate Marking method for passive and hybrid performance monitoring

In which direction do compass needles always align? Why?

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Strongly connected components. Finding strongly-connected components

10. EXTENDING TRACTABILITY

Planar Upward Drawings

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Problem solving by search

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

QUESTIONS BEGIN HERE!

Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

Seven-Segment Display Driver

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

Designing A Concrete Arch Bridge

Minimum Spanning Trees

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

(Minimum) Spanning Trees

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

DFA Minimization. DFA minimization: the idea. Not in Sipser. Background: Questions: Assignments: Previously: Today: Then:

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

0.1. Exercise 1: the distances between four points in a graph

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction

CS 461, Lecture 17. Today s Outline. Example Run

(4, 2)-choosability of planar graphs with forbidden structures

The University of Sydney MATH 2009

12. Traffic engineering

Present state Next state Q + M N

Chapter 7 Conformance Checking

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

Chapter Finding Small Vertex Covers. Extending the Limits of Tractability. Coping With NP-Completeness. Vertex Cover

VLSI Testing Assignment 2

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

Platform Controls. 1-1 Joystick Controllers. Boom Up/Down Controller Adjustments

Constructive Geometric Constraint Solving

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Decimals DECIMALS.

G-001 CHATHAM HARBOR AUNT LYDIA'S COVE CHATHAM ATLANTIC OCEAN INDEX OF NAVIGATION AIDS GENERAL NOTES: GENERAL PLAN A6 SCALE: 1" = 500' CANADA

CS150 Sp 98 R. Newton & K. Pister 1

Edge-Triggered D Flip-flop. Formal Analysis. Fundamental-Mode Sequential Circuits. D latch: How do flip-flops work?

EE1000 Project 4 Digital Volt Meter

Self-Adjusting Top Trees

Outlines: Graphs Part-4. Applications of Depth-First Search. Directed Acyclic Graph (DAG) Generic scheduling problem.

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently?

Applications: The problem has several applications, for example, to compute periods of maximum net expenses for a design department.

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Instruction Scheduling

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Walk Like a Mathematician Learning Task:

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

Last time: introduced our first computational model the DFA.

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

10/30/12. Today. CS/ENGRD 2110 Object- Oriented Programming and Data Structures Fall 2012 Doug James. DFS algorithm. Reachability Algorithms

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW

Numbering Boundary Nodes

Transcription:

Extnsions: Mtin Rsints to Hospitls CS 580: Aloritm Dsin n Anlysis Ex: Mn ospitls, Womn m sool rsints. Vrint 1. Som prtiipnts lr otrs s unptl. 1.2 Fiv Rprsnttiv Prolms Vrint 2. Unqul numr o mn n womn. rsint A unwillin to work in Clvln Jrmi Bloki Puru Univrsity Sprin 18 Vrint. Limit polymy. ospitl X wnts to ir rsints Gl-Sply Aloritm Still Works. Minor moiitions to o to nl vritions! Rp: Stl Mtin Prolm Extnsions: Mtin Rsints to Hospitls Dinition o Stl Mtin Stl Roomt Mtin Prolm Stl mtin os not lwys xist! Gl Sply Aloritm (Propos-An-Rjt) Proo tt Aloritm Trmints in stps Proo tt Aloritm Outputs Stl Mtin Mtin is ml-optiml I tr r multipl irnt stl mtins mn t s is st vli prtnr Mtin is ml-pssiml I tr r multipl irnt stl mtins mn t s r worst vli prtnr 2 4 Ex: Mn ospitls, Womn m sool rsints. Vrint 1. Som prtiipnts lr otrs s unptl. Vrint 2. Unqul numr o mn n womn. Vrint. Limit polymy. ospitl X wnts to ir rsints D. Mtin S unstl i tr is ospitl n rsint r su tt: n r r ptl to otr; n itr r is unmt, or r prrs to r ssin ospitl; n itr os not v ll its pls ill, or prrs r to t lst on o its ssin rsints. rsint A unwillin to work in Clvln 0 1 2 4 5 7 8 9 10 jos on't ovrlp Tim Copyrit 00, Kvin Wyn 1

jos on't ovrlp jos on't ovrlp jos on't ovrlp Gry Coi. Slt jo wit rlist inis tim n limint inomptil jos. Gry Coi. Slt jo wit rlist inis tim n limint inomptil jos. Cptr 4: W will prov tt tis ry loritm lwys ins t optiml solution! 0 1 2 4 5 7 8 9 10 Tim 0 1 2 4 5 7 8 9 10 Tim 0 1 2 4 5 7 8 9 10 Tim 7 9 Wit Input. St o jos wit strt tims, inis tims, n wits. Gol. Fin mximum wit sust o mutully omptil jos. jos on't ovrlp Gry Coi. Slt jo wit rlist inis tim n limint inomptil jos. jos on't ovrlp Gry Coi. Slt jo wit rlist inis tim n limint inomptil jos. Gry Aloritm No Lonr Works! 2 12 2 1 0 1 2 4 5 7 8 9 10 Tim 0 1 2 4 5 7 8 9 10 Tim 1 0 1 2 4 5 7 8 9 10 Tim 8 10 12 Copyrit 00, Kvin Wyn 2

Wit Biprtit Mtin Inpnnt St Input. St o jos wit strt tims, inis tims, n wits. Gol. Fin mximum wit sust o mutully omptil jos. Input. Biprtit rp. Gol. Fin mximum rinlity mtin. Input. Grp. Gol. Fin mximum rinlity inpnnt st. Gry Aloritm No Lonr Works! 2 A 1 1 sust o nos su tt no two join y n 2 12 B 2 4 5 2 C 7 1 D 4 Brut-For Aloritm: Ck vry possil sust. RunninTim: 2 stps 1 0 1 2 4 5 7 8 9 10 Tim E 5 Dirnt rom Stl Mtin Prolm! How? NP-Complt: Unlikly tt iint loritm xists! Positiv: Cn sily k tt tr is n inpnnt st o siz k 1 15 17 Wit Biprtit Mtin Comptitiv Fility Lotion Input. St o jos wit strt tims, inis tims, n wits. Gol. Fin mximum wit sust o mutully omptil jos. Input. Biprtit rp. Gol. Fin mximum rinlity mtin. Input. Grp wit wit on no. Gm. Two omptin plyrs ltrnt in sltin nos. Not llow to slt no i ny o its niors v n slt. Prolm n solv usin tniqu ll Dynmi Prormmin A 1 Gol. Slt mximum wit sust o nos. 2 B 2 12 C 2 1 D 4 E 5 Son plyr n urnt, ut not 25. 0 1 2 4 5 7 8 9 10 1 Tim Prolm n solv usin Ntwork Flow Aloritms 14 1 18 Copyrit 00, Kvin Wyn

Comptitiv Fility Lotion Comptitiv Fility Lotion Comptitiv Fility Lotion Input. Grp wit wit on no. Gm. Two omptin plyrs ltrnt in sltin nos. Not llow to slt no i ny o its niors v n slt. Gol. Slt mximum wit sust o nos. Input. Grp wit wit on no. Gm. Two omptin plyrs ltrnt in sltin nos. Not llow to slt no i ny o its niors v n slt. Gol. Slt mximum wit sust o nos. Input. Grp wit wit on no. Gm. Two omptin plyrs ltrnt in sltin nos. Not llow to slt no i ny o its niors v n slt. Gol. Slt mximum wit sust o nos. PSPACE-Complt: Evn rr tn NP-Complt! No sort proo tt plyr n urnt vlu B. (Unlik prvious prolm) Son plyr n urnt, ut not 25. Son plyr n urnt, ut not 25. Son plyr n urnt, ut not 25. 19 21 2 Comptitiv Fility Lotion Comptitiv Fility Lotion Fiv Rprsnttiv Prolms Input. Grp wit wit on no. Gm. Two omptin plyrs ltrnt in sltin nos. Not llow to slt no i ny o its niors v n slt. Gol. Slt mximum wit sust o nos. Input. Grp wit wit on no. Gm. Two omptin plyrs ltrnt in sltin nos. Not llow to slt no i ny o its niors v n slt. Gol. Slt mximum wit sust o nos. Vritions on tm: inpnnt st. Intrvl sulin: n lo n ry loritm. Wit intrvl sulin: n lo n ynmi prormmin loritm. Biprtit mtin: n k mx-low s loritm. Inpnnt st: NP-omplt. Comptitiv ility lotion: PSPACE-omplt. Son plyr n urnt, ut not 25. Son plyr n urnt, ut not 25. 22 24 Copyrit 00, Kvin Wyn 4

Computtionl Trtility Worst-Cs Anlysis Cptr 2 Bsis o Aloritm Anlysis As soon s n Anlyti Enin xists, it will nssrily ui t utur ours o t sin. Wnvr ny rsult is sout y its i, t qustion will ris - By wt ours o lultion n ts rsults rriv t y t min in t sortst tim? - Crls B Worst s runnin tim. Otin oun on lrst possil runnin tim o loritm on input o ivn siz N. Gnrlly pturs iiny in prti. Dronin viw, ut r to in tiv ltrntiv. Avr s runnin tim. Otin oun on runnin tim o loritm on rnom input s untion o input siz N. Hr (or impossil) to urtly mol rl instns y rnom istriutions. Aloritm tun or rtin istriution my prorm poorly on otr inputs. Slis y Kvin Wyn. Copyrit 05 Prson-Aison Wsly. All rits rsrv. Crls B (184) Anlyti Enin (smti) 25 27 29 Polynomil-Tim Worst-Cs Polynomil-Tim 2.1 Computtionl Trtility "For m, rt loritms r t potry o omputtion. Just lik vrs, ty n trs, llusiv, ns, n vn mystrious. But on unlok, ty st rillint nw lit on som spt o omputin." - Frnis Sullivn Brut or. For mny non-trivil prolms, tr is nturl rut or sr loritm tt ks vry possil solution. Typilly tks 2 N tim or wors or inputs o siz N. Unptl in prti. n! or stl mtin wit n mn n n womn Dsirl slin proprty. Wn t input siz ouls, t loritm soul only slow own y som onstnt tor C. Tr xists onstnts > 0 n > 0 su tt on vry input o siz N, its runnin tim is oun y N stps. D. An loritm is poly-tim i t ov slin proprty ols. oos C = 2 D. An loritm is iint i its runnin tim is polynomil. Justiition: It rlly works in prti! Altou.02 10 2 N is tnilly poly-tim, it woul uslss in prti. In prti, t poly-tim loritms tt popl vlop lmost lwys v low onstnts n low xponnts. Brkin trou t xponntil rrir o rut or typilly xposs som ruil strutur o t prolm. Exptions. Som poly-tim loritms o v i onstnts n/or xponnts, n r uslss in prti. Som xponntil-tim (or wors) loritms r wily us us t worst-s instns sm to rr. simplx mto Unix rp 28 0 Copyrit 00, Kvin Wyn 5

Wy It Mttrs Asymptoti Orr o Growt Proprtis Uppr ouns. T(n) is O((n)) i tr xist onstnts > 0 n n 0 0 su tt or ll n n 0 w v T(n) (n). Lowr ouns. T(n) is ((n)) i tr xist onstnts > 0 n n 0 0 su tt or ll n n 0 w v T(n) (n). Tit ouns. T(n) is ((n)) i T(n) is ot O((n)) n ((n)). Ex: T(n) = 2n 2 + 17n + 2. T(n) is O(n 2 ), O(n ), (n 2 ), (n), n (n 2 ). T(n) is not O(n), (n ), (n), or (n ). Trnsitivity. I = O() n = O() tn = O(). I = () n = () tn = (). I = () n = () tn = (). Aitivity. I = O() n = O() tn + = O(). I = () n = () tn + = (). I = () n = O() tn + = (). 1 5 Nottion Asymptoti Bouns or Som Common Funtions 2.2 Asymptoti Orr o Growt Slit us o nottion. T(n) = O((n)). Not trnsitiv: (n) = 5n ; (n) = n 2 (n) = O(n ) = (n) ut (n) (n). Bttr nottion: T(n) O((n)). Mninlss sttmnt. Any omprison-s sortin loritm rquirs t lst O(n lo n) omprisons. Sttmnt osn't "typ-k." Us or lowr ouns. Polynomils. 0 + 1 n + + n is (n ) i > 0. Polynomil tim. Runnin tim is O(n ) or som onstnt inpnnt o t input siz n. Loritms. O(lo n) = O(lo n) or ny onstnts, > 0. n voi spiyin t s Loritms. For vry x > 0, lo n = O(n x ). lo rows slowr tn vry polynomil Exponntils. For vry r > 1 n vry > 0, n = O(r n ). vry xponntil rows str tn vry polynomil 4 Copyrit 00, Kvin Wyn

Linr Tim: O(n) Qurti Tim: O(n 2 ) 2.4 A Survy o Common Runnin Tims Mr. Comin two sort lists A = 1, 2,, n wit B = 1, 2,, n into sort wol. Qurti tim. Enumrt ll pirs o lmnts. Closst pir o points. Givn list o n points in t pln (x 1, y 1 ),, (x n, y n ), in t pir tt is losst. i = 1, j = 1 wil (ot lists r nonmpty) { i ( i j ) ppn i to output list n inrmnt i ls( i j )ppn j to output list n inrmnt j ppn rminr o nonmpty list to output list Clim. Mrin two lists o siz n tks O(n) tim. P. Atr omprison, t lnt o output list inrss y 1. O(n 2 ) solution. Try ll pirs o points. min (x 1 - x 2 ) 2 + (y 1 - y 2 ) 2 or i = 1 to n { or j = i+1 to n { (x i - x j ) 2 + (y i - y j ) 2 i ( < min) min Rmrk. (n 2 ) sms invitl, ut tis is just n illusion. s ptr 5 on't n to tk squr roots 9 41 Linr Tim: O(n) O(n lo n) Tim Cui Tim: O(n ) Linr tim. Runnin tim is proportionl to input siz. Computin t mximum. Comput mximum o n numrs 1,, n. mx 1 or i = 2 to n { i ( i > mx) mx i O(n lo n) tim. Ariss in ivi-n-onqur loritms. lso rrr to s linritmi tim Sortin. Mrsort n psort r sortin loritms tt prorm O(n lo n) omprisons. Lrst mpty intrvl. Givn n tim-stmps x 1,, x n on wi opis o il rriv t srvr, wt is lrst intrvl o tim wn no opis o t il rriv? O(n lo n) solution. Sort t tim-stmps. Sn t sort list in orr, intiyin t mximum p twn sussiv tim-stmps. Cui tim. Enumrt ll tripls o lmnts. St isjointnss. Givn n sts S 1,, S n o wi is sust o 1, 2,, n, is tr som pir o ts wi r isjoint? O(n ) solution. For pirs o sts, trmin i ty r isjoint. or st S i { or otr st S j { or lmnt p o S i { trmin wtr p lso lons to S j i (no lmnt o S i lons to S j ) rport tt S i n S j r isjoint 8 40 42 Copyrit 00, Kvin Wyn 7

Polynomil Tim: O(n k ) Tim Hp Dt Strutur Hp Insrtion Inpnnt st o siz k. Givn rp, r tr k nos su tt no two r join y n? k is onstnt Hp.Insrt() O(n k ) solution. Enumrt ll susts o k nos. or sust S o k nos { k wtr S in n inpnnt st i (S is n inpnnt st) rport S is n inpnnt st Ck wtr S is n inpnnt st = O(k 2 ). Numr o k lmnt susts = n O(k 2 n k / k!) = O(n k ). n (n 1) (n 2) (n k 1) k k (k 1) (k 2) (2) (1) poly-tim or k=17, ut not prtil nk k! 44 5 10 Nxt Min Hp Orr: For no v in t tr Prnt v. Vlu v. Vlu Mx Hp Orr: For no v in t tr Prnt v. Vlu v. Vlu 9 44 5 10 9 Min Hp Orr: For no v in t tr Prnt v. Vlu v. Vlu 4 45 47 Exponntil Tim Hp Insrtion Hp Insrtion Inpnnt st. Givn rp, wt is mximum siz o n inpnnt st? Hp.Insrt() O(n 2 2 n ) solution. Enumrt ll susts. Hp.Insrt() 9 S* or sust S o nos { k wtr S in n inpnnt st i (S is lrst inpnnt st sn so r) upt S* S 44 5 10 Min Hp Orr: For no v in t tr Prnt v. Vlu v. Vlu 44 5 10 9 Min Hp Orr: For no v in t tr Prnt v. Vlu v. Vlu 44 4 48 Copyrit 00, Kvin Wyn 8

Hp Insrtion Hp Extrt Minimum Hp Extrt Minimum Hp.Insrt() Hp.ExtrtMin() Hp.ExtrtMin() 44 5 10 9 44 5 10 9 44 5 10 9 Nxt Min Hp Orr: For no v in t tr Prnt v. Vlu v. Vlu Torm 2.12 [KT]: T prour Hpiy-up ixs t p proprty n llows us to insrt nw lmnt into p o n lmnts in O(lo n) tim. Nxt Min Hp Orr: For no v in t tr Prnt v. Vlu v. Vlu Torm 2.1 [KT]: T prour Hpiy-own ixs t p proprty n llows us to lt n lmnt in p o n lmnts in O(lo n) tim. Nxt Min Hp Orr: For no v in t tr Prnt v. Vlu v. Vlu Torm 2.1 [KT]: T prour Hpiy-own ixs t p proprty n llows us to lt n lmnt in p o n lmnts in O(lo n) tim. 49 51 5 Hp Extrt Minimum Hp Extrt Minimum Hp Extrt Minimum Hp.ExtrtMin() Hp.ExtrtMin() Hp.ExtrtMin() 9 44 5 10 9 44 5 10 9 44 5 10 Nxt Min Hp Orr: For no v in t tr Prnt v. Vlu v. Vlu Torm 2.1 [KT]: T prour Hpiy-own ixs t p proprty n llows us to lt n lmnt in p o n lmnts in O(lo n) tim. Nxt Min Hp Orr: For no v in t tr Prnt v. Vlu v. Vlu Torm 2.1 [KT]: T prour Hpiy-own ixs t p proprty n llows us to lt n lmnt in p o n lmnts in O(lo n) tim. Nxt Min Hp Orr: For no v in t tr Prnt v. Vlu v. Vlu Torm 2.1 [KT]: T prour Hpiy-own ixs t p proprty n llows us to lt n lmnt in p o n lmnts in O(lo n) tim. 50 52 54 Copyrit 00, Kvin Wyn 9

Hp Extrt Minimum Hp.ExtrtMin() 9 44 5 10 Nxt Min Hp Orr: For no v in t tr Prnt v. Vlu v. Vlu Torm 2.1 [KT]: T prour Hpiy-own ixs t p proprty n llows us to lt n lmnt in p o n lmnts in O(lo n) tim. 55 Hp Summry 44 5 10 9 Insrt: O(lo n) FinMin: O(1) Dlt: O(lo n) tim ExtrtMin: O(lo n) tim Tout Qustion: O(n lo n) tim sortin loritm usin ps? 5 Copyrit 00, Kvin Wyn 10