Probing Higgs Self Coupling at the LHC and future Colliders. Jung Chang, KC, Jae Sik Lee, Chih-Ting Lu, ; in preparation.

Similar documents
HKIAS Jan Higgcision. Higgs Boson Pair Production

An Exploratory study of Higgs-boson pair production

Higgs Property Measurement with ATLAS

Two Higgs Doublets Model

Probing New Physics of Cubic Higgs Interaction

Prospects for Measuring Higgs self-coupling at FCC 100 TeV hadron collider. Weiming Yao (LBNL)

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Identification of the Higgs boson produced in association with top quark pairs in proton-proton

Studies of Higgs Potential (Higgs Boson Self Coupling Measurements)

Exploring Extended Scalar Sectors with Di Higgs Signals: A Higgs EFT Perspective

Future ATLAS Higgs Studies Ben Smart, On behalf of the ATLAS collaboration

Search for Fermionic Higgs Boson Decays in pp Collisions at ATLAS and CMS

Higgs Coupling Measurements!

[ ] Search for tth and th production (not including H bb) at the LHC. !!!!! Top2015 Ischia. Josh McFayden

Prospects On Standard Model And Higgs Physics At The HL-LHC

Review of Higgs results at LHC (ATLAS and CMS results)

Higgs Prospects for future (HL)LHC runs

Measurements of the Higgs Boson at the LHC and Tevatron

ATLAS+CMS Higgs run 1 Combinations

Higgs boson measurements at ATLAS

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014

Perspectives of Higgs measurements at High-Luminosity LHC

Status and Prospects of Higgs CP Properties with CMS and ATLAS

Reinterpretations of non-resonant searches for Higgs boson pairs

Measurement of the Higgs Couplings by Means of an Exclusive Analysis of its Diphoton decay

Higgs HL-LHC perspectives from ATLAS and CMS

Recent ATLAS measurements in Higgs to diboson channels

Machine learning approaches to the Higgs boson self coupling

THEORY OUTLOOK AFTER THE CMS HIGGS WIDTH CONSTRAINT. Felix Yu Fermilab

Search for the Higgs boson in the t th production mode using the ATLAS detector

Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential

ATLAS Discovery Potential of the Standard Model Higgs Boson

BSM Higgs Searches at ATLAS

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN

Basics of Higgs Physics

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Finding the Higgs boson

Beyond the Standard Model Higgs boson searches using the ATLAS etector

HIGGS Bosons at the LHC

Higgs Searches and Properties Measurement with ATLAS 杨海军 ( 上海交通大学 )

Phenomenology for Higgs Searches at the LHC

in Section The H ZZ 4l channel

Study of Higgs boson leptonic decay modes

Single Higgs production at LHC as a probe for an anomalous Higgs self coupling

PROSPECTS FOR MEASURING HIGGS CP VIOLATION AT FUTURE COLLIDERS

Mono-X, Associate Production, and Dijet searches at the LHC

The production of additional bosons and the impact on the Large Hadron Collider

Tutorial 8: Discovery of the Higgs boson

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ.

LHC resonance searches in tt Z final state

The Higgs boson. Marina Cobal University of Udine

ATLAS-CONF CMS-PAS-HIG th September 2015

Higgs physics at the ILC

Constraining EFT parameters with simplified template cross sections

Search for tt(h bb) using the ATLAS detector at 8 TeV

Dark Matter and Gauged Baryon Number

Pseudoscalar Higgs boson signatures at the LHC

arxiv:hep-ph/ v1 13 Mar 2002

Singlet Assisted Electroweak Phase Transitions and Precision Higgs Studies

Higgs Physics, after July 2012

Results on top physics by CMS

Higgs Boson in Lepton Decay Modes at the CMS Experiment

arxiv: v1 [hep-ex] 5 Sep 2014

Physics at Photon Colliders. Prof. Mayda M. Velasco Northwestern University

Higgs Searches at CMS

Searching for additional Higgs bosons at the CERN Large Hadron Collider

Overview of the Higgs boson property studies at the LHC

Detector Requirements for Precision Higgs Boson Physics

Higgs boson properties (ATLAS and CMS)

The BEH-Mechanism in the SM. m f = λ f. Coupling of Higgs boson to other particles fixed by particle mass and vev

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements

tth searches at ATLAS and CMS Thomas CALVET for the ATLAS and CMS collaborations Stony Brook University Apr 11 th, 2018

Study of Higgs Boson Decaying to Four Muons at s =14 TeV

Z boson studies at the ATLAS experiment at CERN. Giacomo Artoni Ph.D Thesis Project June 6, 2011

The HL-LHC physics program

Higgs phenomenology & new physics. Shinya KANEMURA (Univ. of Toyama)

The study of the extended Higgs boson sector within 2HDM model

Highlights of top quark measurements in hadronic final states at ATLAS

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico&

Higgs Production at LHC

Top quark mass at ATLAS and CMS

Top Quark Properties at HL/HE-LHC

Higgs searches in CMS

New Physics Scales to be Lepton Colliders (CEPC)

Search for single production of vector-like quarks decaying into a W-boson and a b-quark at 13 TeV

Understanding the Higgs Boson: Where We Are, Where We re Going, and How To Get There

Higgs Production at LHC

Searches for new physics at ATLAS using pair production of Higgs bosons. Jahred Adelman

HIGGS + 2 JET PRODUCTION AT THE LHC

On behalf of the ATLAS and CMS Collaborations

LHC Run1 Higgs Results. Quentin Buat - Simon Fraser University On behalf of the ATLAS and CMS collaborations

J. C. Vasquez CCTVal & USM

Search for the Higgs boson in fermionic channels using the CMS detector

HIGGS STUDIES IN ATLAS AND CMS

ATLAS Di-fermion Results. Koji Nakamura (KEK) on behalf of ATLAS Collaboration

Georges Aad For the ATLAS and CMS Collaboration CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

Search for di-higgs to 4b with the ATLAS detector. Tony(Baojia)Tong, Harvard University CLHCP, PKU, Dec. 18, 2016

t th production at the LHC

Observation of the Higgs boson production in association with top quarks

Higgs in the light of Hadron Collider limits: impact on a 4th generation

Transcription:

Probing Higgs Self Coupling at the LHC and future Colliders Jung Chang, KC, Jae Sik Lee, Chih-Ting Lu, 1505.00957; in preparation.

Higgs Mechanism The most important pillar of the Standard Model. The SM fermions and bosons acquire a mass. The theory obeys the SM symmetries, but just the vacuum state takes on a specific configuration chosen by the Nature.

Current Status of Higgs Mechanism The scalar sector Lagrangian L Φ = D µ Φ 2 V (Φ) +L Y where V (Φ) =µ 2 Φ 2 + λ Φ 4 and ( D µ = µ + ieqa µ + i g ) (τ + W + µ + τ W µ )+i g τ 3 2 cos θ w 2 sin2 θ w Φ develops a true vacuum at Φ = 1 2 ( The mass and interactions of gauge bosons are fixed Z µ ( ) 0,wherev = µ 2 /λ. v + H(x) ( 1 L =(v 2 +2vH + H 2 ) 4 g2 W + µ W µ + 1 ) 8 g2 z Zµ Z µ

The mass and interactions of fermions are also fixed in L Y : L Y = y ev 2 (e L e R + e R e L ) y e 2 H (e L e R + e R e L ) So far, the gauge boson couplings and b, τ,t Yukawa couplings are consistent with data.

The SM: χ 2 /dof =16.76/29, p-value = 0.966. Cases CPC 1 CPC 2 CPC 3 CPC 4 CPC 6 Vary Γ tot S γ, S γ, C S u, CS d, CS u, CS d, CS l, C v Parameters S g S g, Γ tot C S l, C v S γ, S g C S u 1 1 1 0.92 +0.15 0.13 1.22 +0.32 0.38 C S d 1 1 1 1.00 +0.29 0.30 0.97 +0.30 0.34 C S l 1 1 1 0.99 +0.17 0.17 1.00 +0.18 0.17 C v 1 1 1 0.98 +0.10 0.11 0.94 +0.11 0.12 S γ 0 0.72 +0.76 0.74 0.84 +0.80 0.82 0 1.43 +1.02 0.95 S g 0 0.009 +0.047 0.048 0.02 +0.10 0.08 0 0.22 +0.28 0.24 Γ tot 0.020 +0.45 0.37 0 0.39 +1.13 0.76 0 0 χ 2 /dof 16.76/28 15.81/27 15.59/26 16.70/25 14.83/23 p-value 0.953 0.956 0.945 0.892 0.901 The HV V coupling is the most restrictive: with 7 12% uncertainty. C v =0.93 1.0

Higgs Sector Itself We have no information about V (Φ) except that it gives a nontrivial VEV. In the SM, V (φ) = λ 4 v4 + 1 2 m2 H H2 + m2 H 2v H3 + λ 4 H4 This is the simplest structure. The self couplings are fixed. But for extended Higgs sector it is not the case. Probing self interactions of the Higgs boson becomes an important avenue to understand the Higgs sector.

Channels for testing HHH coupling 10 4 HH production at pp colliders at NLO in QCD HH production at 14 TeV LHC at (N)LO in QCD σ NLO [fb] 10 3 10 2 10 1 10 0 10-1 10-2 M H =125 GeV, MSTW2008 NLO pdf (68%cl) pp HH (EFT loop-improved) pp HHjj (VBF) pp tthh pp tjhh pp WHH pp ZHH MadGraph5_aMC@NLO σ (N)LO [fb] 10 2 10 1 10 0 10-1 pp HH (EFT loop-improved) pp HHjj (VBF) pp tthh pp ZHH M H =125 GeV, MSTW2008 (N)LO pdf (68%cl) pp WHH pp tjhh MadGraph5_aMC@NLO 10-3 8 1314 25 33 50 75 100 s[tev] -4-3 -2-1 0 1 2 3 4 λ/λ SM. 2. From Ref.[5]: (HH) = 34.8 fb, (HHjj : VBF)=2.017 fb, (tthh) =0.981 ± HH)=0.565 fb, (ZHH)=0.356 fb. Frederix et al. 1401.7340

SM Cross sections [4] p s [TeV] NLO gg!hh [fb] NLO qq 0!HHqq [fb] NNLO 0 q q 0!WHH [fb] NNLO q q!zhh [fb] LO q q/gg!t thh [fb] 8 8.16 0.49 0.21 0.14 0.21 14 33.89 2.01 0.57 0.42 1.02 33 207.29 12.05 1.99 1.68 7.91 100 1417.83 79.55 8.00 8.27 77.82

FIG. 2. From Ref.[5]: (HH) = 34.8 fb, (HHjj : VBF)=2.017 fb, (tthh) =0.981 fb, (W ± HH)=0.565 fb, (ZHH)=0.356 fb. s ssm 30 25 20 15 s H pp Æ HH + X L ê s SM s =14 TeV, M H =125 GeV gg Æ HH qq ' Æ HHqq ' q q ' Æ WHH q q Æ ZHH q q ê gg Æt t HH s ssm 5 4 3 2 s H pp Æ HH + X L ê s SM s gg Æ HH =14 TeV, M H =125 GeV qq ' Æ HHqq ' q q ' Æ WHH q q Æ ZHH q q ê gg Æt t HH 10 5 1 0-4 - 2 0 2 4 0-4 - 2 0 2 4 l l l SM l SM The ggf has the largest FIG. 3. Chih-Ting: cross section, 2017.01.20 of order 10 - O(100) fb. The VBF has the best sensitivity to Lambda_3H, but the cross section is one order smaller.

ggf Higgs pair production Jung Chang, KC, Jae Sik Lee, Chih-Ting Lu 1505.00957; works in progress Interactions: L = 1 3! ( 3M 2 H v ) λ 3H H 3 + m t v t ( g S t + iγ 5g P t ) th + 1 2 m t v t ( ) g S 2 tt + iγ 5g P tt th 2 In the SM, λ 3H = g S t = 1 and gp t = 0 and gs,p tt = 0. The SM result: dˆσ(gg HH) dˆt = G2 F α2 s 512(2π) 3 [ λ 3Hg S t D(ŝ)F S +(gs t )2 F SS 2 + (g S t )2 G SS 2] where D(ŝ) = 3M 2 H ŝ M 2 H +im H Γ H. { ( )

Production cross section normalized to the SM one is σ(gg HH) σ SM (gg HH) = λ 2 3H [ c 1 (s)(g S t )2 + d 1 (s)(g P t )2] + λ 3H g S t [c 2 (s)(g S t )2 + d 2 (s)(g P t )2] + [c 3 (s)(g S t )4 + d 3 (s)(g S t )2 (g P t )2 + d 4 (s)(g P t )4] ] +λ 3H [e 1 (s)g S t gs tt + f 1(s)g P t gp tt + g S tt [e 2 (s)(g S t )2 + f 2 (s)(g P t )2] + [e 3 (s)(g S tt )2 + f 3 (s)g S t gp t gp tt + f 4(s)(g P tt )2]

s c1 (s) c 2 (s) c 3 (s) d 1 (s) d 2 (s) d 3 (s) d 4 (s) (TeV) λ 2 3H (gs t )2 λ 3H (g S t )3 (g S t )4 λ 2 3H (gp t )2 λ 3H g S t (gp t )2 (g S t )2 (g P t )2 (g P t )4 8 0.300 1.439 2.139 0.942 6.699 14.644 0.733 14 0.263 1.310 2.047 0.820 5.961 13.348 0.707 33 0.232 1.193 1.961 0.713 5.274 12.126 0.690 100 0.208 1.108 1.900 0.635 4.789 11.225 0.683 s e1 (s) e 2 (s) e 3 (s) f 1 (s) f 2 (s) f 3 (s) f 4 (s) (TeV) λ 3H g S t gs tt g S tt (gs t )2 (g S tt )2 λ 3H g P t gp tt g S tt (gp t )2 g S t gp t gp tt (g P tt )2 8 1.460 4.313 2.519 2.104 2.350 7.761 3.065 14 1.364 4.224 2.617 1.848 2.269 6.886 3.769 33 1.281 4.165 2.783 1.622 2.207 6.033 5.635 100 1.214 4.137 2.974 1.474 2.154 5.342 10.568

Behavior of cross sections The triangle diagram has the 1/s behavior of the Higgs propagator, more suppressed at high s. The contact term t t HH will saturate unitarity at high enough s: ŝ im(t t HH) gtt S m t Requiring a 0 < 1/2: ŝ 17.6 g S tt TeV. v 2

Decay channels: Decay channels HH! bb HH! bb HH! bbw W HH! bbbb Branching ratios 0.263% 7.29% 24.8% 33.3%!!! Due to background consideration and clean HH reconstruction we focus on HH! bb To some extent other modes should be considered to increase the significance of the already-small signal.

Kinematics of the signal diagram Attempt to isolate the Higgs self coupling in the triangle diagram. The triangle diagram has the 1/s behavior, so more profound at low invariant mass region. Thus, the angular separation between the decay product is larger: HH (γγ)(b b)

Chang, KC, Lee,Lu 2015 Signal-only study assuming 25% and 50% uncertainties in cross section measurements. Can probe ~ -1 < lambda_3h < 3.

Current status at LHC ATLAS-CONF-2016-049 Higgs-boson pair production in the bb bb final state Non-resonant cross section is constrained < 330 fb, 29x SM. *** Using final state with 3.2 fb^-1, the upper limit is 3.9 pb h reson b b

HL-LHC s = 14 TeV, L =3000 fb -1 Focus on H( b b)h( γγ) Analysis

Background Analysis ATL-PHYS-PUB-2014-019 Samples Generated/ σ BR Showered With (fb) H(b b)h(γγ)(λ/λ SM = 1) MadGraph5/Pythia8 0.11 H(b b)h(γγ)(λ/λ SM = 0) MadGraph5/Pythia8 0.23 H(b b)h(γγ)(λ/λ SM = 2) MadGraph5/Pythia8 0.05 H(b b)h(γγ)(λ/λ SM = 10) MadGraph5/Pythia8 1.81 b bγγ MadGraph5/Pythia8 338 c cγγ MadGraph5/Pythia8 1.6 10 3 b bγ j MadGraph5/Pythia8 2.6 10 5 b bjj MadGraph5/Pythia8 9.4 10 7 jjγγ MadGraph5/Pythia8 2.2 10 4 t t( 1 lepton) MC@NLO/Herwig 5.3 10 5 t tγ MadGraph5/Pythia8 3.3 10 3 t th(γγ) POWHEG/Pythia8 1.39 Z(b b)h(γγ) Pythia8 0.304 b bh(γγ) MadGraph5/Pythia8 1.32

Events/arb. unit 0.18 ATLAS Simulation Preliminary 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 H(bb)H(γ γ ) bbγ γ ttγ s= 14 TeV tth(γ γ ) Z(bb)H(γ γ ) bbh(γ γ ) 0 0 200 400 600 800 1000 m bbγ γ [GeV] Events/arb. unit 0.3 0.3 ATLAS ATLAS Simulation Preliminary s= s= 14 14 TeV TeV H(bb)H(γ H(bb)H(γ γ ) γ ) tth(γ tth(γ γ ) γ ) 0.25 0.25 bbγ γ Z(bb)H(γγ ) bbγ tt γ Z(bb)H(γ bbh(γγ ) γ ) ttγ bbh(γγ ) 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 0 0 1 2 3 4 5 γ γ R Events/arb. unit 0.6 ATLAS Simulation Preliminary Small m(hh) for triangle s= diagram 14 TeV doesn t work because backgrounds s= 14 TeV 0.5 0.4 H(bb)H(γγ ) bbγ γ ttγ tth(γγ ) Z(bb)H(γγ ) bbh(γγ ) Events/arb. unit also focus there. Yet, small Delta(R) works. 0.22 ATLAS Simulation Preliminary 0.2 H(bb)H(γγ ) tth(γγ ) 0.18 bbγ γ Z(bb)H(γγ ) ttγ bbh(γγ ) 0.16 0.14

Simulation results for HL-LHC Expected yields (3000 fb 1 ) Total Samples H(b b)h(γγ)(λ/λ SM = 1) 8.4±0.1 H(b b)h(γγ)(λ/λ SM = 0) 13.7±0.2 H(b b)h(γγ)(λ/λ SM = 2) 4.6±0.1 H(b b)h(γγ)(λ/λ SM = 10) 36.2±0.8 b bγγ 9.7±1.5 c cγγ 7.0±1.2 b bγ j 8.4±0.4 b bjj 1.3±0.2 jjγγ 7.4±1.8 t t( 1 lepton) 0.2±0.1 t tγ 3.2±2.2 t th(γγ) 6.1±0.5 Z(b b)h(γγ) 2.7±0.1 b bh(γγ) 1.2±0.1 Total Background 47.1±3.5 S/ B(λ/λ SM = 1) 1.2 background and of the signal contribution for λ/λ SM = events. N is the parameter of interest of the model. This limit (dashed line) on the total number of HH e events summed with the λ/λ SM = 1 signal contribution) shown in Figure 8. It is overlaid on the parametrization coupling) HH events as a function of the λ/λ SM ratio af Projected limit on the total HH yield (events) 40 35 30 25 20 15 10 5 0 ATL-PHYS-PUB-2014-019 in the previous sections (red line). The minimum of th the dependence of the cross-section including the initial m effects seen on Projected Figure 2 due Sensitivity to the effects at HL-LHC of the analysis The projections of the analysis described in the note models with λ/λ SM 1.3 and λ/λ SM 8.7. ATLAS Simulation Preliminary -1 s = 14 TeV: 3000 fb Exp. 95% CLs ± 1 σ ± 2 σ -2 0 2 4 6 8 10 λ 10 / λ SM

100 TeV pp Collider: US/Europe vs China Date

Kinematic distributions are similar to 14 TeV

3 2 25% & 50% for s ê s SM = 1 Detector Level -- ATLAS, LHC-100 Basic Cuts DR gg,bb > 2 DR gg,bb < 2 gs t 1 0 l 3 H -1-2 -3-10 -5 0 5 10 Chang, KC, Lee, Lu 2015 100TeV: Signal-only study assuming 25% and 50% uncertainties in cross section measurements. Can probe ~ -1 < lambda_3h < 3.

Vector Boson Fusion at 100 TeV Bishara, Contino, Rojo 1611.03860 q q V V h h q q V V 100 h h q q LHC h V V h s!14 TeV d /d j max [arbit. u.] 0.7 0.6 0.5 0.4 0.3 0.2 0.1 14 TeV 100 TeV 0.0 0 1 2 3 4 5 6 7 j max c 3 = / sm TLAS searc C 2V = g VVhh "#pp$hh%&"#pp$hh%sm 50 10 5 1 c 2V c 2V 1 c 3 0.5 "1.0 "0.5 0.0 0.5 1.0

Outlook Probing the self-interactions of the Higgs boson is necessary for understanding the EWSB sector. The sensitivity in VBF is better than ggf, but event rate is low. Need to combine with other channels, e.g. tthh, WHH, ZHH, etc. HL-LHC, 100 TeV, ILC analyses are all needed.