Background Trigonmetry (2A) Young Won Lim 5/5/15

Similar documents
Higher Order ODE's (3A) Young Won Lim 7/7/14

Higher Order ODE's (3A) Young Won Lim 12/27/15

Background ODEs (2A) Young Won Lim 3/7/15

Linear Equations with Constant Coefficients (2A) Young Won Lim 4/13/15

General Vector Space (2A) Young Won Lim 11/4/12

Higher Order ODE's (3A) Young Won Lim 7/8/14

Matrix Transformation (2A) Young Won Lim 11/9/12

Separable Equations (1A) Young Won Lim 3/24/15

Introduction to ODE's (0A) Young Won Lim 3/9/15

Complex Series (3A) Young Won Lim 8/17/13

General CORDIC Description (1A)

ODE Background: Differential (1A) Young Won Lim 12/29/15

Definitions of the Laplace Transform (1A) Young Won Lim 1/31/15

Matrix Transformation (2A) Young Won Lim 11/10/12

Higher Order ODE's, (3A)

Differentiation Rules (2A) Young Won Lim 1/30/16

Background Complex Analysis (1A) Young Won Lim 9/2/14

Expected Value (10D) Young Won Lim 6/12/17

Relations (3A) Young Won Lim 3/27/18

CT Rectangular Function Pairs (5B)

Second Order ODE's (2A) Young Won Lim 5/5/15

Line Integrals (4A) Line Integral Path Independence. Young Won Lim 10/22/12

DFT Frequency (9A) Each Row of the DFT Matrix. Young Won Lim 7/31/10

Complex Trigonometric and Hyperbolic Functions (7A)

Root Locus (2A) Young Won Lim 10/15/14

Complex Functions (1A) Young Won Lim 2/22/14

Introduction to ODE's (0P) Young Won Lim 12/27/14

Differentiation Rules (2A) Young Won Lim 2/22/16

Fourier Analysis Overview (0A)

Surface Integrals (6A)

Signal Functions (0B)

Phasor Young Won Lim 05/19/2015

Detect Sensor (6B) Eddy Current Sensor. Young Won Lim 11/19/09

Discrete Time Rect Function(4B)

Group & Phase Velocities (2A)

Hilbert Inner Product Space (2B) Young Won Lim 2/7/12

Line Integrals (4A) Line Integral Path Independence. Young Won Lim 11/2/12

Discrete Time Rect Function(4B)

Dispersion (3A) 1-D Dispersion. Young W. Lim 10/15/13

Capacitor in an AC circuit

CLTI Differential Equations (3A) Young Won Lim 6/4/15

The Growth of Functions (2A) Young Won Lim 4/6/18

Fourier Analysis Overview (0A)

Down-Sampling (4B) Young Won Lim 10/25/12

Propagating Wave (1B)

Magnetic Sensor (3B) Magnetism Hall Effect AMR Effect GMR Effect. Young Won Lim 9/23/09

Spectra (2A) Young Won Lim 11/8/12

Capacitor Young Won Lim 06/22/2017

Audio Signal Generation. Young Won Lim 1/29/18

Group Delay and Phase Delay (1A) Young Won Lim 7/19/12

Capacitor and Inductor

Capacitor and Inductor

Fourier Analysis Overview (0B)

Bayes Theorem (10B) Young Won Lim 6/3/17

Down-Sampling (4B) Young Won Lim 11/15/12

Up-Sampling (5B) Young Won Lim 11/15/12

Surface Integrals (6A)

Digital Signal Octave Codes (0A)

Background LTI Systems (4A) Young Won Lim 4/20/15

Integrals. Young Won Lim 12/29/15

Trigonometric Identities Exam Questions

Digital Signal Octave Codes (0A)

Digital Signal Octave Codes (0A)

Group Velocity and Phase Velocity (1A) Young Won Lim 5/26/12

Audio Signal Generation. Young Won Lim 2/2/18

Hyperbolic Functions (1A)

Bayes Theorem (4A) Young Won Lim 3/5/18

Signals and Spectra (1A) Young Won Lim 11/26/12

Sequential Circuit Timing. Young Won Lim 11/6/15

Digital Signal Octave Codes (0A)

Definite Integrals. Young Won Lim 6/25/15

Math 104 Midterm 3 review November 12, 2018

Hamiltonian Cycle (3A) Young Won Lim 5/5/18

General Vector Space (3A) Young Won Lim 11/19/12

FSM Examples. Young Won Lim 11/6/15

Digital Signal Octave Codes (0A)

Audio Signal Generation. Young Won Lim 2/2/18

Implication (6A) Young Won Lim 3/17/18

Trigonometry Outline

Digital Signal Octave Codes (0A)

Bilateral Laplace Transform (6A) Young Won Lim 2/16/15

Elastic collisions in two dimensions 5B

Resolution (7A) Young Won Lim 4/21/18

Bilateral Laplace Transform (6A) Young Won Lim 2/23/15

Propositional Logic Resolution (6A) Young W. Lim 12/12/16

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

7.3 Inverse Trigonometric Functions

Propositional Logic Logical Implication (4A) Young W. Lim 4/11/17

Math 223 Final. July 24, 2014

Capacitor in an AC circuit

Propositional Logic Resolution (6A) Young W. Lim 12/31/16

Implication (6A) Young Won Lim 3/12/18

Bandpass Sampling (2B) Young Won Lim 3/27/12

Capacitor in an AC circuit

CT Correlation (2A) Young Won Lim 9/9/14

Probability (10A) Young Won Lim 6/12/17

secθ 1 cosθ The pythagorean identities can also be expressed as radicals

CLTI System Response (4A) Young Won Lim 4/11/15

6.1: Verifying Trigonometric Identities Date: Pre-Calculus

Capacitor in an AC circuit

Transcription:

Background Trigonmetry (A)

Copyright (c) 014 015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1. or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Please send corrections (or suggestions) to youngwlim@hotmail.com. This document was produced by using OpenOffice and Octave.

Complex Numbers Complex Analysis (BGND.1A) 3

Reference Angle (1) 1 st Quadrant Angle θ nd Quadrant Angle θ 90 180 y x, y x, y y 1 x 1 1 x 1 Reference Angle α = 180 sin = y cos = x tan = y / x sin θ = + sin α = (+ y) cos θ = cos α = ( x) tan θ = tan α = (+ y)/( x) Complex Analysis (BGND.1A) 4

Reference Angle () 3 rd Quadrant Angle θ 180 70 4 th Quadrant Angle θ 70 360 1 x 1 1 x 1 x, y y y x, y Reference Angle α = 180 sin θ = sin α = ( y) cos θ = cos α = ( x) tan θ = + tan α = ( y)/( x) Reference Angle α = 360 sin θ = sin α = ( y) cos θ = + cos α = (+ x) tan θ = tan α = ( y)/(+ x) Complex Analysis (BGND.1A) 5

Reference Angle (3) A Quadrant Angle θ Reference Angle α = sin = sin cos = cos tan = tan = sin = sin cos = cos tan = tan only sin + x, y All + x, y sin = sin cos = cos tan = tan = sin = sin cos = cos tan = tan = x, y only tan + only cos + x, y Complex Analysis (BGND.1A) 6

Symmetry http://en.wikipedia.org/wiki/derivative Complex Analysis (BGND.1A) 7

Shift by +π/ cos(α + π ) = sin α x, y sin(α + π ) = +cos α ( y, +x) α + π tan(α + π ) = cot α cot(α + π ) = tan α csc (α + π ) = +sec α sec(α + π ) = csc α Complex Analysis (BGND.1A) 8

Shift by -π/ cos(α π ) = +sin α x, y sin(α π ) = cos α α π tan(α π ) = cot α cot(α π ) = tan α (+ y, x) csc (α π ) = sec α sec(α π ) = +csc α Complex Analysis (BGND.1A) 9

Shifts and periodicity http://en.wikipedia.org/wiki/derivative Complex Analysis (BGND.1A) 10

Co-function Identities cos( π α) = sin α y x, y sin( π α) = cos α 1 π α x 1 tan( π α) = cot α cot ( π α) = tan α csc( π α) = sec α sin = y cos( π α) sec( π α) = csc α cos = x sin( π α) tan = y / x cot( π α) Complex Analysis (BGND.1A) 11

Angle Sum and Difference Identities (1) sin (60 + 30 ) = 1 1 y π α x x, y 1 sin (60 ) = cos(60 ) = 1 + 1 1 = 1 sin (30 ) = 1 cos(30 ) = sin (60 30 ) = 1 sin(α + β) = sin α cosβ + cos α sinβ sin(α β) = sin α cosβ cos α sinβ sin (60 ) = cos(60 ) = 1 sin (30 ) = 1 cos(30 ) = 1 1 = 1 Complex Analysis (BGND.1A) 1

Angle Sum and Difference Identities () cos(30 + 60 ) = 0 1 y π α x x, y 1 sin (60 ) = cos(60 ) = 1 1 1 = 0 sin (30 ) = 1 cos(30 ) = cos(α + β) = cosα cosβ sin α sin β cos(α β) = cosα cosβ + sin α sin β cos(30 60 ) = sin (60 ) = cos(60 ) = 1 sin (30 ) = 1 cos(30 ) = 1 + 1 = Complex Analysis (BGND.1A) 13

Angle Sum and Difference Identities (3) tan(30 + 60 ) = + 1 y π α x x, y 1 tan(30 ) = 1 tan(60 ) = 1 + 1 1 = + tan(60 ) = tan(30 ) = 1 tan(α + β) = tan(α β) = tan(α) + tan(β) 1 tan(α)tan(β) tan(α) tan(β) 1 + tan(α)tan(β) tan(30 60 ) = 1 tan(30 ) = 1 tan(60 ) = 1 1 + 1 = 1 tan(60 ) = tan(30 ) = 1 Complex Analysis (BGND.1A) 14

Angle Sum and Difference Identities (4) sin(α + β) = sin α cosβ + cos α sinβ sin(α β) = sin α cosβ cos α sinβ sin α sin β sin α sin β cos α cosβ cos α cosβ cos(α + β) = cosα cosβ sin α sin β cos(α β) = cosα cosβ + sin α sin β sin α sin β sin α sin β cos α cosβ cos α cosβ sin(α + β) cos(α + β) = sin α cosβ + cos α sin β cosα cosβ sin α sin β sin(α β) cos(α β) = sin α cosβ cos α sin β cosα cosβ + sin α sin β tan(α + β) = tan(α) + tan(β) 1 tan(α)tan(β) tan(α β) = tan(α) tan(β) 1 + tan(α)tan(β) Complex Analysis (BGND.1A) 15

Product to Sum (1) + sin(α + β) = sin α cosβ + cos α sinβ + sin(α β) = sin α cosβ cos α sinβ sin(α + β) + sin(α β) = sin α cosβ + sin(α + β) = sin α cosβ + cos α sinβ sin(α β) = sin α cosβ cos α sinβ sin(α + β) sin(α β) = cosα sin β sin α cosβ = 1 {sin(α + β) + sin(α β)} cos α sinβ = 1 {sin(α + β) sin(α β)} + cos(α + β) = cosα cosβ sin α sin β + cos(α β) = cosα cosβ + sin α sin β + cos(α + β) = cosα cosβ sin α sin β cos(α β) = cosα cosβ + sin α sin β cos(α + β) + cos(α β) = cosα cosβ cos(α + β) + cos(α β) = sin αsin β cos α cosβ = 1 {+ cos(α + β) + cos(α β)} sin α sin β = 1 { cos(α + β) + cos(α β)} Complex Analysis (BGND.1A) 16

Product to Sum () sin(α ± β) = sinα cosβ ± cos α sinβ sin(α + β) = sin α cosβ + cos α sinβ sin(α β) = sin α cosβ cos α sinβ cos(α ± β) = cosα cosβ sin α sin β cos(α + β) = cosα cosβ sin α sin β cos(α β) = cosα cosβ + sin α sin β sin α cosβ = 1 {sin(α + β) + sin(α β)} sin α cosβ = 1 {+ sin(α + β) + sin(α β)} cos α sinβ = 1 {+ sin(α + β) sin(α β)} cos α cosβ = 1 {+ cos(α + β) + cos(α β)} cos α cosβ = 1 {+ cos(α + β) + cos(α β)} sin α sin β = 1 { cos(α + β) + cos(α β)} Complex Analysis (BGND.1A) 17

References [1] http://en.wikipedia.org/ [] M.L. Boas, Mathematical Methods in the Physical Sciences [3] E. Kreyszig, Advanced Engineering Mathematics [4] D. G. Zill, W. S. Wright, Advanced Engineering Mathematics [5] www.chem.arizona.edu/~salzmanr/480a