HELICAL BUCKLING OF DRILL-STRINGS

Similar documents
Experimental Studies of Forward and Backward Whirls of Drill-String

1 General introduction

3 Mathematical modeling of the torsional dynamics of a drill string

STICK-SLIP WHIRL INTERACTION IN DRILLSTRING DYNAMICS

F. Abdul Majeed 1, H. Karki 1, Y. Abdel Magid 2 & M. Karkoub 3. Abstract. 1 Introduction and problem formulation

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

DESIGN OF AN ULTRA-SPEED LAB-SCALE DRILLING RIG FOR SIMULATION OF HIGH SPEED DRILLING OPERATIONS IN HARD ROCKS. *V. Rasouli, B.

Key words: Polymeric Composite Bearing, Clearance, FEM

Dynamic Tests on Ring Shear Apparatus

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics

Experimental Studies with Drill String: Effects of Drill Mud

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

1369. Vibration characteristic analysis of the multi-drilling mechanism

Simulation of the cutting action of a single PDC cutter using DEM

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Coupling Axial Vibration With Hook Load/Bit Force And The Effect Of Shock Absorber

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C

The problem of transmitting a torque or rotary motion from one plane to another is frequently encountered in machine design.

4 Experimental study of a real size vibro-impact system for the RHD

CHAPTER 6 FRICTION AND WEAR ANALYSIS FOR BUSHING

Analysis on propulsion shafting coupled torsional-longitudinal vibration under different applied loads

3.5 STRESS AND STRAIN IN PURE SHEAR. The next element is in a state of pure shear.

Mechanical Design. Design of Shaft

PES Institute of Technology

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS)

Dynamics of assembled structures of rotor systems of aviation gas turbine engines of type two-rotor

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

Sub. Code:

Q. 1 Q. 5 carry one mark each.

1367. Study on lateral vibration of rotary steerable drilling system

Deflections and Strains in Cracked Shafts due to Rotating Loads: A Numerical and Experimental Analysis

Deep Foundations 2. Load Capacity of a Single Pile

CIVL222 STRENGTH OF MATERIALS. Chapter 6. Torsion

Members Subjected to Torsional Loads

Varuvan Vadivelan. Institute of Technology LAB MANUAL. : 2013 : B.E. MECHANICAL ENGINEERING : III Year / V Semester. Regulation Branch Year & Semester

Lab Exercise #3: Torsion

NONLINEAR CHARACTERISTICS OF THE PILE-SOIL SYSTEM UNDER VERTICAL VIBRATION

Discrete Element Modelling of a Reinforced Concrete Structure

BEAMS AND PLATES ANALYSIS

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion

Simulation and Experimental Research on Dynamics of Low-Pressure Rotor System in Turbofan Engine

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

Lateral Vibration of Oilwell Drillstring During Backreaming Operation

A Study on the Tube of Integral Propeller Shaft for the Rear-wheel Drive Automobile Using Carbon Composite Fiber

Investigation into the Self-loosening Trend of Bolt Joints on the Tower Crane ShengChun Wang1,a, PeiWei Ni1,b, Ye Zhang1,c and MingXiao Dong1,2,d

Nonlinear Rolling Element Bearings in MADYN 2000 Version 4.3

DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS).

Rotor-stator contact in multiple degree of freedom systems

(48) CHAPTER 3: TORSION

This equation of motion may be solved either by differential equation method or by graphical method as discussed below:

[7] Torsion. [7.1] Torsion. [7.2] Statically Indeterminate Torsion. [7] Torsion Page 1 of 21

Torsion of shafts with circular symmetry

Design and Application of a Rock Breaking Experimental Device With Rotary Percussion

Department of Mechanical FTC College of Engineering & Research, Sangola (Maharashtra), India.

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

MARKS DISTRIBUTION AS PER CHAPTER (QUESTION ASKED IN GTU EXAM) Name Of Chapter. Applications of. Friction. Centroid & Moment.

Engineering Science. 1 Be able to determine the behavioural characteristics of elements of static engineering systems

Parameter Design of High Speed Coupling for 6 MW Wind Turbine Considering Torsional Vibration

Rotational Motion. Figure 1: Torsional harmonic oscillator. The locations of the rotor and fiber are indicated.

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

Physical and Biological Properties of Agricultural Products Acoustic, Electrical and Optical Properties and Biochemical Property

Cork Institute of Technology. Summer 2007 Mechanics of Machines (Time: 3 Hours)

Expansion of circular tubes by rigid tubes as impact energy absorbers: experimental and theoretical investigation

PERFORMANCE EVALUATION OF OVERLOAD ABSORBING GEAR COUPLINGS

On Nonlinear Buckling and Collapse Analysis using Riks Method

Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION

Study Effect of Pads shapes on Temperature Distribution for Disc Brake Contact Surface

Dynamics of Machinery

MECE 3321: MECHANICS OF SOLIDS CHAPTER 5

M. Vable Mechanics of Materials: Chapter 5. Torsion of Shafts

Analysis of the torsional load capacity of V-section band clamps Simon M Barrans 1,a, Adelle Waterworth 1,b and Salahaddin Sahboun 1,c

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study

ME325 EXAM I (Sample)

EXPERIMENTAL INVESTIGATION OF THE EFFECTS OF TORSIONAL EXCITATION OF VARIABLE INERTIA EFFECTS IN A MULTI-CYLINDER RECIPROCATING ENGINE

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA SCIENCE FOR TECHNICIANS OUTCOME 1 - STATIC AND DYNAMIC FORCES TUTORIAL 3 STRESS AND STRAIN

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

Faculty of Science and Technology. Master thesis. Faculty supervisor: Dan Sui (UiS) External supervisor: Eric Cayeux (IRIS) Title: Drillbotics 2016:

1. What would be the value of F1 to balance the system if F2=20N? 20cm T =? 20kg

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

T1 T e c h n i c a l S e c t i o n

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS

LANMARK UNIVERSITY OMU-ARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR.

Research Article Stick-Slip Analysis of a Drill String Subjected to Deterministic Excitation and Stochastic Excitation

Simulation of the Stick-Slip Friction between Steering Shafts Using ADAMS/PRE

Experiment Two (2) Torsional testing of Circular Shafts

Study of coupling between bending and torsional vibration of cracked rotor system supported by radial active magnetic bearings

KNIFE EDGE FLAT ROLLER

Contact pressure distribution in joints formed by V-band clamps Simon M Barrans 1,a, Goodarz Khodabakhshi 1,b and Qiang Xu 1,c

IMPACT RESPONSE ANALYSIS OF LARGE SCALE RC GIRDER WITH SAND CUSHION

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2

Calculating Method for the Axial Force of Washover String During Extracting Casing in Directional Well

Torsion Stresses in Tubes and Rods

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland

INVESTIGATION OF IMPACT HAMMER CALIBRATIONS

Cite this paper as follows:

SOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling.

VIBRATION ANALYSIS OF TIE-ROD/TIE-BOLT ROTORS USING FEM

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by

Transcription:

HELICAL BUCKLING OF DRILL-STRINGS Marcin Kapitaniak 1,, Vahid Vaziri 1,, and Marian Wiercigroch 1 1 Centre for Applied Dynamics Research, School of Engineering, University of Aberdeen, Aberdeen, AB24 3UE, Scotland, UK Abstract. This paper presents experimental and numerical investigations of the complex drill-string vibration, with particular attention to the helical buckling of drill-strings and its influence on the system dynamics. The analysis is conducted using a novel experimental drilling rig, capable of exhibiting of all major types of drill-string vibration, including torsional, axial and lateral modes, which utilizes real industrial drill-bits and rock samples. A good qualitative and quantitative agreement between the experiments and numerical model is demonstrated. 1 Introduction The drill-strings used for oil and gas extraction, due to their length reaching up to several kilometers, have a very low bending stiffness compared to the torsional one, what makes them impossible to be driven it in a completely straight configuration. Thereby the drill-string will buckle under its own weight and as the rotation from the top is applied, will take a helical shape due to the constraint in a form of the borehole. Due to the multiple contact points between the drill-string and the borehole, as well as the helical shape the equivalent properties of the structure are different than for the straight configuration. This can have a significant influence on the system dynamics, leading for example to well known stick-slip phenomenon at the drill-bit rock interface, which in turn can result in reduced efficiency of the drilling process, increased wear of the equipment and subsequent catastrophic failures [1]. The aim of this paper is to present the experimentally calibrated model, that takes into account helical buckling of drill-strings and e-mail: marcin.kapitaniak@abdn.ac.uk provides further capabilities and understanding comparing to other models [2 4]. 2 Aberdeen drilling rig In order to gain a deeper understanding of drillstring vibration, a novel experimental drilling rig [2] has been constructed at the University of Aberdeen, which is capable of reproducing stick-slip, whirling and bit-bounce phenomena. In this paper we focus on the torsional buckling of the drill-string and demonstrate that it can be a cause of stick-slip oscillations. In our experimental facility, the drill-string is driven from top by a 3kW electric motor which can provide up to 1032 rpm. Depending on the chosen configuration either rigid or flexible shafts are used to transmit rotary motion to the Bottom Hole Assembly (BHA) section and ultimately to the drill-bit. The BHA is made of a heavy steel shaft, held in transversal direction using a loose bearing, as shown schematically in Fig. 1 (a). An axial static force or a Weight on Bit (WOB) is realized by placing steel disks on the top of The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

Figure 1. (a) Schematic diagram and photograph of the experimental setup. Main components of the system are: electric motor, flexible or rigid shafts, disks, the BHA, drill-bit and rock samples. (b) Drill-bit rock interface and the BHA with position of the eddy current probes, (c) 4-component load cell (d) top and bottom encoders and (e) LVDT. (f) Configuration of the FE model for pre-buckled configuration, showing all the boundary conditions applied at the top and bottom nodes. the BHA providing WOB within the range 0.93 to 2.79 kn. A variety of different sensors are used in the experimental setup, which allow to conduct detailed measurements of the most important variables of the drilling process. These include two incremental rotary quadrature encoders (Fig. 1 (d)) to measure top and bottom angular velocity, an axial position transducer (Fig. 1 (e)) to observe Rate of Penetration (ROP) and most importantly two eddy current probes to measure the lateral position of the BHA within the range 0-5mm (see Fig. 1 (b)). The most advanced sensor in our setup is the four component dynamometer (Kistler 9272), placed directly below the rock sample, which allows to measure the axial force F z, reaction torque T z, and two forces acting in transversal directions F x and F y as depicted in Figure 1 (c). The ranges of measurement for Torque on Bit (TOB) and WOB are: ± 200 Nm and -5-20 kn respectively. For more details about the experimental rig, please refer to [5 7]. 2

3 Experiments and Modelling In our work we perform experimental observations of the stick-slip phenomenon, with the drill-string in the buckled configuration and on this basis calibrate a Finite Element (FE) model of the rig. Note that in the experimental analysis we represent the drill-string section using flexible shaft of very low bending to torsional stiffness ratio. As can be seen in Fig. 1(f), the FE model of the experimental setup consists of two cylinders, one representing the drill-bit and the other the rock sample, as well as the flexible shaft set in the prebuckled configuration, which allows us to observe helical buckling condition. As the flexible shaft exhibits different properties depending on the direction, it is required to describe it as an orthotropic material, that has different properties along 3 principal axes. This means 9 independent material constants are required to form elasticity matrix D to describe the stress-strain relationship. One of the critical steps in the modelling of drill-string dynamics is the mathematical description of the bit-rock interactions. Quantitatively, these interactions are represented in terms of TOB versus bit velocity curves, which in turn allow us to compute equivalent friction coefficient (slip-rate dependent) that captures the main phenomena observed in our drilling tests, namely, cutting and friction between the drill-bit and the rock sample. In the FE model, we assign following friction coefficient between the disc representing the drillbit and the BHA and the one representing the rock sample: µ = µ k + (µ s µ k )e d crϕ b + µ str rϕ b, where µ k, µ s, µ str, d c, r and ϕ b represent the kinetic, static, Stribeck friction coefficient, the decay rate, drill-bit radius and angular velocity respectively. For calibration details of the FE model of the flexible shaft and the drill-bit rock interactions please refer to [6]. An example of experimental time history and phase portrait (marked in red), clearly showing stick-slip behaviour, is shown in top panel in Fig. 2 (c), which is compared with the response from calibrated FE model of the assembly (in green) below. Note that the same top excitation is applied in experiment and the FE model (black curve), which assigns following inertia properties to the disc representing the BHA (m = 148.579 kg and J = 0.8416 kgm 2 ), elastic properties of the flexible shaft (Young moduli: E 1 = E 2 = 3.64 GPa, E 3 = 1.50 GPa, shear moduli: G 12 = 0.02 GPa, G 13 = G 23 = 18.16 GPa, Poisson ratios:ν 12 = ν 13 = ν 23 = 0.30) and equivalent friction coefficients (µ s = 0.1280, µ k = 0.0874, µ str = 0.0085, d c = 2.2047), that correspond to experimental values, as identified in [6]. A very good qualitative and quantitative agreement is achieved, which is particulary visible when comparing shapes of the flexible shaft during different stages of the stick-slip motion, corresponding to experiment and the FE model (See front and top views shown in Figs 1 (a) and (b) respectively). Note, that there are small differences, as the model predicts slightly smaller amplitude of stick-slip vibrations, while keeping the same period. At the same time, when comparing the phase portraits for both cases, we observe that the sticking interval is also slightly smaller than the one observed in experiment, which might be caused by the simplification of cutting process using an equivalent friction approach. Additionally, we observe experimentally the variation in WOB and in TOB, which can be directly related to the sticking phases (points A- B) visible in angular velocity of the drill-bit, as shown in left hand side panels of Figs 2 (d)-(f). This behaviour is confirmed in the FE model with corresponding time histories shown in the right panels (Figs 2 (d)-(f)), which provides further validation for the model s calibration. As shown in Fig. 2 (e), in both the experimental and numerical results, there is a drop in WOB exactly at a point where sticking phase begins (point A). This suggests an upward force acting on the drill-bit, due to helical deformation of the flexible shaft and elastic energy accumulated. As for the TOB, its variations happen mainly due to the changes of the velocity of the drill-bit and frictional/cutting characteristics of the drill-bit-rock interface. Looking closely on the time history of TOB, we observe that exactly on the onset of sticking phase (point A) a clear sudden increase of TOB is visible, indicat- 3

Figure 2. (a)-(b) Comparison of shape of the flexible shaft during stick-slip oscillations for experiment and FE model for prebuckled configuration (d db = 0.0381mm) and WOB of 1.45 kn (front and top views respectively). (c) Corresponding time histories and phase portraits for experiment (in red) and FE model (in green). (d)-(f) A detailed view into time histories of bit angular velocity ϕ b, WOB and TOB respectively (Left and right panels depict experimental and numerical responses respectively). ing reaching a static torque. During the sticking phase, TOB decreases to the initial value by the time slip phase occurs again (point B). 4 Conclusions In this paper, we focus on the experimental verification of the developed FE model of the drilling rig introduced in [7, 6]. The drillstring (represented by the flexible shaft in the experiment) is driven in a buckled configuration, which allows us to investigate effects of helical buckling on stick-slip motion. After careful calibration of the FE model, we are able to achieve the qualitative and quantitative agreement between experiments and the model. The developed model is capable of predicting accurately the shape of the flexible shaft during different phases of stick-slip phenomena as well as 4

changes in TOB and WOB, as shown in detail in Figs. 2 (a)-(f). In view of positive verification of the developed FE model, we can conclude that the model applicability has been demonstrated, which will allow for further investigation into the complexity of helical buckling phenomenon. References [1] A.M Chevallier, N.P Politis, M.L Payne, and P.D. Spanos, Shock and Vibration Digest, 35(2), 85 103 (2003) [2] H. Al-Naser and Y.A. Khulief, Finite Elements in Analysis and Design, 41(13), 1270 1288 (2005) [3] C. Liao, B. Balachandran, M. Karkoub, and Y.L. Abdel-Magid, Journal of Vibration and Acoustics, 133(4), (2011) [4] E. M. Navarro-López and D. Cortés, Journal of Sound and Vibration, 307, 152 171 (2007) [5] M. Kapitaniak, V. Vaziri Hamaneh, J. Páez Chávez, and M. Wiercigroch, International Journal of Mechanical Sciences, 101-102, 324 337 (2015) [6] M. Kapitaniak, PhD thesis, University of Aberdeen, (2015) [7] M. Kapitaniak, V. Vaziri Hamaneh, J. Páez Chávez, and M. Wiercigroch, Mechanical Systems and Signal Processing, 100, 454 465 (2018) 5