SUMMARY OF CONVECTION CORRELATION EQUATIONS. ME 353 Heat Transfer 1. University ofwaterloo

Similar documents
Study of Convective Heat Transfer through Micro Channels with Different Configurations

Development of new and validation of existing convection correlations for rooms with displacement ventilation systems

Consider the element shown in Figure 2.1. The statement of energy conservation applied to this element in a time period t is that:

HT TURBULENT NATURAL CONVECTION IN A DIFFERENTIALLY HEATED VERTICAL CHANNEL. Proceedings of 2008 ASME Summer Heat Transfer Conference HT2008

A = h w (1) Error Analysis Physics 141

Chapter 2 Limits and Continuity

Pre-Calculus Review Preemptive Strike

11-19 PROGRESSION. A level Mathematics. Pure Mathematics

Journal of Applied Science and Agriculture. The Effects Of Corrugated Geometry On Flow And Heat Transfer In Corrugated Channel Using Nanofluid

Hydraulic validation of the LHC cold mass heat exchanger tube.

3.1 Extreme Values of a Function

Introduction to Heat and Mass Transfer. Week 14

Heat Transfer/Heat Exchanger

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Theoretical Analysis of Flow Characteristics and Bearing Load for Mass-produced External Gear Pump

Chapters 19 & 20 Heat and the First Law of Thermodynamics

A general articulation angle stability model for non-slewing articulated mobile cranes on slopes *

CFD calculation of convective heat transfer coefficients and validation Part I: Laminar flow Neale, A.; Derome, D.; Blocken, B.; Carmeliet, J.E.

Elmahdy, A.H.; Haddad, K. NRCC-43378

Continuity and Differentiability of the Trigonometric Functions

Effects of Radiation on Unsteady Couette Flow between Two Vertical Parallel Plates with Ramped Wall Temperature

Lecture 10: Carnot theorem

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

Recall from our discussion of continuity in lecture a function is continuous at a point x = a if and only if

AN ANALYSIS OF AMPLITUDE AND PERIOD OF ALTERNATING ICE LOADS ON CONICAL STRUCTURES

Problem Solving. Problem Solving Process

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Convection Workshop. Academic Resource Center

Comparison of Heat Transfer Conditions in. Tube Bundle Cross-Flow for Different Tube Shapes

Part 2: Introduction to Open-Channel Flow SPRING 2005

Natural Convection Experiment Measurements from a Vertical Surface

Lines, Conics, Tangents, Limits and the Derivative

6. Non-uniform bending

232 Calculus and Structures

A new approach to harmonic allocation for medium-voltage installations

Convection Heat Transfer. Introduction

Continuity and Differentiability Worksheet

Excerpt from "Calculus" 2013 AoPS Inc.

PHYSICAL MECHANISM OF NATURAL CONVECTION

LAMINAR FORCED CONVECTION TO FLUIDS IN COILED PIPE SUBMERGED IN AGITATED VESSEL

THERMO-HYDRODYNAMICS OF DEVELOPING FLOW IN A RECTANGULAR MINI-CHANNEL ARRAY

6.2 TRIGONOMETRY OF RIGHT TRIANGLES

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

The derivative function

Department of Mechanical Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran b

CFD Analysis and Optimization of Heat Transfer in Double Pipe Heat Exchanger with Helical-Tap Inserts at Annulus of Inner Pipe

Atm S 547 Boundary Layer Meteorology

Distribution of reynolds shear stress in steady and unsteady flows

MYcsvtu Notes HEAT TRANSFER BY CONVECTION

Chapter 6 Laminar External Flow

HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1

Flapwise bending vibration analysis of double tapered rotating Euler Bernoulli beam by using the differential transform method

11.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR

CHAPTER (A) When x = 2, y = 6, so f( 2) = 6. (B) When y = 4, x can equal 6, 2, or 4.

The Laplace equation, cylindrically or spherically symmetric case

CFD calculation of convective heat transfer coefficients and validation Part I: Laminar flow. Annex 41 Kyoto, April 3 rd to 5 th, 2006

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12.

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here!

2. Temperature, Pressure, Wind, and Minor Constituents.

Numerical analysis of a free piston problem

Krazy Katt, the mechanical cat

On the computation of wavenumber integrals in phase-shift migration of common-offset sections

1 Power is transferred through a machine as shown. power input P I machine. power output P O. power loss P L. What is the efficiency of the machine?

Chapter 7: Natural Convection

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1

Week #15 - Word Problems & Differential Equations Section 8.2

The causes of the observed head-in-pillow (HnP) soldering defects in BGA

Heat Transfer Convection

Exponentials and Logarithms Review Part 2: Exponentials

Convection. U y. U u(y) T s. T y

Journal of Engineering Science and Technology Review 5 (4) (2012) Special Issue on Renewable Energy Systems.

Solution for the Homework 4

Chapter 2 Limits and Continuity. Section 2.1 Rates of Change and Limits (pp ) Section Quick Review 2.1

5.1 We will begin this section with the definition of a rational expression. We

Localized Interaction Models (LIMs)

Experimental Analysis of Heat Transfer Augmentation in Double Pipe Heat Exchanger using Tangential Entry of Fluid

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3.

Section 15.6 Directional Derivatives and the Gradient Vector

Large eddy simulation of turbulent flow downstream of a backward-facing step

f a h f a h h lim lim

Model development for the beveling of quartz crystal blanks

Grade: 11 International Physics Olympiad Qualifier Set: 2

Velocity distribution in non-uniform/unsteady flows and the validity of log law

MATH 111 CHAPTER 2 (sec )

Click here to see an animation of the derivative

radiation damage 318 doi: /s J. Synchrotron Rad. (2005). 12, Introduction

Integral Calculus, dealing with areas and volumes, and approximate areas under and between curves.

Differential Calculus (The basics) Prepared by Mr. C. Hull

Name: Sept 21, 2017 Page 1 of 1

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES

ANALYTICAL INVESTIGATION OF NONLINEAR MODEL ARISING IN HEAT TRANSFER THROUGH THE POROUS FIN

Logarithmic functions

The Paradox of Two Charged Capacitors

On the absence of marginal pinching in thin free films

arxiv:astro-ph/ v2 6 Dec 1999

Homework 1. Problem 1 Browse the 331 website to answer: When you should use data symbols on a graph. (Hint check out lab reports...

Sample Problems for Exam II

University Mathematics 2

Chapter 4 Optimal Design

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c)

Transcription:

SUMMARY.TEX SUMMARY OF CONVECTION CORREATION EQUATIONS ME 353 Heat Transfer 1 Department of Mecanical Engineering University ofwaterloo M.M. Yovanovic November 10, 1997 Te attaced material is a summary of some of te important results for forced and natural convection eat transfer from isotermal or isoæu surfaces. Correlation equations for local and area-average eat transfer for eternal and internal æow are given. Many empirical and analytic correlation equations ave been developed for te local and area-average values of te Nusselt number for limited ranges of te forced and buoyancyinduced æow parameters: Reynolds, Peclet, Grasof and Rayleig numbers; for laminar or turbulent æows; and for various æuids wic are caracterized by te Prandtl number. One sould consult te course tet for te deænitions of te various dependent and independent parameters and te basis for te æuid properties evaluation for te particular correlation equation. Tis summary does not cover te numerous forced and buoyancy-induced internal æows troug and witin comple conægurations. One sould consult te course tet or te several andboos wic deal wit tese topics. 1. aminar and Turbulent Forced Eternal Flow Deænitions of ocal and Area-average Values @Tè; y 0è, @y, èt w, T 1 è 1 Z 0 èè d è è, Nu ç, Re U 1 ç Re U 1 ç 1

Flat Plate, aminar Boundary ayer Flow Correlation imits Conditions æ 5Re,1 100 ére é 500; 000 ocal C f; 0:664Re,1 100 ére é 500; 000 ocal C f; 1:38Re,1 100 ére é 500; 000 Area-Average ææpr,13 100 ére é 500; 000 ocal Re 1 Re 1 Re 1 Nu Nu 0:3387Pr 13 100 ére é 500; 000 ocal, UWT, Pr!1 0:564Pr 1 100 ére é 500; 000 ocal, UWT, Pr! 0 0:3387Pr 13 è0:0468p rè 3 i 14 100 ére é 500; 000 ocal, UWT, 0 épré1 0:4637Pr 13 100 ére é 500; 000 ocal, UWF, Pr!1 0:886Pr 1 100 ére é 500; 000 ocal, UWF, Pr! 0 0:4637Pr 13 è0:005p rè 3 i 14 100 ére é 500; 000 ocal, UWF, 0 épré1 0:6774Pr 13 è0:0468p rè 3 i 14 100 ére é 500; 000 Average, UWT, 0 épré1 0:974Pr 13 è0:005p rè 3 i 14 100 ére é 500; 000 Average, UWF, 0 épré1 Flat Plate, Turbulent Boundary ayer Flow Correlation imits Conditions æ 0:37Re,15 5 æ 10 5 ére é 10 8 ocal C f; 0:059Re,15 5 æ 10 5 ére é 10 8 ocal C f; 0:074Re,15, 174Re,1 Re ;c 5æ 10 5 Mied-Average ææpr,13 100 ére é 500; 000 ocal 0:096Re 45 Pr 13 100 ére é 500; 000 ocal, UWT, 0:6 épré60 Nu ç 0:037Re 45, 871 ç Pr 13 100 ére é 500; 000 Average, UWT, 0:6éPré60

Cross Flow Over Circular Cylinders Correlation imits Conditions ç è 58 45 Nu D S D+? 0:6Re1 D Pr13 ReD Average; UWT; ç ç 0:4 3 è 14 ç 8; 000 100éRe D é10 7 0 épré1 Pr è! S D? ç 4 0:869èDè 0:76 0 ç D ç 8 Re 0:5+D D! 0 0 1 S D? p 4 @ q 1 A 1 ç 0:5D lnèdè Flow Over Speres D ç 8 Re D! 0; Asymptote Correlation imits Conditions C D 0:4+ 4 Re D + 6 0çRe D çæ10 qre 5 Total Drag, æ10è D Nu D + 0:6Re1 D Pr 13 ç è 58 45 ReD Average; UWT; ç ç 0:4 3 è 14 ç 8; 000 100éRe D é10 7 0 épré1 Pr. Eternal Flow Over Isotermal Oblate and Prolate Speroids Te following universal correlation equation: è! 3 1 Nu p A Nu0 p Pp A + 40:15 p A A +0:35Rep 0:566 5 A Pr 13 was developed by Yovanovic è1988è from two accurate correlation equations proposed by Yuge è1960è for air cooling of isotermal speres, and te correlation equations developed by several researcers for convection eat and mass transfer from isotermal oblate and prolate speroids. In te above correlation equation te Nusselt and Reynolds numbers are bot based on te lengt scale p A. Te diæusive limit Nu 0 p A corresponding to Re! 0iste dimensionless sape factor S? p A. Yovanovic è1988è blended te two Yuge equations and introduced te parameter P p A wic accounts for te blocage of te body as te æuid æows around it. Also te Yuge 3

correlation equations wicwere developed for air were etended to account for large Prandtl number æuids, i.e. Pr é 0:7. Te correlation equation is valid for te wide Reynolds number range: 0 ç Re p A é æ 105. Te general correlation equation is in very good agreement wit numerous analytical and eperimental correlation equations over various ranges of te Reynolds number for Pr 0:7. It is also in good agreement wit te empirical correlation equation of Pasterna and Gauvin è1960è wic was developed from 0 diæerent conve body sapes to account for bot body sape and orientation. Te body lengt scale wic tey proposed was based on te ratio of te total surface area of te body divided by te maimum projected area of te body perpendicular to te air æow. Tey acieved good correlation of teir eat and mass transfer data wit a single power-law equation wic was converted to te body scale lengt p A Nu p A 0:914Re0:514 p A Pr 13 886 ç Re p A ç 8860 Tis equation correlated data for speres, ænite circular cylinders wit aes parallel and perpendicular to te æow, prisms, cubes in various orientations, and emisperes positioned wit te æat section at te rear. Te turbulence intensity was reported to be in te range: 9 to 10 è in all teir eperiments. Te single equation correlated all data wit a deviation of only æ15 è in te speciæed range. Te general correlation equation agrees wit te Pasterna-Gauvin correlation equation witin te given Reynolds number range to witin 15 è. Terefore, te general equation of Yovanovic can be used for arbitrary conve isotermal bodies over a muc wider range of te Reynolds number. 3. aminar Forced Internal Flow Deænitions and Notation Reynolds number: Re D UD ç aminar Flow: Re D é 300 Hydraulic Diameter: D 4 P A Cross Section Area Wetted Perimeter Dimensionless aial distance:? D Pe D ReP r ç 4 Gz 1 q ocal, Isotermal Wall, Nusselt number: ;UW T w èè ët w, T m èèë D Mean-value, Isotermal Wall, Nusselt number: Nu m;uw T q w ët w, T m èèë D ocal, Isoæu Wall, Nusselt number: ;UW F q w ët w èè, T m èèë D q Mean-value, Isoæu Wall, Nusselt number: Nu m;uw F w ët w èè, T m èèë D 4

ocal Nusselt Number for Termally Developing Flow Curcill and Ozoe è1973è propose te following correlation equations for te local Nusselt number for te developing termal æeld for te UWT and UWF cases: ;UW T +1:7 5:357 ç ç 388,89 è 38 ç? æ 5è ;UW F +1 5:364 ç ç è 0,109 310 ç? æ 5è Tey developed tese epressions based on asymptotic solutions valid for small and large values of?. Area-Average Nusselt Number for Fully Developed Hydraulic, Termally Developing Flow Te following approimations of Sa è1975è for fully developed ydraulic æow and termally developing in an isotermal èuwtè or an isoæu èuwfè circular pipe are based on te analytic solutions of te Graetz-type problems. Epressions for area-mean Nu m;uw T ;Nu m;uw F versus te local dimensionless position? èd èèrep rè are given below. Te approimations are quite accurate over te entire range: 0:005 é? ç 1: Te maimum diæerence wit respect to accurate analytic results is less tan 4:4è. For very small values? é 0:005 te approimate epressions approac te eveque asymptotes wic were obtained by te metod of similarity transformation. For large values? ç 0:5, te approimations go to te fully-developed ydraulic and termal solutions: Nu UWT 3:656 and Nu UWF 4:354 wic were obtained by te metod of separation of variables wic leads to a diæerential equation of te Sturm-iouville type. Te solution is presented as an inænite series epansion of eigenfunctions and corresponding eigenvalues. 8 é Nu m;uw T é: 8 é Nu m;uw F é: 1:615 è? è 13, 0:; 0:005 é? é 0:03 3:656 + 0:0499? ;? ç 0:03 1:953 è? è 13;? ç 0:03 4:354 + 0:07? ;? é 0:03 Te circular cylinder results may be used to ænd approimate values for isotermal and isoæu tubes aving oter cross-sections èe.g. square or triangular pipesè by te use of te ydraulic diameter in te Nusselt and Reynolds numbers. 5

4. aminar and Turbulent Natural Eternal Flow Deænitions of ocal and Area-average Values y @Tè; y 0è, @y èt w, T 1 è, ç 4è è 3, Nu ç y Gr gæ èt w, T 1 è 3 ç, Ra gæ èt w, T 1 è 3 æç, Ra Gr Pr y Gr gæ èt w, T 1 è 3 ç, Ra gæ èt w, T 1 è 3 æç, Ra Gr Pr y For UWF cases, use te midpoint temperature diæerence: èt w è è, T 1 è Flat Plate, Buoyancy-Induced aminar Boundary ayer Flow Ra 14 Ra 14 Ra 14 Ra 14 Ra 14 Ra 14 Nu Ra 14 Nu Ra 14 0:507 10 4 égr é 10 9 ocal, UWT, Pr!1 0:6004Pr 14 10 4 égr é 10 9 ocal, UWT, Pr! 0 0:507 è0:49p rè 916 i 49 10 4 égr é 10 9 ocal, UWT, 0 épré1 0:567 10 4 égr? é 10 9 ocal, UWF, Pr!1 0:69Pr 14 10 4 égr? é 109 ocal, UWF, Pr! 0 0:567 è0:437p rè 916 i 49 10 4 égr? é 109 ocal, UWF, 0 épré1 0:6703 è0:49p rè 916 i 49 10 4 égr é 10 9 Average, UWT, 0 épré1 0:7503 è0:437p rè 916 i 49 10 4 égr? é 10 9 Average, UWF, 0 épré1 6

Flat Plate, Buoyancy-Induced Turbulent Boundary ayer Flow Nu 0:150Ra 13 Average; UWT; i 10 9 égr 167 é 10 1 è0:49p rè 916 0 épré1 8 9 é Nu é: 0:85 + 0:387Ra 16 é i 87 è0:49p rè 916 é; 10,1 éra é 10 1 Average; UWT; 0 épré1 ong Horizontal Isotermal Circular Cylinders, aminar and Turbulent Flow 3 0:387Ra Nu D 40:60 16 D + 5 ëè0:559p rè 916 ë 87 0 épré1; 10,5 éra D ç 10 1 Finite Horizontal Isotermal Circular Cylinders, aminar Flow Nu D S? D + 0:518Ra 14 D ëè0:559p rè 916 ë 49 0 épré1; 0 éra D ç 10 9 Isotermal Speres, aminar Flow Nu D + 0:589Ra 14 D ëè0:469p rè 916 ë 49; 0 épré1; 0 ç Ra D é 10 11 5. General Correlation Equation for Arbitrary Isotermal Conve Bodies Nu Nu 0 + F èprèg Ra 14 ; 0 épré1 0 ç Ra ç 10 11 were te caracteristic body lengt is p A and A is te total active orwetted surface area. Te universal Prandtl number function valid for all isotermal conve bodies is given by: 0:670 F èprè ëè0:5p rè 916 ë 49 wic for air èpr 0:71è as te value F èpr 0:71è0:513. Te diæusive limit Nu 0 or sape factor S? wit p A is a wea function of body sape and its aspect ratio. For 7

eample, its range is 3:0 ç S p? A é 7:55 for a solid circular cylinder wose lengt-to-diameter ratio varies from 0 èa circular disè to 100 èvery long cylinderè. For long aisymmetric bodies èe.g. circular cylinder and long square cuboidè te sape factor can be accurately approimated by S p A 4q D lnèdè were D is te diameter of te circular cylinder and it is equal to te geometric-mean of te diameters of te inscribed and circumscribed circular cylinders respectively, and is te lengt. Te body-gravity function G accounts for te buoyancy-induced æow over te conve body. It is a relatively wea function of te body sape and its orientation wit respect to te gravity vector wen p A is used and te comple conve body èe.g. a cuboidè as dimensions èh; W;è wic do not go to zero H 6 0 in te direction parallel to te gravity vector èe.g. a orizontal rectangular plateè, and te oter dimensions èw;è wic are perpendicular to te gravity vector do not go to 1. Oterwise te body-gravity function will lie in te narrow range 0:9 ég p A é 1:1. For eample te body-gravity function for a spere, orizontal cube, and a sort circular cylinder D 1 wit active sides and ends in te orizontal, inclined at 45, degrees and vertical orientations ave te empirical values: G p A 1:03; 0:951; 1:019; 1:004; 0:967 respectively. Tese empirical values are witin 3 è of te teoretical values. Tere are many oter comple conve bodies wic ave body-gravity functions close to unity. Te body-gravity function for a orizontal cuboid èh; W;è were te H,side is parallel to g and te oter two sides èw;è are perpendicular to g may be used to estimate G p A for conve bodies wic ave surfaces wic are parallel and perpendicular to g. Te bodygravity function for cuboids is given by: è 0:65 43 G p W + Hè + W è 43 34 A 18 èhw + H + W è 76 Te above analytic-empirical relationsip reduces to several important special cases. Horizontal Cube, All Surfaces Active: H W 1 G p A 0:984 Horizontal Rectangular Plates, Bot Sides Active: H 0; ç W G p A 0:7665èW è18 ; W ç 1 Horizontal Square Plates, Bot Sides Active: H 0; W G p A 0:7665 8

Vertical Rectangular Plates, Bot Sides Active: 0 G p A 18 èwhè 18 ; 0 é W H é 1 If te vertical plate as one side active, omit te factor 18. Vertical Square Plate, Bot Sides Active: H W; 0 G p A 18 1:0905 If te vertical square plate as one side active, omit te factor 18 and G p A 1. ong Horizontal Square Prisms wit Active Ends: H Wéé G p A 0:856 ç H ç 18 ; H é 10 ong Vertical Square Prisms wit Active Ends: W; 0 ç HW é 1 G p A 14è0:50 + HWè34 è0:500 + HWè 78 Heated Horizontal Rectangular Plates Facing Upward or Downward: H 0; W ç 1 G p A 18 ç W ç 18 facing upward G p A 18 ç W ç 18 facing downward Oter Body Sapes Te body-gravity function for oter body sapes suc as te ænite circular cylinder wit active sides and ends in te orizontal and vertical orientations can be accurately approimated by using te results for te square prism wit active ends in te orizontal or vertical orientations. 9