Frustration-induced exotic properties of magnetic molecules

Similar documents
Frustration effects in magnetic molecules. Fachbereich Physik - Universität Osnabrück

Frustration effects in magnetic molecules. Department of Physics University of Osnabrück Germany

The Osnabrück k-rule for odd antiferromagnetic rings

Frustration-induced exotic properties of magnetic molecules and low-dimensional antiferromagnets

Frustration effects in magnetic molecules

Frustration effects in magnetic molecules

Frustration-induced exotic properties of magnetic molecules and low-dimensional antiferromagnets

Simulations of magnetic molecules

A short introduction into molecular magnetism (With special emphasis on frustrated antiferromagnetic molecules)

What do magnetic molecules teach us about magnetism?

Modern aspects in magnetic structure and dynamics

Rapidly changing magnetic field uncovers low-lying energy spectrum of the molecular magnet {Mo 72 Fe 30 }

The end is (not) in sight: exact diagonalization, Lanczos, and DMRG

Enhanced magnetocaloric effect in strongly frustrated magnetic molecules

Magnetism in zero dimensions physics of magnetic molecules

Trends in molecular magnetism: a personal perspective

arxiv: v1 [cond-mat.str-el] 22 Jun 2007

Exploring Magnetic Molecules with Classical Spin Dynamics Methods

Magnetic Molecules are tomorrows bits synthetic?

Yes, we can! Advanced quantum methods for the largest magnetic molecules

Extreme magnetocaloric properties of Gd 10 Fe 10 sawtooth spin rings: a case study using the finite-temperature Lanczos method

Modeling of isotropic and anisotropic magnetic molecules

Quantum Theory of Molecular Magnetism

Trends, questions and methods in molecular magnetism

Quantum numbers for relative ground states of antiferromagnetic Heisenberg spin rings

arxiv:cond-mat/ Oct 2001

8 Quantum Theory of Molecular Magnetism

arxiv:cond-mat/ v1 [cond-mat.str-el] 29 Mar 2005

arxiv:cond-mat/ v1 12 Dec 2006

arxiv:cond-mat/ v2 [cond-mat.str-el] 17 Sep 2007

The Ground-State of the Quantum Spin- 1 Heisenberg Antiferromagnet on Square-Kagomé Lattice: Resonating Valence Bond Description

Quantum spin systems - models and computational methods

Multiple spin exchange model on the triangular lattice

Spin liquids on ladders and in 2d

Numerical diagonalization studies of quantum spin chains

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Solving the sign problem for a class of frustrated antiferromagnets

Coupled Cluster Theories of Quantum Magnetism

Calculating the energy spectra of magnetic molecules: application of real- and spin-space symmetries

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006

arxiv:cond-mat/ v1 [cond-mat.str-el] 5 Nov 2001

Gapless Spin Liquids in Two Dimensions

arxiv:quant-ph/ v2 24 Dec 2003

Luigi Paolasini

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16

EUROPHYSICS LETTERS OFFPRINT

arxiv: v1 [cond-mat.str-el] 2 Dec 2009

Quantum Magnetism. P. Mendels Lab. Physique des solides, UPSud From basics to recent developments: a flavor

Nematicity and quantum paramagnetism in FeSe

arxiv:cond-mat/ v1 1 Nov 2000

Flat band and localized excitations in the magnetic spectrum of the fully frustrated dimerized magnet Ba 2 CoSi 2 O 6 Cl 2

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Degeneracy Breaking in Some Frustrated Magnets

Quasi-1d Antiferromagnets

Spinons and triplons in spatially anisotropic triangular antiferromagnet

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University

Magnetization and quadrupolar plateaus in the one-dimensional antiferromagnetic spin-3/2 and spin-2 Blume Capel model

Quantum Lattice Models & Introduction to Exact Diagonalization

Spin liquids in frustrated magnets

Coupled Cluster Method for Quantum Spin Systems

Ground State Projector QMC in the valence-bond basis

7 Frustrated Spin Systems

Weak antiferromagnetism and dimer order in quantum systems of coupled tetrahedra

Quantum Spin-Metals in Weak Mott Insulators

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo

Electron Correlation

arxiv: v2 [physics.atm-clus] 9 May 2008

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden

The Quantum Heisenberg Ferromagnet

2D Bose and Non-Fermi Liquid Metals

arxiv: v1 [cond-mat.stat-mech] 16 Feb 2015

Dzyaloshinsky-Moriya-induced order in the spin-liquid phase of the S =1/2 pyrochlore antiferromagnet

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University

Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov

Electron Spin Resonance and Quantum Dynamics. Masaki Oshikawa (ISSP, University of Tokyo)

Exotic Antiferromagnets on the kagomé lattice: a quest for a Quantum Spin Liquid

J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S (98)90604-X

Small and large Fermi surfaces in metals with local moments

Level crossing, spin structure factor and quantum phases of the frustrated spin-1/2 chain with first and second neighbor exchange

Topological Phases of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain with Frustrated Next-Nearest-Neighbour Interaction

Quantum correlations and entanglement in far-from-equilibrium spin systems

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Multiple nearest-neighbor exchange model for the frustrated magnetic molecules {Mo 72 Fe 30 } and {Mo 72 Cr 30 }

Frustration and Area law

arxiv: v1 [cond-mat.str-el] 17 Jan 2011

Linked-Cluster Expansions for Quantum Many-Body Systems

WORLD SCIENTIFIC (2014)

Heisenberg-Kitaev physics in magnetic fields

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

arxiv:cond-mat/ v1 [cond-mat.str-el] 5 Nov 2004

Figure 1 The momentum dependence of the ratios R(; p; N) (3.1) at = 1 ; 1 ; 1 ;

Real-Space Renormalization Group (RSRG) Approach to Quantum Spin Lattice Systems

Magnetism and Superconductivity in Decorated Lattices

Measuring Entanglement Entropy in Valence Bond Quantum Monte Carlo Simulations

/N

arxiv:cond-mat/ v1 30 Jun 1997

arxiv:cond-mat/ v1 6 Oct 1995

arxiv: v3 [cond-mat.str-el] 14 Nov 2012

Transcription:

Frustration-induced exotic properties of magnetic molecules Jürgen Schnack Department of Physics University of Osnabrück Germany http://obelix.physik.uni-osnabrueck.de/ schnack/ Spin- and charge-correlations in molecule-based materials Symposium, DFG-FG 412, Königstein (Taunus), October 16-19, 2005 DAAD unilogo-m-rot.jpg

? The worldwide Ames group The worldwide Ames group K. Bärwinkel, H.-J. Schmidt, J. S., M. Allalen, M. Brüger, D. Mentrup, M. Exler, P. Hage, F. Hesmer, K. Jahns, F. Ouchni, R. Schnalle, P. Shechelokovskyy, S. Torbrügge (Uni Osnabrück); M. Luban, P. Kögerler, D. Vaknin (Ames Lab, Iowa, USA); J. Musfeldt (U. of Tennessee, USA); Chr. Schröder (FH Bielefeld & Ames Lab, Iowa, USA); R.E.P. Winpenny (Man U); L. Cronin (University of Glasgow); H. Nojiri (Tohoku University, Japan); N. Dalal (Florida State, USA); J. Richter, J. Schulenburg, R. Schmidt (Uni Magdeburg); S. Blügel, A. Postnikov (FZ Jülich); A. Honecker (Uni Braunschweig). E. Rentschler (Uni Mainz); U. Kortz (IUB); A. Tennant (HMI Berlin). unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 1

? General results on frustrated magnetic molecules General results on frustrated magnetic molecules 1. Extension of Lieb, Schultz, and Mattis: k rule for odd rings 2. Rotational bands in antiferromagnets 3. What the Icosidodecahedron tought us about magnetism (a) Giant magnetization jumps (b) Enhanced magnetocaloric effect (c) Magnetization plateaus and susceptibility minima 4. Hysteresis without anisotropy 5. A special triangular molecule-based spin tube unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 2

? Model Hamiltonian Model Hamiltonian Heisenberg-Model H = i,j N J ij s (i) s (j) + g µ B B Heisenberg Zeeman i s z (i) The Heisenberg Hamilton operator together with a Zeeman term are used for the following considerations. J < 0: antiferromagnetic coupling. Very often additional terms dipolar, anisotropic are utterly negligible. If needed they can be cast in the form i,j s (i) D ij s (j). unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 3

? Rotational bands in antiferromagnets I Rotational bands in antiferromagnets I Often minimal energies E min (S) form a rotational band: Landé interval rule (1); Most pronounced for bipartite systems (2,3), might be a good approximation for more general systems; Lowest band rotation of Néel vector, second band spin wave excitations (4). (1) A. Caneschi et al., Chem. Eur. J. 2, 1379 (1996), G. L. Abbati et al., Inorg. Chim. Acta 297, 291 (2000) (2) J. Schnack and M. Luban, Phys. Rev. B 63, 014418 (2001) (3) O. Waldmann, Phys. Rev. B 65, 024424 (2002) (4) P.W. Anderson, Phys. Rev. B 86, 694 (1952), O. Waldmann et al., Phys. Rev. Lett. 91, 237202 (2003). unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 4

? {Mo 72 Fe 30 } {Mo 72 Fe 30 } a molecular brother of the kagome lattice and an archetype of geometric frustration Giant magnetic Keplerate molecule; Fe - yellow, Mo - blue, O - red; Antiferromagnetic interaction mediated by O-Mo-O bridges (1). Classical ground state of {Mo 72 Fe 30 }: three sublattice structure, coplanar spins (2); Quantum mechanical ground state S = 0 can only be approximated, e.g. by DMRG (3), dim. of Hilbert space (2s + 1) N 10 23. (1) A. Müller et al., Chem. Phys. Chem. 2, 517 (2001), (2) M. Axenovich and M. Luban, Phys. Rev. B 63, 100407 (2001), (3) M. Exler, J. Schnack, Phys. Rev. B 67, 094440 (2003) unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 5

? Giant magnetization jumps in frustrated antiferromagnets I Giant magnetization jumps in frustrated antiferromagnets I Icosidodecahedron with s = 1/2 Close look: E min (S) linear in S for high S instead of being quadratic (1); Heisenberg model: property depends only on the structure but not on s (2); Alternative formulation: independent localized magnons (3); (1) J. Schnack, H.-J. Schmidt, J. Richter, J. Schulenburg, Eur. Phys. J. B 24, 475 (2001) (2) H.-J. Schmidt, J. Phys. A: Math. Gen. 35, 6545 (2002) (3) J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002) unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 6

? Giant magnetization jumps in frustrated antiferromagnets II Giant magnetization jumps in frustrated antiferromagnets II Localized Magnons 5 localized magnon = 1 2 ( 1 2 + 3 4 ) 1 2 1 = s (1)... etc. 8 4 3 6 H localized magnon localized magnon 7 Localized magnon is state of lowest energy (1,2). Triangles trap the localized magnon, amplitudes cancel at outer vertices. (1) J. Schnack, H.-J. Schmidt, J. Richter, J. Schulenburg, Eur. Phys. J. B 24, 475 (2001) (2) H.-J. Schmidt, J. Phys. A: Math. Gen. 35, 6545 (2002) unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 7

? Giant magnetization jumps in frustrated antiferromagnets III Giant magnetization jumps in frustrated antiferromagnets III Kagome Lattice + + + Non-interacting one-magnon states can be placed on various lattices, e. g. kagome or pyrochlore; Each state of n independent magnons is the ground state in the Hilbert subspace with M = Ns n; 1 0.8 7/9 Linear dependence of E min on M magnetization jump; m(h) 0.6 0.4 2/3 2.6 3 Maximal number of independent magnons: N/9; 0.2 N=27 36 45 54 0 0 1 2 3 h Jump is a macroscopic quantum effect! J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002) J. Richter, J. Schulenburg, A. Honecker, J. Schnack, H.-J. Schmidt, J. Phys.: Condens. Matter 16, S779 (2004) unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 8

? Condensed matter physics point of view: Flat band Condensed matter physics point of view: Flat band 1 +1 +1 J 2 =2J 1 0.8 0.6 sawtooth chain 2 J 1 m(h) 0.4 sawtooth chain 0.2 N=24 N=32 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 h Flat band of minimal energy in one-magnon space, i. e. ground state energy in H(M = Ns 1); high degeneracy of Localized magnons can be built from those eigenstates of the translation operator, that belong to the flat band; Sawtooth chain exceptional since degeneracy is N/2 (very high). J. Richter, J. Schulenburg, A. Honecker, J. Schnack, H.-J. Schmidt, J. Phys.: Condens. Matter 16, S779 (2004) unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 9

? Metamagnetic phase transition I Metamagnetic phase transition I Hyteresis without anisotropy M/M sat E 0 0.5 0.4 0.3 0.2 0.1 T = 0 up cycle down cycle 0 0 0.1 0.2 0.3 0.4 0.5 B/B sat E M 1 E 1 M M 0 E 2 M M 2 M Normally hysteretic behavior of Single Molecule Magnets is an outcome of magnetic anisotropy. The classical AF Heisenberg Icosahedron exhibits a pronounced hysteresis loop. It shows a first order phase transition at T = 0 as function of B. The minimal energies are realized by two families of spin configurations. The overall minimal energy curve is not convex magnetization jump. C. Schröder, H.-J. Schmidt, J. Schnack, M. Luban, Phys. Rev. Lett. 94, 207203 (2005) D. Coffey and S.A. Trugman, Phys. Rev. Lett. 69, 176 (1992). unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 10

? Metamagnetic phase transition II Metamagnetic phase transition II Quantum analog: Non-convex minimal energy levels magnetization jump of M > 1. Lanczos diagonalization for various s. True jump of M = 2 for s = 4. Polynomial fit in 1/s yields the classically observed transition field. C. Schröder, H.-J. Schmidt, J. Schnack, M. Luban, Phys. Rev. Lett. 94, 207203 (2005) no more time option unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 11

? A frustrated triangular Cu chain A frustrated triangular Cu chain [(CuCl 2 tachh) 3 Cl]Cl 2, tach = cis,trans-1,3,5-triamino-cyclohexane (1) One-dimensional stack of antiprisms of af coupled equilateral copper(ii) triangles: three-leg ladder with frustrated rung boundary condition. Intra-triangle couplings J 1 grey lines, inter-triangle couplings J 2 black lines. (1) G. Seeber, P. Kögerler, B.M. Kariuki, and L. Cronin, Chem. Commun. (Cambridge) 2004, 1580 (2004). unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 12

? Triangular Cu chain: susceptibility Triangular Cu chain: susceptibility Intra-triangle exchange J 1 : Cu-Cu distance is 4.46 Å. bridging chloro ligand and hydrogen bonds; Inter-triangle exchange J 2 : hydrogen-bonded Cu-Cl H-N-Cu super-exchange; Cu-Cu distance is 6.82 Å. Conjecture: weakly coupled triangles, i. e. J 2 J 1 independent triangles at high T ; effective spin-1/2 chain at low T : wrong! (1) J. Schnack, Hiroyuki Nojiri, P. Kögerler, G.J.T. Cooper, L. Cronin, Phys. Rev. B 70, 174420 (2004) unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 13

? Triangular Cu chain: magnetization Triangular Cu chain: magnetization Weakly coupled triangles: pronounced plateau at 1/3 of the saturation magnetization. Magnetization measurement shows no plateau. Solution: isotropic Heisenberg model with antiferromagnetic exchange parameters J 1 = 0.9 K and J 2 = 1.95 K and g = 2.095 (average of small g-anisotropy). Deviations at high field: g-anisotropy and DM-interaction (?); deviations at low field: singlet-triplet gap overestimated in finite systems. unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 14

? Triangular Cu chain: our gaps Triangular Cu chain: our gaps Ground state non-degenerate (1), whereas should be twofold degenerate for weakly coupled triangles (2). Singlet-triplet gap 0 1 0.4 K; singlet-singlet gap 0 0 6 K (1) J. Schnack, Hiroyuki Nojiri, P. Kögerler, G.J.T. Cooper, L. Cronin, Phys. Rev. B 70, 174420 (2004) (2) A. Lüscher, R. M. Noack, G. Misguich, V. N. Kotov, and F. Mila, Phys. Rev. B 70, 060405(R) (2004) unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 15

? Triangular Cu chain: their gaps Triangular Cu chain: their gaps no gaps! 10 0.5 H/J 1 8 6 4 2 m=1/3 m=1 Gapless 0 0 0.5 1 1.5 2 2.5 0 0 0.005 0.01 0.015 0.02 0.025 0.03 m=0 J 2 /J 1 [(CuCl 2 tachh) 3 Cl]Cl 2 1/L (S=2)/J 2 0.4 0.3 0.2 0.1 J 2 /J 1 =1.3 J 2 /J 1 =1.5 J 2 /J 1 =1.8 J 2 /J 1 =2.16 Chain can be mapped on either effective s = 1/2 chain with chirality for weak intertriangle coupling (degenerate ground state) or on a gapless effective s = 3/2 chain for strong intertriangle coupling (2). In addition, all three-lag ladders with half-integer spin are gapless or have a degenerate ground state (3)! (1) J.-B. Fouet, A. Läuchli, S. Pilgram, R.M. Noack, F. Mila, cond-mat/0509217 (2) A. Lüscher, R.M. Noack, G. Misguich, V.N. Kotov, and F. Mila, Phys. Rev. B 70, 060405(R) (2004) (3) A.G. Rojo, Phys. Rev. B 53, 9172 (1996) unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 16

? Triangular Cu chain: our gaps II Triangular Cu chain: our gaps II Finite size extrapolation problem? Rojo boundary (1) can be numerically tested for singlet-singlet gap 0 0 6 K. Apart from the these poblems the real chain will be further investigated experimentally. (1) A.G. Rojo, Phys. Rev. B 53, 9172 (1996) unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 17

? Summary Summary Geometric frustration of interacting spin systems is the driving force of a variety of fascinating phenomena in low-dimensional magnetism. Therefore... unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 18

? Frustrated or not frustrated Frustrated or not frustrated Frustrated, or not frustrated; that is the question: Whether it s nobler in the mind to suffer The difficulties and pain of competing interactions, Or to take arms against the intractable antiferromagnets? And by diagonalizing the Hamiltonian? To know; No more; and to say we understand The gaps, the plateaus, and the giant jumps... W.S., Hamlet, early version, about 1599 unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 19

? The End Thank you very much for your attention. www.molmag.de unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 20

? Thanks to the organizers This was a great workshop. Let s thank the organizers! It s your turn, clap your hands. unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 21

? Appendix Appendix unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 22

? Classical definition of frustration Classical definition of frustration Definition: A quantum spin system is frustrated if the corresponding classical system is frustrated, i. e. if neighboring classical spins are not aligned antiparallel. Problem: Need to know the corresponding classical system. unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 23

? Advanced definition of frustration Advanced definition of frustration A B B A A non-bipartite system is called frus- Definition: trated. A A B A B B Bipartite: If the system can be decomposed into subsystems A and B such that the coupling constants fulfil J(x A, y B ) g 2, J(x A, y A ) g 2, J(x B, y B ) g 2, the system is called bipartite (1,2). B A B A B A B A B A B A Simple bipartite cases: there are only antiferromagnetic interactions between spins of different sublattices. (1) E.H. Lieb, T.D. Schultz, and D.C. Mattis, Ann. Phys. (N.Y.) 16, 407 (1961) (2) E.H. Lieb and D.C. Mattis, J. Math. Phys. 3, 749 (1962) unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 24

? Extension of Lieb, Schultz, and Mattis I Extension of Lieb, Schultz, and Mattis I k rule for even rings Goal: general properties of the magnetic spectrum depending on the structure, e.g. ground state quantum numbers. Properties of certain low-lying states known for bipartite spin systems (Marshall, Peierls, Lieb, Schultz, Mattis). Fe 10 Translational (shift) operator T moves ring by one site: For AF Heisenberg rings of even N thus the momentum quantum number k is known for relative ground states of subsapces H(M). Eigenvalues of T : exp { i2πk ν /N}, k ν = 0,..., N 1. [H, T ] = 0, unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 25

? Extension of Lieb, Schultz, and Mattis II Extension of Lieb, Schultz, and Mattis II k rule for odd rings An extended k-rule can be inferred from numerical investigations which yields the k quantum number for relative ground states of subspaces H(M) for even as well as odd spin rings If N 3 then k ±a N 2 mod N, a = Ns M a N s 0 1 2 3 4 5 6 7 8 9 8 1/2 0 4 8 0 12 4 16 0 - - - - - 9 1/2 0 5 4 10 1 15 3 20 2 - - - - - 9 1 0 5 4 10 1 15 3 20 2 25 2 30 3 35 1 40 4 45 0 K. Fabricius, U. Löw, K.-H. Mütter, and P. Ueberholz, Phys. Rev. B 44, 7476 (1991) M. Karbach, Ph. D. thesis, Universität Wuppertal (1994) K. Bärwinkel, H.-J. Schmidt, and J. Schnack, J. Magn. Magn. Mater. 220, 227 (2000) J. Schnack, Phys. Rev. B 62, 14855 (2000) K. Bärwinkel, P. Hage, H.-J. Schmidt, and J. Schnack, Phys. Rev. B 68, 054422 (2003) unilogo-m-rot.jpg Jürgen Schnack, Frustration-induced exotic properties of magnetic molecules 26