Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Similar documents
Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

1985 AP Calculus BC: Section I

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

+ x. x 2x. 12. dx. 24. dx + 1)

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

PURE MATHEMATICS A-LEVEL PAPER 1

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

Calculus & analytic geometry

Taylor and Maclaurin Series

H2 Mathematics Arithmetic & Geometric Series ( )

Chapter Taylor Theorem Revisited

Probability & Statistics,

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

An Introduction to Asymptotic Expansions

Chapter At each point (x, y) on the curve, y satisfies the condition

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

A Simple Proof that e is Irrational

1973 AP Calculus BC: Section I

ln x = n e = 20 (nearest integer)

ASSERTION AND REASON

Chapter 3 Fourier Series Representation of Periodic Signals

An Introduction to Asymptotic Expansions

2008 AP Calculus BC Multiple Choice Exam

Chapter 9 Infinite Series

NET/JRF, GATE, IIT JAM, JEST, TIFR

Ordinary Differential Equations

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Chapter (8) Estimation and Confedence Intervals Examples

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

y cos x = cos xdx = sin x + c y = tan x + c sec x But, y = 1 when x = 0 giving c = 1. y = tan x + sec x (A1) (C4) OR y cos x = sin x + 1 [8]

page 11 equation (1.2-10c), break the bar over the right side in the middle

Ans: a n = 3 + ( 1) n Determine whether the sequence converges or diverges. If it converges, find the limit.

In this section, we show how to use the integral test to decide whether a series

Chapter 4 - The Fourier Series

APPENDIX: STATISTICAL TOOLS

ENGI 3424 Appendix Formulæ Page A-01

National Quali cations

( A) ( B) ( C) ( D) ( E)

Solution to 1223 The Evil Warden.

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

CDS 101: Lecture 5.1 Reachability and State Space Feedback

STIRLING'S 1 FORMULA AND ITS APPLICATION

WBJEEM MATHEMATICS. Q.No. μ β γ δ 56 C A C B

Numerov-Cooley Method : 1-D Schr. Eq. Last time: Rydberg, Klein, Rees Method and Long-Range Model G(v), B(v) rotation-vibration constants.

Narayana IIT Academy

INTRODUCTION TO SAMPLING DISTRIBUTIONS

Topic 5 [434 marks] (i) Find the range of values of n for which. (ii) Write down the value of x dx in terms of n, when it does exist.

SUMMARY OF SEQUENCES AND SERIES

Session : Plasmas in Equilibrium

Lectures 9 IIR Systems: First Order System

CDS 101: Lecture 5.1 Reachability and State Space Feedback

Power Series: A power series about the center, x = 0, is a function of x of the form

(a) (b) All real numbers. (c) All real numbers. (d) None. to show the. (a) 3. (b) [ 7, 1) (c) ( 7, 1) (d) At x = 7. (a) (b)

Discrete Fourier Transform (DFT)

Taylor Series (BC Only)

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions

3 Show in each case that there is a root of the given equation in the given interval. a x 3 = 12 4

10.5 Positive Term Series: Comparison Tests Contemporary Calculus 1

National Quali cations

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Convergence: nth-term Test, Comparing Non-negative Series, Ratio Test

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems

In its simplest form the prime number theorem states that π(x) x/(log x). For a more accurate version we define the logarithmic sum, ls(x) = 2 m x

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is

f x x c x c x c... x c...

Correlation in tree The (ferromagnetic) Ising model

4. (5a + b) 7 & x 1 = (3x 1)log 10 4 = log (M1) [4] d = 3 [4] T 2 = 5 + = 16 or or 16.

Basic Polyhedral theory

Problem Value Score Earned No/Wrong Rec -3 Total

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Taylor Series Mixed Exercise 6

Chapter 13 GMM for Linear Factor Models in Discount Factor form. GMM on the pricing errors gives a crosssectional

Calculus 2 - D. Yuen Final Exam Review (Version 11/22/2017. Please report any possible typos.)

JANE PROFESSOR WW Prob Lib1 Summer 2000

Math 113 Exam 3 Practice

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand

e to approximate (using 4

Law of large numbers

INFINITE SEQUENCES AND SERIES

Math 113 Exam 3 Practice

CHAPTER CHAPTER. Discrete Dynamical Systems. 9.1 Iterative Equations. First-Order Iterative Equations. (b)

Infinite Sequence and Series

Calculus II (MAC )

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 3. (a) (b) (c) (d) (e) 5. (a) (b) (c) (d) (e) 7. (a) (b) (c) (d) (e)

Student s Printed Name:

ELG3150 Assignment 3

TEACHING THE IDEAS BEHIND POWER SERIES. Advanced Placement Specialty Conference. LIN McMULLIN. Presented by

Math 113 Exam 4 Practice

Euler s Method for Solving Initial Value Problems in Ordinary Differential Equations.

ENGI Series Page 6-01

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0,

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

Transcription:

Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt l k 8 a) Ara icrass without boud, i.. ifiit π uits Th ara of th rgio is ifiit; howvr, th volum of th solid cratd b rotatig th rgio about th -ais is fiit. Chaptr Ercis. a) 8 a) ; divrgs b th trm divrgc tst ; covrgs to l l l ; divrgs b th trm divrgc tst ; covrgs to 8 8 8 ; divrgs b th trm divrgc tst ; covrgs to a) d ( ) C d ad thrfor th sris is covrgt. a) Divrgt Covrgt Proof For, lim but it is a p-sris with a p so th sris divrgs. Proof Covrgs 8 Divrgs Covrgs Covrgs Covrgs Divrgs Divrgs Divrgs Divrgs Divrgs Covrgs 8 Divrgs Covrgs Covrgs Divrgs a) S. 8 8; rror < 8 S. 8; rror <. a) ( ) b π d lim [ arcta ( ) ] arcta () ( ) b arcta ; sic d covrgs to ( ) arcta, th must also covrg. Divrgs a). 8 with rror <. trms trms ( ) 8 is coditioall covrgt. Covrgs absolutl Covrgs coditioall Divrgs Covrgs coditioall

Aswrs Covrgs absolutl Covrgs absolutl ; th sum of this sris 8 is. Th trms of th altratig harmoic sris ar rarragd such that coscutiv positiv trms ar addd util th sum is gratr tha, th coscutiv gativ trms ar addd util th sum is lss tha, ad so o. Not that th diffrc btw th partial sums ad is lss tha th last trm usd, so th sris covrgs to. trms Proof Chaptr Ercis. R ; < R ; < < R ; < R ; R ; R ; R ; < < 8 R ; < R ; R ; < R ; < < R ; R ; < < R ; < < k k a) ( ) ;< < A, B ; < < a) ( ) ; R d ( ) ( ) ( ) ; ( ) radius of covrgc is also R. d. ; rror < a. <. 8 a) for < < a) ( ) Proof a) si si π. 8 8 Error <. < < ( ) ( ) ( ) ( ) ( ) a) ( ) Proof Proof d) π. ; rror <. 8 () ( ) a) f ( ) f ( ) f 8. d) Error <.. < <. 8 8 sc a) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) d) ( ) a) Practic qustios l ( cos ) a) si cos si sc a) l( ) l ; ( ) R ( ) ( ) ( 8 a) 8

R ( ) ; sic < (. ) th P ( ) ( ), which is a parabola with ( ) vrt (, ). R ( ) (. ) <. Divrgs b compariso with th harmoic sris trms dd;. a) S k S S k S ( ) a) k k k k Proof a) S uk uk u ( k) d k k k k k Error < k k k( k ) Divrgt b limit compariso tst a) ( ) a) Itgral tst for a : Lt a Proof Proof d) π f (),whr f() is a cotiuous, positiv ad dcrasig fuctio for all N ad N is som positiv itgr. Th th sris a) ad a ad th itgral f ( ) d both divrg or both N N covrg. That is, if th itgral is fiit th a is fiit, ad if th itgral is ifiit th a is ifiit. Covrgs b itgral tst 8 a) (i) si (ii) a) si ( ) ( ) ( ) ( ), < < a) Sris covrgs b th ratio tst Sris covrgs b th itgral tst Sris covrgs b th altratig sris tst a) Sris covrgs b th ratio tst Sris divrgs b th itgral tst a) Proof k Proof d). 8 a) ( ). ( ) a) R Covrgs b th altratig sris tst; sum. a) ( ) Proof a) Covrgs b compariso tst Covrgs b altratig sris tst a) Proof (, ) l( si ) Ratio tst givs itrval of covrgc as <. Proof lim si cos lim si si cos si lim cos si Proof cos a) (i) si ; si ; () cos ; ( si ) () si ( si ) ( si ) cos ( si ) (ii) Proof (i) l( si ) l ( si ( ) ) (ii) l(cos ) (iii) ta R a) (i) Covrgs b altratig sris tst (ii) S. 8 8 (iii) Error <..

Aswrs (i) si (ii) a ( ) ( ) (iii) Proof (iv) cos a) 8 a) (i) Proof (ii) Covrs is ot tru; a coutr ampl is which is covrgt but is ot. (i) k > (ii) k a) (i) Proof (ii) a R π. a) lim a. < <. ( ) N, for odd Covrgt b compariso with gomtric sris a) Proof Proof S a) Proof Proof GDC valu: l (. ). 8 For. :.. For. :.. Th scod approimatio is arr to th tru valu. α a) (i) I l (ii) lim I l ( α ) or lα a) (i) (ii) Th argumt is icorrct bcaus th domiator is ot zro wh. a, b, c, d 8 a) Covrgt b compariso tst, or limit compariso tst (i) (ii) ( ) < a) 8 a) A, B S r r 8r lim ; hc, th sris is covrgt. p > a) l () ( ) a) (i) f ( ) (ii) f( ) (iii) f 8 8 8 (iv) Error <. Sris is covrgt b itgral tst a) (i) Domai [, ], rag π, π (ii) arcsi cos(arcsi ) 8 r q (i) p p p r q r r p r r q p ( ) (ii) p, q, r ; hc, th sris i ad is ( ) sic cos arcsi cos arccos. ( ) ( ) ( ) a) Proof a) (i) Proof (ii) Proof (iii) p, q Proof Proof 8 Sris is covrgt b th ratio tst a) Proof 8. < <. a) f ( ), f ( ), f ( ) ( ) ( ) l 8 d) Error <. ) Actual rror l. 8; uppr boud for rror foud i d) is much largr tha th actual rror, so th stimat of foud i caot b cosidrd a good stimat. a) π a) Proof Usig π : l π π 8 ; usig π : π π l. a) R Covrgs b limit compariso tst (comparig to covrgt sris ) a) Proof l ( si ) l ( si )

d) Proof ) 8 Giv a ad a f (), itgral tst ca b applid if f() is positiv, cotiuous ad dcrasig for > ; covrgs. 8 ( ) ( ) ( ) ( ) 8 a) for si π d) ) f) a) Covrgs; gomtric sris with r, so r <.. Divrgs b th trm divrgc tst Covrgs b limit compariso tst d) Divrgs b itgral tst ) Covrgs; compariso tst (compar to p-sris with p ) π ( ) π ( ) a) si ( π). Chaptr Ercis. (i) c (ii) a (iii) d (iv) b a) C C l ( ) l C or C d) C si or arcsi C ( ) ) C f) C g) l C h) l C d d d d l l C l l C l l C A ± si C Th costat C caot b compltl arbitrar bcaus si C. If C <, th si C will alwas b gativ, rgardlss of th valu of. If C >, th si C will alwas b positiv. If C, th whthr si C is positiv or gativ will dpd o th valu of. a) d) Rgardlss of th iitial valu of th populatio, as tim icrass, th populatio stabilizs at. ta a) Proof 8 (i) b (ii) d (iii) c (iv) a a) ( ) ( ) proof a) C( ) d ; d itgratig factor is ; lads to sam solutio as i part a) C a) C cos C d) cos C ) C f) l C csc C csc a) Proof arcsi d) a) Proof ta C sc C l 8 C ( ) a) C C C C d) C C ) f) l ( C)

Aswrs a) Proof Proof Proof a) C Proof a) 8. (i) (ii).......8.8. d) appro. act % rror..........8...8..... 8 C...... 8.... 8 Sic d is dcrasig, th valu of is ovrstimatd at d ach stp. a) a, b, c (i) I l l arcta k (ii) C π l 8. a) Proof sc si cos a) Proof l C l. 8 a) Proof a) Proof si si a) si 8 a) Proof (). 8 (). 8 8 d) Actual valu to s.f. is (). 8 ; usig mor stps (ad a smallr stp siz) givs a bttr approimatio. Practic qustios a) ( ( ) C C si cos C a) a) d) ) f) 8si 8 8 a) ta sc a) Proof ( or ) a) (i) Proof (ii) (. ). (. ). d) Approimatio usig Maclauri sris ca b mad mor accurat b computig mor trms of th sris; approimatio usig Eulr s mthod ca b mad mor accurat b dcrasig th stp valu.

( ) a) Proof l arcta l C a) arcta l a) (i) (. ). (ii) Dcras th stp siz l ( ) C 8 ( ) C( ) R E L I R R E ; I R E L t R sc ( ) l ( cos ) C