University of Groningen. Photophysics of nanomaterials for opto-electronic applications Kahmann, Simon

Similar documents
Citation for published version (APA): Kooistra, F. B. (2007). Fullerenes for organic electronics [Groningen]: s.n.

University of Groningen. Laser Spectroscopy of Trapped Ra+ Ion Versolato, Oscar Oreste

Citation for published version (APA): Kooistra, F. B. (2007). Fullerenes for organic electronics [Groningen]: s.n.

Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots Lai, Lai-Hung; Protesescu, Loredana; Kovalenko, Maksym V.

Citation for published version (APA): Fathi, K. (2004). Dynamics and morphology in the inner regions of spiral galaxies Groningen: s.n.

Citation for published version (APA): Shen, C. (2006). Wave Propagation through Photonic Crystal Slabs: Imaging and Localization. [S.l.]: s.n.

Citation for published version (APA): Sok, R. M. (1994). Permeation of small molecules across a polymer membrane: a computer simulation study s.n.

University of Groningen. Taking topological insulators for a spin de Vries, Eric Kornelis

Published in: ELECTRONIC PROPERTIES OF NOVEL MATERIALS - PROGRESS IN MOLECULAR NANOSTRUCTURES

University of Groningen

Citation for published version (APA): Shen, C. (2006). Wave Propagation through Photonic Crystal Slabs: Imaging and Localization. [S.l.]: s.n.

University of Groningen. Hollow-atom probing of surfaces Limburg, Johannes

University of Groningen

Spin caloritronics in magnetic/non-magnetic nanostructures and graphene field effect devices Dejene, Fasil

Citation for published version (APA): Wang, Y. (2018). Disc reflection in low-mass X-ray binaries. [Groningen]: Rijksuniversiteit Groningen.

University of Groningen. Morphological design of Discrete-Time Cellular Neural Networks Brugge, Mark Harm ter

Theoretical simulation of nonlinear spectroscopy in the liquid phase La Cour Jansen, Thomas

Citation for published version (APA): Hoekstra, S. (2005). Atom Trap Trace Analysis of Calcium Isotopes s.n.

University of Groningen. Event-based simulation of quantum phenomena Zhao, Shuang

University of Groningen. Extraction and transport of ion beams from an ECR ion source Saminathan, Suresh

University of Groningen

Polarons in Narrow Band-Gap Polymers Probed over the Entire IR Range: a Joint. Experimental and Theoretical Investigation

University of Groningen. Water in protoplanetary disks Antonellini, Stefano

University of Groningen. Enantioselective liquid-liquid extraction in microreactors Susanti, Susanti

Citation for published version (APA): Raimond, J. J. (1934). The coefficient of differential galactic absorption Groningen: s.n.

Citation for published version (APA): Brienza, M. (2018). The life cycle of radio galaxies as seen by LOFAR [Groningen]: Rijksuniversiteit Groningen

Can a Hexapole magnet of an ECR Ion Source be too strong? Drentje, A. G.; Barzangy, F.; Kremers, Herman; Meyer, D.; Mulder, J.; Sijbring, J.

Citation for published version (APA): Sarma Chandramouli, V. V. M. (2008). Renormalization and non-rigidity s.n.

Superfluid helium and cryogenic noble gases as stopping media for ion catchers Purushothaman, Sivaji

Dual photo- and redox- active molecular switches for smart surfaces Ivashenko, Oleksii

University of Groningen. Statistical inference via fiducial methods Salomé, Diemer

University of Groningen. Bifurcations in Hamiltonian systems Lunter, Gerard Anton

University of Groningen. Molecular Solar Cells Hummelen, Jan. Published in: EPRINTS-BOOK-TITLE

University of Groningen

SUPPLEMENTARY INFORMATION

Citation for published version (APA): Andogah, G. (2010). Geographically constrained information retrieval Groningen: s.n.

Current density functional theory for optical spectra Boeij, P.L. de; Kootstra, F.; Berger, Johannes; Leeuwen, R. van; Snijders, J.G.

Optical Characterization of Solids

Citation for published version (APA): Halbersma, R. S. (2002). Geometry of strings and branes. Groningen: s.n.

Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth

University of Groningen. Managing time in a changing world Mizumo Tomotani, Barbara

Device physics of polymer:fullerene bulk heterojunction solar cells Bartesaghi, Davide

Citation for published version (APA): Ruíz Duarte, E. An invitation to algebraic number theory and class field theory

Substrate and Cation Binding Mechanism of Glutamate Transporter Homologs Jensen, Sonja

The role of camp-dependent protein kinase A in bile canalicular plasma membrane biogenesis in hepatocytes Wojtal, Kacper Andrze

University of Groningen. Statistical Auditing and the AOQL-method Talens, Erik

Optical hole burning and -free induction decay of molecular mixed crystals Vries, Harmen de

University of Groningen. Organic donor-acceptor systems Serbenta, Almis

System theory and system identification of compartmental systems Hof, Jacoba Marchiena van den

University of Groningen. Levulinic acid from lignocellulosic biomass Girisuta, Buana

Exciton spectroscopy

System-theoretic properties of port-controlled Hamiltonian systems Maschke, B.M.; van der Schaft, Arjan

University of Groningen

Geometric approximation of curves and singularities of secant maps Ghosh, Sunayana

Citation for published version (APA): Hoefman, M. (1999). A study of coherent bremsstrahlung and radiative capture s.n.

Enhancement of spin relaxation time in hydrogenated graphene spin-valve devices Wojtaszek, M.; Vera-Marun, I. J.; Maassen, T.

Citation for published version (APA): Boomsma, R. (2007). The disk-halo connection in NGC 6946 and NGC 253 s.n.

University of Groningen. Study of compression modes in 56Ni using an active target Bagchi, Soumya

University of Groningen

Citation for published version (APA): Borensztajn, K. S. (2009). Action and Function of coagulation FXa on cellular signaling. s.n.

Citation for published version (APA): Mendoza, S. M. (2007). Exploiting molecular machines on surfaces s.n.

The driving force dependence of charge Carrier dynamics in donor-acceptor Organic photovoltaic systems using Optical and electronic techniques

Citation for published version (APA): Kootstra, F. (2001). Time-dependent density functional theory for periodic systems s.n.

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA

Citation for published version (APA): Martinus, G. H. (1998). Proton-proton bremsstrahlung in a relativistic covariant model s.n.

University of Groningen. Photophysics of nanomaterials for opto-electronic applications Kahmann, Simon

University of Groningen. Organic donor-acceptor systems Serbenta, Almis

Solar Cell Materials and Device Characterization

Citation for published version (APA): Nouri-Nigjeh, E. (2011). Electrochemistry in the mimicry of oxidative drug metabolism Groningen: s.n.

University of Groningen

University of Groningen

Tianle Guo, 1 Siddharth Sampat, 1 Kehao Zhang, 2 Joshua A. Robinson, 2 Sara M. Rupich, 3 Yves J. Chabal, 3 Yuri N. Gartstein, 1 and Anton V.

Organic Photovoltaic Devices. Hole Transfer Dynamics in. Maxim S. Pshenichnikov. Jan C. Hummelen. Paul H.M. van Loosdrecht. Dmitry Paraschuk (MSU)

Organic Molecular Solids

Solutions for Assignment-8

University of Groningen

University of Groningen. Life cycle behavior under uncertainty van Ooijen, Raun

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample.

Supplementary Information

TECHNICAL INFORMATION. Quantum Dot

Diffusion-enhanced hole transport in thin polymer light-emitting diodes Craciun, N. I.; Brondijk, J. J.; Blom, P. W. M.

Peptide folding in non-aqueous environments investigated with molecular dynamics simulations Soto Becerra, Patricia

Optical spectroscopy of carrier dynamics in semiconductor nanostructures de Jong, E.M.L.D.

University of Groningen

Supplementary Materials

Citation for published version (APA): Kole, J. S. (2003). New methods for the numerical solution of Maxwell's equations s.n.

Supporting Information. Polaron Self-localization in White-light. Emitting Hybrid Perovskites

PH575 Spring Lecture #28 Nanoscience: the case study of graphene and carbon nanotubes.

7 Conjugated Polymers

Basic Photoexcitation and Modulation Spectroscopy

Charge Excitation. Lecture 4 9/20/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi

Citation for published version (APA): Nguyen, X. C. (2017). Different nanocrystal systems for carrier multiplication

Triplet state diffusion in organometallic and organic semiconductors

Supporting Information for Charge Generation and Energy Transfer in Hybrid Polymer/Infrared Quantum Dot Solar Cells

Optical Science of Nano-graphene (graphene oxide and graphene quantum dot) Introduction of optical properties of nano-carbon materials

University of Groningen

3.23 Electrical, Optical, and Magnetic Properties of Materials

University of Groningen

Introduction to Organic Solar Cells

UvA-DARE (Digital Academic Repository)

Transcription:

University of Groningen Photophysics of nanomaterials for opto-electronic applications Kahmann, Simon IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2018 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Kahmann, S. (2018). Photophysics of nanomaterials for opto-electronic applications. [Groningen]: Rijksuniversiteit Groningen. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 01-04-2019

A Thesis submitted for the degree of Doctor of Philosophy Photophysics of nanomaterials for opto-electronic applications Simon Kahmann November 8, 2017 University of Groningen Friedrich-Alexander Universität Erlangen-Nürnberg

CONTENTS Contents 1 Introduction 1 2 Materials 4 2.1 Nanoscale Semiconductors................................. 4 2.2 Organic Semiconductors................................... 5 2.2.1 Conjugated Polymers................................ 5 2.2.2 Interaction with Light................................ 10 2.2.3 Excited States in Organic Solids........................... 12 2.2.4 Carrier Transport in Disordered Systems..................... 17 2.2.5 Charge Generation.................................. 20 2.3 Carbon Nanotubes...................................... 22 2.3.1 Opto-electronic properties............................. 22 2.3.2 Single Walled Carbon Nanotube Spectroscopy.................. 27 2.3.3 Sorting and Selecting Carbon Nanotubes..................... 29 2.4 Colloidal Quantum Dots................................... 31 2.4.1 Physical Properties.................................. 31 2.4.2 Lead Sulphide Colloidal Quantum Dots...................... 32 2.4.3 Colloidal Quantum Dot Solids........................... 33 2.4.4 Surface Chemistry.................................. 36 3 Experimental Techniques for Optical Spectroscopy 53 3.1 FTIR spectroscopy...................................... 53 3.1.1 Measurement Principle and Advantages..................... 54 3.1.2 Fourier Transformation............................... 55 3.2 Photoluminescence Spectroscopy............................. 56 3.2.1 Principle........................................ 56 3.2.2 Ultrafast Techniques................................. 57 3.3 Photoinduced Absorption Spectroscopy......................... 58 3.3.1 Basic Principle.................................... 58 3.3.2 Steady State Photoinduced Absorption Spectroscopy.............. 60 3.3.3 Transient Absorption Spectroscopy........................ 61 i

PHOTOPHYSICS OF NANOMATERIALS FOR OPTO-ELECTRONICS CONTENTS 4 Monitoring Polarons in Narrow Band Gap Polymers 64 4.1 Introduction.......................................... 64 4.2 Results and discussion.................................... 65 4.3 Conclusion........................................... 71 4.4 Methods............................................ 73 5 Working Mechanism of Ternary Organic Solar Cells 77 5.1 Introduction.......................................... 77 5.2 Results and Discussion.................................... 78 5.3 Conclusion........................................... 85 5.4 Methods............................................ 86 6 Hybrid Excited States in Polymer Wrapped CNTs 89 6.1 Introduction.......................................... 89 6.2 Results and Discussion.................................... 90 6.3 Conclusion........................................... 97 6.4 Methods............................................ 99 7 Charge Transfer between Polymers and CQDs 104 7.1 Introduction.......................................... 104 7.2 Results and Discussion.................................... 105 7.3 Conclusion........................................... 111 7.4 Methods............................................ 112 8 Trap States in Lead Sulphide Colloidal Quantum Dots 115 8.1 Introduction.......................................... 115 8.2 Results and discussion.................................... 116 8.3 Conclusion........................................... 123 8.4 Methods............................................ 124 Summary and Outlook 127 Sammenvatting 130 Appendix 132 Symbols and Abbreviations 141 List of Publications 147 Acknowledgements 148 ii Simon Kahmann

LIST OF FIGURES List of Figures 2.1 Semiconductor density of states with respect to dimensionality........... 5 2.2 Hybridisation of atomic orbitals in carbon........................ 6 2.3 Molecular orbitals and their energy levels......................... 7 2.4 Overview of different semiconducting polymers..................... 8 2.5 Energy levels of donor-acceptor polymers........................ 9 2.6 Jablsonski scheme...................................... 10 2.7 Frank-Condon principle and vibronic side peaks.................... 11 2.8 Wannier-Mott and Frenkel excitons in semiconductors................. 12 2.9 Polaron stabilistion mechanisms.............................. 13 2.10 Polaron energy levels and optically allowed transitions................. 15 2.11 Energy levels in different states of condensed matter.................. 16 2.12 Mechanisms for exciton migration............................. 18 2.13 Exciton motion through a Gaussian distribution of states............... 18 2.14 Charge transfer state formation and dissociation.................... 21 2.15 CNT chirality indices and lattice vectors from graphene................ 23 2.16 Construction of the CNT band dispersion......................... 24 2.17 DOS and band gap of metallic and semiconducting CNTs............... 25 2.18 Optically allowed and forbidden transitions in CNTs.................. 25 2.19 Excited many body states reported for CNTs....................... 26 2.20 Absorption- and 2D-PL spectrum of CNTs........................ 28 2.21 Energy gap for PbS CQDs with respect to their size................... 32 2.22 Impact of disorder and coupling on the transport in CQD solids........... 35 2.23 Surface chemistry of PbS CQDs............................... 38 3.1 Main components of a Michelson interferometer.................... 54 3.2 Explanation of the Fourier transformation........................ 56 3.3 Illustration of the transient PL set-up........................... 58 3.4 Measurement principle and signals in PIA spectroscopy................ 59 3.5 Steady state set-ups for PIA spectroscopy......................... 61 3.6 Transient absorption spectroscopy set-up........................ 62 4.1 Optically allowed transitions for differently charged polymers............ 65 iii

PHOTOPHYSICS OF NANOMATERIALS FOR OPTO-ELECTRONICS LIST OF FIGURES 4.2 Absorbance and PIA spectra of C-/Si-PCPDTBT..................... 66 4.3 Calculated absorption spectra for C-/Si-PCPDTBT oligomers............. 67 4.4 Electron-hole density of a PCPDTBT oligomer and aggregate............. 69 4.5 Explanation of polymer IRAVs in the MIR spectral region............... 70 4.6 Different exciation PIA spectra of neat polymers..................... 71 5.1 Materials and solar cell characterisation for the ternary device............ 80 5.2 PL spectra of neat and blended organic films....................... 81 5.3 PL spectra for polymer blends of different concentration................ 83 5.4 Steady state PIA spectra of the organic blends...................... 84 6.1 Energy levels and absorption spectra of polymer wrapped CNTs........... 90 6.2 Photoluminescence spectra of polymer wrapped CNTs................. 91 6.3 NIR PIA and TA of polymer wrapped CNTs........................ 92 6.4 MIR PIA of polymer wrapped CNTs............................ 94 6.5 Calculated first excitation for a polymer wrapped CNT................. 96 6.6 Representative molecular orbitals for P3DDT wrapped CNTs............. 97 7.1 Energy levels and absorption spectra of PbS CQDs and PCPDTBT.......... 105 7.2 PL spectra of neat and blended films of PCPDTBT and PbS CQDs.......... 107 7.3 TA and EQE of neat and blended films of PCPDTBT and PbS............. 109 7.4 J-V curves of fabricated solar cells and AFM images of their ALs............ 110 8.1 Sketch and TEM images of employed ligands and CQDs................ 116 8.2 Absorbance spectra of CQDs in solution and as a film................. 117 8.3 PIA spectra of PbS CQDs with different size and ligands................ 118 8.4 PL upon ligand variation and TEM image of degraded CQDs............. 119 8.5 Data ffor degradaed or differently washed PbS_OA................... 120 8.6 Vibrational spectra and Fano calculations for PbS CQDs................ 122 A1 Additonal electrical charactersation of organic solar cells............... 133 A2 PL spectra of PDCBT:PC 70 BM................................ 133 A3 Absorption spectra of PF12-related samples....................... 134 A4 MIR PIA spectra of neat P3DDT............................... 134 A5 PIA spectra of a P3DDT:PCBM blend with different energy............... 135 A6 PIA spectra of P3DDT wrapped CNTs........................... 135 A7 PIA spectra of P3DDT wrapped CNTs with excess polymer............... 135 A8 PIA spectra of neat PF12 upon above and below gap excitation............ 136 A9 PIA spectra of a PF12:PCBM blend............................. 136 A10 PIA spectra of PF12 wrapped CNTs............................. 136 iv Simon Kahmann

LIST OF TABLES List of Tables 2.1 Exciton Bohr radii of relevant semiconductors...................... 33 5.1 Electrical parameters of organic solar cells........................ 79 5.2 Extracted PL lifetimes for organic films.......................... 81 5.3 Extracted PL lifetimes for polymer blends......................... 84 7.1 PL lifetimes of hybrid blends................................ 108 A1 Calculated transition energies for PCPDTBT aggregates................ 132 A2 Calculated transition energies for trions in CNTs.................... 137 A3 Composition of excited states for P3DDT wrapped CNTs................ 137 A4 Peak positions and widts of PIA bands of Pbs CQDs................... 138 A5 Molecular vibrations associated with oleic acid..................... 138 A6 Molecular vibrations associated with 1,4-benzenedithiol................ 139 v