反強磁性交換結合媒体を用いた熱アシスト磁気記録の熱的安定性の検討

Similar documents
Observation of magnetization alignment switching in Fe3Si/FeSi2 artificial lattices by polarized neutron reflection

01 Development of Hard Disk Drives

single-layer transition metal dichalcogenides MC2

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

Influence of Size on the Properties of Materials

Last 4 Digits of USC ID:

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Italian School of Magnetism

The Periodic Table of Elements

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

Radiometric Dating (tap anywhere)

CHEM 10113, Quiz 5 October 26, 2011

Magnetic imaging of layer-by-layer reversal in Co/ Pt multilayers with perpendicular anisotropy

Solutions and Ions. Pure Substances

MSE 7025 Magnetic Materials (and Spintronics)

(please print) (1) (18) H IIA IIIA IVA VA VIA VIIA He (2) (13) (14) (15) (16) (17)

Renormalization Group Study of a One Dimensional Generalised Alternating Superlattice at Half - Filling

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

CMSC 313 Lecture 17 Postulates & Theorems of Boolean Algebra Semiconductors CMOS Logic Gates

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems

Chemistry 431 Practice Final Exam Fall Hours

Atoms and the Periodic Table

Faculty of Natural and Agricultural Sciences Chemistry Department. Semester Test 1. Analytical Chemistry CMY 283. Time: 120 min Marks: 100 Pages: 6

02/05/09 Last 4 Digits of USC ID: Dr. Jessica Parr

Biased Target Ion Beam Deposition of Spin-valves

7. Relax and do well.

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY

Guide to the Extended Step-Pyramid Periodic Table

Anisotropy Distributions in Patterned Magnetic Media

There are only 92 stable elements in nature

Secondary Support Pack. be introduced to some of the different elements within the periodic table;

(C) Pavel Sedach and Prep101 1

Chapter 12 The Atom & Periodic Table- part 2

Nucleus. Electron Cloud

8. Relax and do well.

arxiv:cond-mat/ v1 7 Aug 1996

MANY ELECTRON ATOMS Chapter 15

Defense Technical Information Center Compilation Part Notice

8. Relax and do well.

CHM 101 PRACTICE TEST 1 Page 1 of 4

Element Cube Project (x2)

1 Genesis 1:1. Chapter 10 Matter. Lesson. Genesis 1:1 In the beginning God created the heavens and the earth. (NKJV)

Made the FIRST periodic table

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

Physical Chemistry I CHEM 4641 Final Exam 13 questions, 30 points

-"l" also contributes ENERGY. Higher values for "l" mean the electron has higher energy.

HANDOUT SET GENERAL CHEMISTRY II

Advanced Placement. Chemistry. Integrated Rates


Faculty of Natural and Agricultural Sciences Chemistry Department. Semester Test 1 MEMO. Analytical Chemistry CMY 283

Modified from: Larry Scheffler Lincoln High School IB Chemistry 1-2.1

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1

PERIODIC TABLE OF THE ELEMENTS

The Periodic Table of the Elements

Imaging Self-Organized Domains at the Micron Scale in Antiferromagnetic Elemental Cr Using Magnetic X-ray Microscopy

CHEM 108 (Spring-2008) Exam. 3 (105 pts)

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section

Transition Metals and Coordination Chemistry

Chemistry 2 Exam Roane State Academic Festival. Name (print neatly) School

9/20/2017. Elements are Pure Substances that cannot be broken down into simpler substances by chemical change (contain Only One Type of Atom)

FMR Study of Co/Ti Bilayer Thin Films

Enhancement of magnetoresistance in. manganite multilayers

8. Relax and do well.

8. Relax and do well.

Using the Periodic Table

K. 27 Co. 28 Ni. 29 Cu Rb. 46 Pd. 45 Rh. 47 Ag Cs Ir. 78 Pt.

Fall 2011 CHEM Test 4, Form A

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

8. Relax and do well.

CHEM 10123/10125, Exam 2

Instructions. 1. Do not open the exam until you are told to start.

CHEM Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

Why all the repeating Why all the repeating Why all the repeating Why all the repeating

7. Relax and do well.

8. Relax and do well.

paf pfpi/(pf +pl ) & paf (p f +pl )/4. (b) Reiersed MR: The spin asymmetry coescient is supposed to be smaller than 1

Yutaka Shikano. Visualizing a Quantum State

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS

DO NOW: Retrieve your projects. We will be reviewing them again today. Textbook pg 23, answer questions 1-3. Use the section 1.2 to help you.

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

-"l" also contributes ENERGY. Higher values for "l" mean the electron has higher energy.

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Giant Magnetoresistance

Circle the letters only. NO ANSWERS in the Columns!

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

The exam must be written in ink. No calculators of any sort allowed. You have 2 hours to complete the exam. Periodic table 7 0

Chem Exam 1. September 26, Dr. Susan E. Bates. Name 9:00 OR 10:00

Metallurgical Chemistry. An Audio Course for Students

Circle the letters only. NO ANSWERS in the Columns! (3 points each)

610B Final Exam Cover Page

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

CHEM 107 (Spring-2005) Exam 3 (100 pts)

8. Relax and do well.

K. 27 Co. 28 Ni. 29 Cu Rb. 46 Pd. 45 Rh. 47 Ag Cs Ir. 78 Pt.

Influence of exchange bias on magnetic losses in CoFeB/MgO/CoFeB tunnel junctions

CHEM 130 Exp. 8: Molecular Models

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS

INSTRUCTIONS: CHEM Exam I. September 13, 1994 Lab Section

Chemistry Standard level Paper 1

Transcription:

反強磁性交換結合媒体を用いた熱アシスト磁気記録の熱的安定性の検討 Investigation of Thermal Stability on Thermally Assisted Magnetic Recording Using Antiferromagnetic Exchange Coupled Medium 平成 1 年度三重大学大学院工学研究科博士前期課程物理工学専攻滝澤俊

1 1.1 1 1. 1 1.3 1.4 4 1.4.1 4 1.4. 4 1.4.3 5 1.5 6 8.1 8. 11..1 11..P-Type 1..3A-Type 15..4 17.3 18.3.1 18.3. K u V /kt (300 K) > 10 19.3.3 K u V /kt (300 K) > 60 3.3.4 5 6 3.1 6 3. 7 3..1 7 I

3.. 9 3..3 9 3..4 9 3.3 3 3.3.1Co/Ru/Co Ru 3 3.3.Co/Ru/Co 37 39 41 4 II

1.1 ( HD) HD HD 1970 1990 10 10 1990 10 100 1) 000 1. () 01 1.1 1.

Fig. 1.1. In-plane magnetic recording. Fig. 1.. Perpendicular magnetic recording. 1.3 ) 1.3(a) 1 1.3(b) 1.3(c) K u V / T K u V T

Fig. 1.3. Magnetic recording medium. (1) V () K u V T (1.1) 60 (3) H c H c = K u M s (1.) M s 3 V V (1.1) K u V T K u (1.) H c = K u M s

3 1.4 1.4.1 (Thermally assisted magnetic recording, TAMR) K u K u V / T V 1.4. 3) K u V / T 10 5-6 K u V / T V 1.4 (a) K u K u K u V / T 1.5(a) t 1.4(b) K u 1.5(b) K u K u M s 3) 3) Ir K u

4) Fig. 1.4. Temperature dependence of magnetic anisotropy energy constantfor ferromagnet 3).. Fig. 1.5. Time dependence of thermal stability for TAMR 3). 1.4.3 (Ferromagnetic exchange coupling, FC) 1 (Antiferromagnetic exchange coupling, AFC) AFC 1988 5) 1991 Parkin 6) 1.1 3d4d5d (TM)

RuRhIr AFC Co-Pt-Cr Co-Pt-Cr Ru Co 7) Girt Ar 8) Ar Desai Ar 9) Table 1.1. Antiferromagnetic exchange coupling energy via spacer-layer. 3d TM Ti V Cr Mn Fe Co Ni Cu (erg/cm ) No coupling 0.1 0.4 Ferromagnet Ferromagnet Ferromagnet 0.3 4d TM Zr Nb Mo Tc Ru Rh Pd Ag (erg/cm ) No coupling 0.0 0.1 5 1.6 No coupling No coupling 5d TM Hf Ta W Re Os Ir Pt Au (erg/cm ) No coupling 0.01 0.03 0.41 1.85 No coupling No coupling 1.5

( K ) K 3 Co/Ru/Co Co () 4

TAMR.1 TAMR.1 (a)(b) Parallel(P)-type (c) (d) Antiparallel(A)-type P-type (a)(b) w A-type (c) (d) w Fig..1. Two types of exchange-coupled films and behavior of the magnetization of the first layer under an external magnetic field. w.1 (b)(d) 1. (a) (b) (a) 180 (b) w 1 (a) 1 1 (a) 8

(b) w 1 1 K 1 K w Fig... (a) Exchange-coupling energy and (b) interface wall energy. P-type.3 (a)(b)(c) 3 M si t i H ci i H wi /M si t i w /M si t i (a)(b)(c) w (a)(b)(c) Fig..3. Calculated magnetization curves for P-type. 9

A-type.4 (a)(b)(c) 3 (a)(b)(c) w (a)(b)(c).3.4 A-type Fig..4. Calculated magnetization curves for A-type. P-type.5 (a) (Ferromagnetic exchange coupling, FC) FC 10 1 erg/cm A-type.5 (b) (AntiFerromagnetic exchange coupling, AFC) FC P-type AFC Ru Rh AFC 10 0 erg/cm Fig..5. Exchange-coupling energy for P-type and A-type. 10

...1 Fig..6. Energy barrier for single layer film..6 = H = 0 =, 0 = E 0 0 < < E 1 E 1 E 0 E E E = M s th cos + K u t sin (.1) E = M s thsin + K u t sin cos = sin (M s th + K u t cos) = 0 sin = 0, = 0, M s th + K u t cos = 0, cos = M sh K u (.) E 0 (.1) = E 0 = M s th E 1 (.1)(.) 11

E 1 = M s th cos + K u t sin = M s th cos + K u t (1- cos ) = M s th M H s + K u t(1 M H s ) = M th s + K u t M th s K u K u K u 4K u = M s th + K u t 4K u E E = E 1 E 0 = M s th 4K u + K u t M s th = K u t M s H +1 M sh 4K u K u = K u M sh + M sh K u K u = K u M sh = K u H K u K u M s (.3) H k = K u /M s E = K u H H k ( K ) ES T ES / T S T K K = ES T = K uts T 1 H H k H = 0 E E = K u t K K = K uts T..P-type P-type.3 (a).7 (a).3 (b)(c).7 (b) 1

Fig..7. Energy barrier for P-type films. (1) (.7 (a)) E E = (M s1 + M s t )H cos + (K u1 + K u t ) sin (.1) M s t M s1 + M s t (.4) K u t K u1 + K u t (.5) E (.3)(.4)(.5) E = (K u1 + K u t )1 (M s1 + M s t )H = (K u1 + K u t )1 (K u1 + K u t ) H c = (K u1 + K u t )/(M s1 + M s t ) H (K u1 + K u t ) M s1 + M s t E = (K u1 + K u t )1 H H c K K = ES T = (K u1 + K ut )S T H = 0 E E = K u t K K = (K u1 + K u t )S T 1 H H c 13

() (.7 (b)) E E = M s1 H cos + K u1 sin + cos = M s1 H cos + K u1 sin M s1 (.1) M s t M s1 (.6) H H M s1 (.7) K u t K u1 (.8) E (.3)(.6)(.7) (.8) M s1 H H M E = K u1 t 1 1 s1 t 1 M = K K u1 u1 1 s1 t 1 K u1 M s1 H k1 = K u1 /M s1 K H M E = K u1 1 s1 H k1 K = ES T = K u1 S 1 T H = 0 E E = K u1 1+ K K = K u1 S T H M s1 H k1 M s1 t 1 = K K u1 1+ u1 K u1 M s1 1+ K u1 14

..3A-type A-type P-type.4 (a).8 (a).4 (b)(c).8 (b) Fig..8. Energy barrier for A-type films. (1) (.8 (a)) E E = (M s1 M s t )H cos + (K u1 + K u t ) sin (.1) M s t M s1 M s t (.9) K u t K u1 + K u t (.10) H E = (K u1 + K u t )1 (K u1 + K u t ) M s1 M s t H c = (K u1 + K u t )/(M s1 M s t ) K E = (K u1 + K u t )1 H H c K = ES T = (K u1 + K ut )S T H = 0 E 1 H H c E = K u1 + K u t K 15

K = (K u1 + K u t )S T () (.8 (b)).7 (b) M s1 H H M E = K u1 t 1 1 s1 t 1 M = K K u1 u1 1 s1 t 1 K u1 M s1 H k1 = K u1 /M s1 H M E = K u1 1 s1 H k1 K K = ES T = K u1 S T H M 1 s1 H k1 H = 0 E E = K u1 1+ K K = K u1 S T M s1 t 1 = K K u1 1+ u1 K u1 M s1 1+ K u1 16

..4..1..3 P-TypeA-Type (1) K K = K u ts T 1 H H k (.11) H = 0 K = K uts T (.1) () P-Type K (a) H w1 + H w > H c H c1 K = (K u1 + K u t )S T 1 H H c (.13) H = 0 K = (K u1 + K u t )S T (.14) (b) H c H c1 > H w1 + H w H = 0 K = K u1 S T K = K u1 S T H M 1 s1 H k1 1+ K u1 (.16) (.15) (3) A-Type K (a) H w1 H w > H c1 + H c K = (K u1 + K u t )S T 1 H H c (.17) H = 0 K = (K u1 + K u t )S T (.18) (b) H c1 + H c > H w1 H w 17

H = 0 K = K u1 S T K = K u1 S T H M 1 s1 H k1 1+ K u1 (.0) (.19) (.13)(.0)P-Type A-Type K K u M s t K K K.3.3.4 P-type A-type A-type.1..3.1.9 Thermal gradient 8nm16 nm 7.5 nm Tbit/inch (Tbpsi)Thermal gradient Thermal gradient Field gradientdual gradient Field gradient Field gradient Dual gradient 18

Fig..9. Thermal gradient method using bit-patterned media. 300 K K u V /kt 10 A-type.10 1 M s K u 1 1.5 nm t 6.5 nm 450 K t = + t = 7.5 nm M s M s K u K u Fig..10. Parameter of A-type exchange coupled double layer for K u V /kt (300K) > 10. 300 K K u V /kt 60 K u1 = K u = 6.110 6 erg/cm 3.10.3. K u V /kt (300 K) > 10 A-type K (300 K).11 Thermal gradient H H = 0 19

H = 5 koe = 0 6.5 nm 7.5 nm K K K = 7.4 erg/cm.4(b) K = 7.4 erg/cm.4(a) K K.(a).(b) w w = 6. erg/cm.11 w /= 3.1 erg/cm K w /= 3.1 erg/cm K K Co/Ru/Co 5 erg/cm 6) 3.1 erg/cm Co Co Co-Pt-Cr 7) TAMR Fe-Pt-Cu Fig..11. Exchage coupling energy dependence of thermal stability factor for K u V /kt (300 K) > 10. 0

= 3.1 erg/cm K.1 K Fig..1. Temperature dependence of thermal stability factor for K u V /kt (300 K) > 10. A-type.13 = 0 1 1 1 7.4 erg/cm A-type 1.13 1 1 = 3.1 erg/cm 1 1 1 1 1

Fig..13. Exchage coupling energy dependence of switching field for K u V /kt (300 K) > 10. = 3.1 erg/cm.14 1 Fig..14. Temperature dependence of switching field for K u V /kt (300 K) > 10.

.3.3 K u V /kt (300 K) > 60 300 K K u V /kt 10 60 K (300 K).15 3.1 erg/cm.1 erg/cm K Fig..15. Exchage coupling energy dependence of thermal stability factor for K u V /kt (300 K) > 60. K.16.1 3

Fig..16. Temperature dependence of thermal stability factor for K u V /kt (300 K) > 60..17 1 =.1 erg/cm Fig..17. Exchage coupling energy dependence of switching field for K u V /kt (300 K) > 60. =.1 erg/cm.18 1 4

Fig..18. Temperature dependence of switching field for K u V /kt (300 K) > 60..3.4 K A-Type TAMR K A-Type K A-Type K u V /kt (300 K) > 10 = 3.1 erg/cm K u V /kt (300 K) > 60 =.1 erg/cm K Co-Pt-Cr 0.73erg/cm 7) TAMR Fe-Pt-Cu 5

Co/Ru/Co Co () 3.1 TAMR K 1 9) 1 1 Co Ru Co Co/Ru/Co Ru H s Co Co/Ru/Co Co 1 TAMR TAMR 500K H s 3.1 3 (a) 50W Co 1 (b) 100W Co 1 (c)(76mm6mm1mm) 10 ( 56) 10 10 Co 1 Co Co Ru 100 Co 60 Ru t Ru 08 3..1 6

Fig. 3.1. Sample structure. 3. 3..1 3. ( SBH- 306RDE) 3 ( DC-030F 800V/4A) 1kW ( RF-010A 13.56MHz 1kW)1 3 () ( D-950D)( CRYO-U 10PU) 1 Co 3 Ru 1 3 7

RF power supply matching box selecter motor chamber roughing valve substrate. non target mass flow 1. Co target 3. Ru target bypass valve rotary pump fore valve magnet main valve Ar N water cryo pump DC power supply 1 selecter DC power supply compresser Fig. 3.. Magnetron sputtering system. 3.1 10-4 Pa Ar Co Ru Co 1 Table 3.1.Sputtering conditions. 8

(1) Ru 100 () 1 Co 800 Co 60 (3) Ru (08) (4) Co 60 (5) Ru 100 3.. ( E-MD-S53A) 3..3 (Vibrating Sample Magnetometer, VSM VSM-5 )VSM ( ) 10mm10mm 3..4 H s Co/Ru/Co H s 9

Fig. 3.3. In-plane Mt-H loop of antiferromagnetic exchange coupled double layer. 1 M s t (> 0) H E M s H E = M s th cos M s th cos + cos (3.1) 1 1 Zeeman Zeeman 3 (3.1) 0 E E = M sthsin sin = 0 M s thsin sin = 0 M s thsin sin cos = 0 sin (M s th cos) = 0 sin = 0 (3.) M s th cos = 0 (3.3) 30

(3.) = 0 = (3.4) (3.3) cos = M s t H (3.5) cos 1 M s t H 1 1 M s t H 1 H M s t M s t (3.6) (3.5) H = /M s t (3.5) cos = 1 = 0 H (3.7) M s t (3.4) = 0 H = /M s t (3.5) cos = 1 = H M s t (3.8) (3.4) = (3.5) M s t cos = M s t M s t H (3.9) M s t cos 3.3 Mt H Mt Mt H H s =± M s t (3.10) ±M s t Mt H s = M s th s (3.11) 31

(3.11) (3.11) Co 60Å 10) Co 60Å(3.11) H s H s 3.3 3.3.1Co/Ru/Co Ru Ru 0850W 100W 3.4 3.5 3.6 Co/Ru/Co t Ru = 3Å 6) t Ru = 3Å AFC 50W 100W t Ru = 3Å AFC M-H loop 3.3 Co 1500 1000 1500 1000 M [emu/cm 3 ] 500 0-500 M [emu/cm 3 ] 500 0-500 -1000-1500 -10-5 0 5 10 H [koe] (a) -1000-1500 -15-10 -5 0 5 10 15 H [koe] (b) 3

1500 1500 1000 1000 M [emu/cm 3 ] 500 0 M [emu/cm 3 ] 500 0-500 -500-1000 -1500-10 -5 0 5 10 H [koe] 1500 (c) -1000-1500 -10-5 0 5 10 H [koe] (d) 1000 M [emu/cm 3 ] 500 0-500 -1000-1500 -6-4 - 0 4 6 H [koe] (e) Fig. 3.4. M-H loop on 50W etching Ru thickness (a) (b) 3(c) 4(d) 6(e) 8. 33

M [emu/cm 3 ] 1500 1000 500 0-500 M [emu/cm 3 ] 1500 1000 500 0-500 -1000-1500 -15-10 -5 0 5 10 15 H [koe] 1500 1000 (a) -1000-1500 -15-10 -5 0 5 10 15 H [koe] 1500 1000 (b) M [emu/cm 3 ] 500 0-500 M [emu/cm 3 ] 500 0-500 -1000-1500 -10-5 0 5 10 H [koe] (c) -1000-1500 -4-0 4 H [koe] (d) Fig. 3.5. M-H loop on 100W etching Ru thickness (a) (b) 3(c) 4(d) 6. 34

1500 1000 1500 1000 M [emu/cm 3 ] 500 0-500 M [emu/cm 3 ] 500 0-500 -1000-1500 -15-10 -5 0 5 10 15 H [koe] 1500 1000 (a) -1000-1500 -15-10 -5 0 5 10 15 H [koe] 1500 1000 (b) M [emu/cm 3 ] 500 0-500 M [emu/cm 3 ] 500 0-500 -1000-1500 -15-10 -5 0 5 10 15 H [koe] (c) -1000-1500 -10-5 0 5 10 H [koe] (d) 35

1500 1000 M [emu/cm 3 ] 500 0-500 -1000-1500 -8-4 0 4 8 H [koe] (e) Fig. 3.6. M-H loop on no etching Ru thickness (a) (b) 3(c) 4 (d) 6(e) 8. 3.4 3.5 3.6 H s Ru 3.7 (a)50w (b)100w (c) t Ru = 0 FC H s = 0 3.7(a)(b)(c) H s t Ru = 3Å H s t Ru = 6Å (a)50w (b)100w 50W H s [Co/Ru] 0.07erg/cm 11) 50W 4.8erg/cm Co 1 Co 1 1 36

Saturation field H s [koe] 18 16 14 1 10 8 6 4 0 0 4 6 8 Ru Thickness [Å] a) 50W Etching b) 100W Etching c) No etching fig. 3.7. Ru thickness dependence of saturation field. 3.3.Co/Ru/Co ( BH-800TC4) 533K 3.8 (a)50w (b)100w (c) 1 3 H s H 0 H s 533K H s TAMR 500K 493K H s Co Gd-Fe-Co H s 11) H s Co 1 37

Normalized saturation field H s /H 0 1. 1 0.8 0.6 0.4 0. 0 300 350 400 450 500 550 Annealing temperature [K] a) 50W etching b) 100W etching c) No etching Fig. 3.8. Annealing temperature dependence of normalized saturation field. 38

P-Type A- Type A-Type A-Type 1)A-Type K K K ) w K K 3)A-Type A-Type Ru Rh AFC AFC FC AFC AFC Co/Ru/Co Co 1 39

Ru H s TAMR 533K H s 4) Co 1 H s H s 5) Co 1 533K H s 40

41

1) HDD pp. 615-61007 ) S. H. Charap, P. Lu, and Y. He, "Thermal stability of recorded information at high densities," IEEE Trans. Magn., 33, pp. 978-983, 1997 3) MR004-64005 4) MR005-5006 5) M. N. Baibich,. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and. Chazelas, "Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices," Phys. Rev. Lett., 61, pp. 47-475, 1988 6) S. S. P. Parkin, "Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals," Phys. Rev. Lett., 67, pp. 3598-3601, 1991 7) A. Inomata, B. R. Acharya, E. N. Abarra, A. Ajan, D. Hasegawa, and I. Okamoto, "Advanced synthetic ferrimagnetic media,". Appl. Phys., 91, pp. 7671-7675, 00 8) E. Girt, and H.. Richter, "Antiferromagnetically coupled perpendicular recording media," IEEE Trans. Magn., 39, pp. 306-310, 003 9) M. Desai, A. Misra, and W. D. Doyle, "Effect of interface roughness on exchange coupling in synthetic antiferromagnetic multilayers," IEEE Trans. Magn., 41, pp. 3151-3153, 005 10) H. Wakabayashi, H. Notarys,. C. Suits and T. Suzuki, "Magnetic and magneto-optical properties of exchange coupled films of transition metals/tbfeco," Mat. Res. Soc. Symp. Proc., 150, pp. 95-101, 1989 11) [Co/Ru] 0 007 4