Functional Groups, Intermolecular Forces, & Infrared (IR) Spectroscopy

Similar documents
Chemistry 343- Spring 2008

1. Which compound would you expect to have the lowest boiling point? A) NH 2 B) NH 2

2FAMILIES OF CARBON COMPOUNDS:

Carbon Compounds. Chemical Bonding Part 2

California State Polytechnic University, Pomona

CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Text Sections (N0 1.9, 9-11) Homework: Chapter 1:

第 2 章官能基團, 分子間的各種作用力及紅外光譜簡介 (Functional Groups, Intermolecular Forces and Infrared Spectroscopy)

Chem 1075 Chapter 19 Organic Chemistry Lecture Outline

Wave Properties of Electrons. Chapter 2 Structure and Properties of Organic Molecules. Wave Interactions. Sigma Bonding

2.26 Intermolecular Forces

ORGANIC - EGE 5E CH. 2 - COVALENT BONDING AND CHEMICAL REACTIVITY

Atomic Structure and Bonding. Chapter 1 Organic Chemistry, 8 th Edition John McMurry

AP Chemistry Chapter 22 - Organic and Biological Molecules

Lecture 2. The framework to build materials and understand properties

Organic Chemistry. Organic chemistry is the chemistry of compounds containing carbon.

2.26 Intermolecular Forces

Organic Chemistry. Introduction to Organic Molecules and Functional Groups

2.2.2 Bonding and Structure

Infrared Spectroscopy An Instrumental Method for Detecting Functional Groups

Learning Organic Chemistry

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry

Chapter 2 Structure and Properties of Organic Molecules. Advanced Bonding: Review

Alkanes, Alkenes and Alkynes

Molecular Geometry: VSEPR model stand for valence-shell electron-pair repulsion and predicts the 3D shape of molecules that are formed in bonding.

Chapter 24 From Petroleum to Pharmaceuticals

CHEM 3.2 (AS91388) 3 credits. Demonstrate understanding of spectroscopic data in chemistry

ORGANIC MOLECULES (LIVE) 10 APRIL 2015 Section A: Summary Notes and Examples Naming and Functional Groups

Electronegativity Scale F > O > Cl, N > Br > C, H

Lecture 2. The framework to build materials and understand properties

HISTORY OF ORGANIC CHEMISTRY

SPECTROSCOPY MEASURES THE INTERACTION BETWEEN LIGHT AND MATTER

Structure Determination. How to determine what compound that you have? One way to determine compound is to get an elemental analysis

Chapter 2 Polar Covalent Bonds; Acids and Bases SAMPLE. Chapter Outline

CH 3 CH 2 CH 2 CH 2 CH 2 CH 2 OH

INTRODUCTION TO ORGANIC CHEMISTRY

Chapter 1,2 Continued. "1. Orbitals and Hybridization "2. Molecular Shape and Polarity "3. Physical Properties "

Chapter 8 Chemical Bonding

Lecture 11. IR Theory. Next Class: Lecture Problem 4 due Thin-Layer Chromatography

The dative covalent bond acts like an ordinary covalent bond when thinking about shape so in NH 4. the shape is tetrahedral

Introduction to Organic Chemistry Unit 1: Importance of Functional Groups

Chapter 22. Organic and Biological Molecules

Intermolecular Forces and Physical Properties

IB Topics 4 & 14 Multiple Choice Practice

Chapter 2 Polar Covalent Bonds; Acids and Bases. Chapter Outline

Explain how the structure and bonding of carbon lead to the diversity and number of organic compounds.

Classes of Organic Compounds

Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules

Detailed Course Content

Definition: An Ionic bond is the electrostatic force of attraction between oppositely charged ions formed by electron transfer.

2011, Robert Ayton. All rights reserved.

CHAPTER 2: Structure and Properties of Organic Molecules

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides

More information can be found in Chapter 12 in your textbook for CHEM 3750/ 3770 and on pages in your laboratory manual.

Common Elements in Organic Compounds

Unit 12 Organic Chemistry

Bonding and IMF practice test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Week 8 Intermolecular Forces

CfE Higher Chemistry. Unit 1: Chemical Changes and Structure. Intermolecular forces

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure

Infrared Spectroscopy used to analyze the presence of functional groups (bond types) in organic molecules How IR spectroscopy works:

Advanced Pharmaceutical Analysis

Chapter 11. Introduction to Organic Chemistry

Chapters 2 & 25: Covalent bonds & Organic Chemistry

Intermolecular Forces of Attraction

Organic Chemistry. A. Introduction

Alkanes and Cycloalkanes

Chapter 25 Organic and Biological Chemistry

PROPERTIES OF SOLIDS SCH4U1

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces. John D. Bookstaver St. Charles Community College Cottleville, MO

Organic Chemistry. February 18, 2014

Chapter 16 Covalent Bonding

General Infrared Absorption Ranges of Various Functional Groups

Table 8.2 Detailed Table of Characteristic Infrared Absorption Frequencies

Organic Chemistry SL IB CHEMISTRY SL

CS 2, HCN, BeF 2 Trigonal planar. Cl 120 BF 3, AlCl 3, SO 3, NO 3-, CO NCl 3,PF 3,ClO 3,H 3 O + ...

LECTURE 2 STRUCTURE AND PROPERTIES OF ORGANIC MOLECULES

Introduction to Organic Chemistry Unit 1: Importance of Functional Groups

STRUCTURE. Dr. Sheppard CHEM 2411 Spring 2015

Intermolecular Forces

ORGANIC - BRUICE 8E CH.3 - AN INTRODUCTION TO ORGANIC COMPOUNDS

Topic 10.1: Fundamentals of Organic Chemistry Notes

Name: Date: Period: #: BONDING & INTERMOLECULAR FORCES

1. How do you account for the formation of ethane during chlorination of methane?

Class XI Chapter 13 Hydrocarbons Chemistry

Infrared Spectroscopy

Chapter 9. Organic Chemistry: The Infinite Variety of Carbon Compounds. Organic Chemistry

Physical States of Matter

K + 09/04/2018. Structure of Organic Molecules. Ionic bond. The compound potassium fluoride consists of potassium (K+) ions and fluoride (F-) ions

CHEMISTRY 110 EXAM 2 Oct.

INTERMOLECULAR FORCES: Polarity of Molecules. Seventh Course (General Chemistry) by Dr. Istadi

Downloaded from

Hydrocarbons and their Functional Groups

6. The molecule which would form a trigonal planar shape would be: a) CH 3 Cl b) SiOF 2 c) NH 3 d) PF 4

CH 3. mirror plane. CH c d

Chapter 10. Dipole Moments. Intermolecular Forces (IMF) Polar Bonds and Polar Molecules. Polar or Nonpolar Molecules?

Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different types are classified by frequency or

Name Date Class. aryl halides substitution reaction

Chem 145 Unsaturated hydrocarbons Alkynes

MSC. ISMAIL M.ALI DEPARTMENT OF CHEMICAL ENGINEEING COLLEGE OF ENGINEERING TIKRIT UNIVERSITY

ORGANIC - BROWN 8E CH INFRARED SPECTROSCOPY.

Transcription:

Chapter 2 Families of Carbon Compounds Functional Groups, Intermolecular Forces, & Infrared (IR) Spectroscopy Created by Professor William Tam & Dr. Phillis Chang Ch. 2-1

About The Authors These Powerpoint Lecture Slides were created and prepared by Professor William Tam and his wife Dr. Phillis Chang. Professor William Tam received his B.Sc. at the University of ong Kong in 1990 and his Ph.D. at the University of Toronto (Canada) in 1995. e was an NSERC postdoctoral fellow at the Imperial College (UK) and at arvard University (USA). e joined the Department of Chemistry at the University of Guelph (Ontario, Canada) in 1998 and is currently a Full Professor and Associate Chair in the department. Professor Tam has received several awards in research and teaching, and according to Essential Science Indicators, he is currently ranked as the Top 1% most cited Chemists worldwide. e has published four books and over 80 scientific papers in top international journals such as J. Am. Chem. Soc., Angew. Chem., Org. Lett., and J. Org. Chem. Dr. Phillis Chang received her B.Sc. at New York University (USA) in 1994, her M.Sc. and Ph.D. in 1997 and 2001 at the University of Guelph (Canada). She lives in Guelph with her husband, William, and their son, Matthew. Ch. 2-2

1. ydrocarbons ydrocarbons are compounds that contain only carbon and hydrogen atoms Alkanes hydrocarbons that do not have multiple bonds between carbon atoms e.g. pentane cyclohexane Ch. 2-3

Alkenes contain at least one carbon carbon double bond e.g. propene cyclohexene Ch. 2-4

Alkynes contain at least one carbon carbon triple bond e.g. C C ethyne 1-pentyne 2-pentyne Ch. 2-5

Aromatic compound contain a special type of ring, the most common example of which is a benzene ring C 3 COO e.g. benzene toluene benzoic acid Ch. 2-6

1A. Alkanes The primary sources of alkanes are natural gas and petroleum The smaller alkanes (methane through butane) are gases under ambient conditions Methane is the principal component of natural gas igher molecular weight alkanes are obtained largely by refining petroleum Methane Ch. 2-7

1B. Alkenes Ethene and propene, the two simplest alkenes, are among the most important industrial chemicals produced in the United States Ethene is used as a starting material for the synthesis of many industrial compounds, including ethanol, ethylene oxide, ethanal, and the polymer polyethylene C C Ethene Ch. 2-8

Propene is the important starting material for acetone, cumene and polypropylene Examples of naturally occurring alkenes β-pinene (a component of turpentine) An aphid alarm pheromone Ch. 2-9

1C. Alkynes The simplest alkyne is ethyne (also called acetylene) Examples of naturally occurring alkynes C C O Br Cl C C C C C C 3 Capillin (an antifungal agent) O Br Dactylyne (an inhibitor of pentobarbital metabolism) Ch. 2-10

1D. Benzene All C C bond lengths are the same (1.39 Å) (compare with C C single bond 1.54 Å, C=C double bond 1.34 Å) Extra stabilization due to resonance aromatic Ch. 2-11

3 Dimensional structure of benzene π-electrons above and below ring Planar structure All carbons sp 2 hybridized Ch. 2-12

The lobes of each π orbital above and below the ring overlap with the lobes of π orbitals on the atoms to either side of it the six electrons associated with these π orbitals (one electron from each orbital) are delocalized about all six carbon atoms of the ring Ch. 2-13

2. Polar Covalent Bonds Li F Lithium fluoride has an ionic bond C C Ethane has a covalent bond. The electrons are shared equally between the carbon atoms Ch. 2-14

electronegativity δ C C C O 2.5 3.5 equal sharing of e (non-polar bond) unequal sharing of e (polar bond) Ch. 2-15

Electronegativity (EN) The intrinsic ability of an atom to attract the shared electrons in a covalent bond Electronegativities are based on an arbitrary scale, with F the most electronegative (EN = 4.0) and Cs the least (EN = 0.7) Ch. 2-16

element (EN) Li (1.0) Na (0.9) K (0.8) Rb (0.8) Cs (0.7) Be (1.6) Mg (1.2) (2.1) B (2.0) C (2.5) Si (1.8) N (3.0) P (2.1) O (3.5) S (2.5) F (4.0) Cl (3.0) Br (2.8) I (2.5) Increasin ng EN Increasing EN Ch. 2-17

δ δ C N C Cl 2.5 3.0 2.5 3.0 δ δ C Si C 2.1 2.5 1.8 2.5 Ch. 2-18

3. Polar and Nonpolar Molecules Dipole moment = distance between the charges the charge µ = r Q Dipole moments are expressed in debyes (D), where 1 D = 3.336 10 30 coulomb meter (C m) in SI units Ch. 2-19

δ Cl C > net dipole (1.87 D) Ch. 2-20

Molecules containing polar bonds are not necessarily polar as a whole, for example (1) BF (µ = 0 D) (2) CCl (µ = 0 D) 3 4 Cl F 120 o C Cl B Cl F F Cl (trigonal planar) (tetrahedral) Ch. 2-21

Dipole moment of some compounds Compound Dipole Moment Compound Dipole Moment NaCl 9.0 2 O 1.85 C 3 NO 2 3.45 C 3 O 1.70 C 3 Cl 1.87 C 3 COO 1.52 C 3 Br 1.79 N 3 1.47 C 3 I 1.64 C 4 0 CCl 3 1.02 CCl 4 0 Ch. 2-22

3A. Dipole Moments in Alkenes cis- 1,2-Dichloroethene trans- 1,2-Dichloroethene Cl C C C C Cl Cl Cl resultant dipole moment (µ = 1.9 D) (µ = 0 D) Ch. 2-23

Physical properties of some cis-trans isomers Compound m.p. ( o C) m.p. ( o C) (µ) cis-1,2-dichloroethene -80 60 1.90 trans-1,2-dichloroethene -50 48 0 cis-1,2-dibromoethene -53 112.5 1.35 trans-1,2-dibromoethene -6 108 0 Ch. 2-24

4. Functional Groups Alkane Alkyl Group Abbrev. Bond-Line Model C 3 Methane C 3 Methyl Me- C 3 C 2 C 2 Propane C 3 C 2 C 2 propyl C 3 C 2 C 2 C 2 Butane C 3 C 2 C 2 C 2 Butyl C 3 C 2 C 3 C 2 Et- Ethane Ethyl Pr- Bu- Ch. 2-25

C 3 C 3 C 2 C 3 C 2 C 2 C 3 CC 3 Methyl Ethyl Propyl Isoprypyl These and others can be designated by R General formula for an alkane is R Ch. 2-26

4B. Phenyl and Benzyl Groups Phenyl group or or C 6 5 φ or Ph or or Ar Benzyl group C 2 or or C 6 5 C 2 or Bn Ch. 2-27

5. Alkyl alides or aloalkanes R X (X = F, Cl, Br, I) Examples Attached to Attached to Attached to 1 carbon atom 2 carbon atoms 3 carbon atoms C C C C Cl C Br C I a 1 o chloride a 2 o bromide a 3 o iodide Ch. 2-28

6. Alcohols R O Examples C 3 O, O, O, O (1 o ) (2 o ) (3 o ) (aromatic) (phenol) Ch. 2-29

Alcohols may be viewed structurally in two ways: As hydroxyl derivatives of alkanes As alkyl derivatives of water ethyl group C 3 C 2 C 3 C 3 109.5 o O 104.5 o Ethane Ethyl alcohol (ethanol) hydroxyl group O Water Ch. 2-30

7. Ethers R O R Examples ~100 o O Acyclic O Cyclic Ch. 2-31

8. Amines R N 2 3 C N N 3 C C 3 C 3 N 3 C C 3 (1 o ) (2 o ) (3 o ) N (cyclic) N (aromatic) Ch. 2-32

9. Aldehydes and Ketones O O R R R (aldehydes) (ketones) O O O O,, ketone aldehyde Ch. 2-33

Aldehydes and ketones have a trigonal planar arrangement of groups around the carbonyl carbon atom 121 o O 121 o 108 o Ch. 2-34

10. Carboxylic Acids, Esters, and Amides O O O R O (carboxylic acid) R OR (ester) R Cl (acid chloride) O O O R NR 2 (amide) R O (acid anhydride) R Ch. 2-35

11. Nitriles R C N 3 C 2 C 1 N 3 2 1 C N C N Ethanenitrile (acetonitrile) Propenenitrile (acrylonitrile) Benzenecarbonitrile (benzonitrile) Ch. 2-36

12. Summary of Important Families of Organic Compounds Ch. 2-37

Ch. 2-38

13. Physical Properties and Molecular Structure 13A. A.Ionic Compounds: Ion-Ion Forces The melting point of a substance is the temperature at which an equilibrium exists between the wellordered crystalline state and the more random liquid state Ch. 2-39

If the substance is an ionic compound, the ion ion forces that hold the ions together in the crystalline state are the strong electrostatic lattice forces that act between the positive and negative ions in the orderly crystalline structure A large amount of thermal energy is required to break up the orderly structure of the crystal into the disorderly open structure of a liquid Ch. 2-40

The boiling points of ionic compounds are higher still, so high that most ionic organic compounds decompose before they boil Ch. 2-41

Physical properties of selected compounds Compound Structure mp ( o C) bp ( o C) (1 atm) Ethane C 3 C 3-172 -88.2 Chloroethane C 3 C 2 Cl -138.7 13.1 Ethyl alcohol C 3 C 2 O -114 78.5 Acetaldehyde C 3 CO -121 20 Acetic acid C 3 CO 2 16.6 118 Sodium acetate C 3 CO 2 Na 324 dec Ch. 2-42

13B. Intermolecular Forces (van der Waals Forces) The forces that act between molecules are not as strong as those between ions These intermolecular forces, van der Waals forces, are all electrical in nature Dipole-dipole forces ydrogen bonds Dispersion forces Ch. 2-43

Dipole-dipole forces Dipole-dipole attractions between polar molecules O δ O δ dipole-dipole attraction C Cl δ C Cl δ Ch. 2-44

ydrogen bonds Dipole-dipole attractions between hydrogen atoms bonded to small, strongly electronegative atoms (O, N, or F) and nonbonding electron pairs on other such electronegative atoms ydrogen bonds (bond dissociation energies of about 4 38 kj mol -1 ) are weaker than ordinary covalent bonds but much stronger than the dipole dipole interactions Ch. 2-45

ydrogen bonds δ O δ O hydrogen bond N δ N δ Ch. 2-46

ydrogen bonds ydrogen bonding explains why water, ammonia, and hydrogen fluoride all have far higher boiling points than methane (bp 161.6 C), even though all four compounds have similar molecular weights One of the most important consequences of hydrogen bonding is that it causes water to be a liquid rather than a gas at 25 C Ch. 2-47

ydrogen bonds Calculations indicate that in the absence of hydrogen bonding, water would have a bp near 80 C and would not exist as a liquid unless the temperature were lower than that temperature Ch. 2-48

Dispersion forces (London forces) The average distribution of charge in a nonpolar molecule over a period of time is uniform At any given instant, however, because electrons move, the electrons and therefore the charge may not be uniformly distributed Electrons may, in one instant, be slightly accumulated on one part of the molecule, and, as a consequence, a small temporary dipole will occur Ch. 2-49

Dispersion forces (London forces) This temporary dipole in one molecule can induce opposite (attractive) dipoles in surrounding molecules These temporary dipoles change constantly, but the net result of their existence is to produce attractive forces between nonpolar molecules Ch. 2-50

Two important factors determine the magnitude of dispersion forces The relative polarizability of electrons of the atoms involved The electrons of large atoms such as iodine are loosely held and are easily polarized, while the electrons of small atoms such as fluorine are more tightly held and are much less polarizable Ch. 2-51

δ δ δ δ δ δ δ δ I I C I I stronger dispersion forces δ δ δ δ δ δ δ δ I I C I I δ δ δ F F C F F weaker dispersion forces δ δ F C F F F δ Ch. 2-52

The relative surface area of the molecules involved The larger the surface area, the larger is the overall attraction between molecules caused by dispersion forces Ch. 2-53

e.g. Pentane vs. Neopentane (both C 5 12 ) δ δ δ δ δ δ δ δ δ δ+ larger surface area stronger dispersion forces δ δ δ δ + δ δ C C C C C δ δ δ δ δ δ δ δ δ δ+ Pentane (bp 36 o C) smaller surface area weaker dispersion forces δ Neopentane (bp 9.5 o C) δ δ δ δ C C C C C Ch. 2-54

13C. Boiling Points The boiling point of a liquid is the temperature at which the vapor pressure of the liquid equals the pressure of the atmosphere above it the boiling points of liquids are pressure dependent, and boiling points are always reported as occurring at a particular pressure Ch. 2-55

Examples C 3 t Bu C3 NO 2 bp: 245 o C / 760 mmg (74 o C / 1 mmg) O bp: 260 o C / 760 mmg (140 o C / 20 mmg) 1 atm = 760 torr = 760 mmg Ch. 2-56

13D. Solubilities A general rule for solubility is that like dissolves like in terms of comparable polarities Polar and ionic solids are usually soluble in polar solvents Polar liquids are usually miscible Nonpolar solids are usually soluble in nonpolar solvents Nonpolar liquids are usually miscible Polar and nonpolar liquids, like oil and water, are usually not soluble to large extents Ch. 2-57

e.g. MeO and 2 O are miscible in all proportions hydrogen bond 3 C δ O O δ Ch. 2-58

ydrophobic means incompatible with water ydrophilic means compatible with water ydrophobic portion ydrophilic group O Decyl alcohol A typical detergent molecule O O S O O Na Ch. 2-59

13E. Guidelines for Water Solubility Organic chemists usually define a compound as water soluble if at least 3 g of the organic compound dissolves in 100 ml of water Usually compounds with one to three carbon atoms are water soluble, compounds with four or five carbon atoms are borderline, and compounds with six carbon atoms or more are insoluble Ch. 2-60

14. Summary of Attractive Electric Forces Ch. 2-61

15. Infrared Spectroscopy Ch. 2-62

The position of an absorption band (peak) in an IR spectrum is specified in units of wavenumbers ( ) ν ν = 1 λ E = hν E ν (λ = wavelength in cm) (E = energy) (ν = frequency of radiation) ν = E = c λ hc λ Ch. 2-63

Ch. 2-64

Characteristic IR absorptions Intensity: s = strong, m = medium, w = weak, v = variable Group Freq. Range (cm -1 ) Intensity Alkyl C (stretching) 2853 2962 (m s) Alkenyl C (stretching) C= (stretching) cis-rc=cr trans-rc=cr Alkynyl C (stretching) C C (stretching) 3010 3095 1620 1680 675 730 960 975 ~3300 2100 2260 (m) (v) (s) (s) (s) (v) Ch. 2-65

Characteristic IR absorptions Intensity: s = strong, m = medium, w = weak, v = variable Group Freq. Range (cm -1 ) Intensity Aromatic Ar (stretching) - monosubstituted - o-disubstituted - m-disubstituted - p-disubstituted ~3300 690 710 730 770 735 770 680 725 750 810 800 860 (v) (very s) (very s) (s) (s) (very s) (very s) Ch. 2-66

Characteristic IR absorptions Intensity: s = strong, m = medium, w = weak, v = variable Group Freq. Range (cm -1 ) Intensity Alcohols, Phenols & Carboxylic Acids O (stretching) - alcohols & phenols 3590 3650 (sharp, v) (dilute solutions) - alcohols & phenols 3200 3550 (broad, s) (hydrogen bonded) - carboxylic acids 2500 3000 (broad, v) (hydrogen bonded) Ch. 2-67

Characteristic IR absorptions Intensity: s = strong, m = medium, w = weak, v = variable Group Freq. Range (cm -1 ) Intensity Aldehydes, Ketones, Esters, Carboxylic Acids, Amides C=O (stretching) Aldehydes 1630 1780 1690 1740 (s) (s) Ketones Esters Carboxylic Acids Amides 1680 1750 1735 1750 1710 1780 1630 1690 (s) (s) (s) (s) Amines N 3300 3500 (m) Nitriles C N 2220 2260 (m) Ch. 2-68

16. Interpreting IR Spectra IR spectrum of octane Ch. 2-69

IR spectrum of toluene Ch. 2-70

16B. IR Spectra of ydrocarbons IR spectrum of 1-heptyne Ch. 2-71

IR spectrum of 1-octene Ch. 2-72

16B. IR Spectra of Some Functional Groups Containing Carbonyl Functional Groups O O O R R R R OR (aldehyde) (ketone) (ester) 1690-1740 cm -1 1680-1750 cm -1 1735-1750 cm -1 O O R O (carboxylic acid) 1710-1780 cm -1 R NR 2 (amid) 1630-1690 cm -1 Ch. 2-73

Alcohols and phenols The IR absorption of an alcohol or phenol O group is in the 3200 3550 cm -1 range, and most often it is broad Ch. 2-74

Carboxylic Acids IR spectrum of propanoic acid Ch. 2-75

Amines 1 o and 2 o amines give absorptions of moderate strength in the 3300 3500 cm -1 region 1 o amines exhibit two peaks in this region due to symmetric & asymmetric stretching of the two N bonds 2 o amines exhibit a single peak 3 o amines show no N absorption because they have no such bond A basic p is evidence for any class of amines Ch. 2-76

Amines IR spectrum of 4-methylaniline Ch. 2-77

RN 2 (1 Amine) Two peaks in 3300 3500 cm -1 region R 2 N (2 Amine) One peak in 3300 3500 cm -1 region symmetric stretching asymmetric stretching Ch. 2-78

END OF CAPTER 2 Ch. 2-79