Biophysics of Macromolecules

Similar documents
Imaging and quantification of nanoparticle uptake by ICP-MS based techniques

U. S. Contributions to COPS: Satellite-estimated Convective Initiation

Labelling strategies in the NMR structure determination of larger proteins

Lecture 12: Biomaterials Characterization in Aqueous Environments

thiol monolayers by means of high-rate dynamic force spectroscopy

Measurements of interaction forces in (biological) model systems

Scanning Force Microscopy. i.e. Atomic Force Microscopy. Josef A. Käs Institute for Soft Matter Physics Physics Department. Atomic Force Microscopy

Structural investigation of single biomolecules

Dynamic Force Spectroscopy of the Silicon Carbon Bond

Atomic and molecular interactions. Scanning probe microscopy.

PROBING THE RELATION BETWEEN FORCE LIFETIME AND CHEMISTRY

3.052 Nanomechanics of Materials and Biomaterials Tuesday 04/03/07 Prof. C. Ortiz, MIT-DMSE I LECTURE 13: MIDTERM #1 SOLUTIONS REVIEW

Biomolecular Interactions Measured by Atomic Force Microscopy

3.052 Nanomechanics of Materials and Biomaterials Thursday 02/15/07 Prof. C. Ortiz, MIT-DMSE I LECTURE 4: FORCE-DISTANCE CURVES

Phys 450 Spring 2011 Solution set 6. A bimolecular reaction in which A and B combine to form the product P may be written as:

Introductory guide to measuring the mechanical properties of nanoobjects/particles

Steered Molecular Dynamics Introduction and Examples

PC IV Grenzflächen WS 2011/12. Adsorptions- und Desorptionsdynamik

Announcements & Lecture Points

Evaluation of the binding energy of viral capsid proteins using a Virtual AFM

arxiv:cond-mat/ v2 [cond-mat.soft] 29 Nov 2004

Electrically controlled DNA adhesion

h m h a + ρ c h c + ρ a + ρ m

Advanced Physical Chemistry CHAPTER 18 ELEMENTARY CHEMICAL KINETICS

K ex. Conformational equilibrium. equilibrium K B

Swelling and Collapse of Single Polymer Molecules and Gels.

Instrumentation and Operation

TOPIC 6: Chemical kinetics

Lecture 4 Scanning Probe Microscopy (SPM)

Collective Effects. Equilibrium and Nonequilibrium Physics

Organische Chemie IV: Organische Photochemie

The Kramers problem and first passage times.

Scanning Force Microscopy

Collective Effects. Equilibrium and Nonequilibrium Physics

Mechanical stability and internal friction of GB1 protein

Multi-Bead-and-Spring Model to Interpret Protein Detachment Studied by AFM Force Spectroscopy

Visualizing folding of proteins (1 3) and RNA (2) in terms of

Nature Methods: doi: /nmeth Supplementary Figure 1. Principle of force-distance (FD) curve based AFM.

Mechanical forces play an increasingly recognized role in

Intermolecular forces and enthalpies in bacterial adhesion

Energy Barriers and Rates - Transition State Theory for Physicists

Lecture Note October 1, 2009 Nanostructure characterization techniques

Flexing Protein muscles: How to Pull with a "Burning Rope"

Nonlinear Dynamic Force Spectroscopy

Supplemental Information - Glassy Dynamics in Composite Biopolymer Networks

The four forces of nature. Intermolecular forces, surface forces & the Atomic Force Microscope (AFM) Force- and potential curves

Synthetic Nanopore Force- Spectroscopy

Untangling the Mechanics of Entangled Biopolymers

Recently developed single-molecule atomic force microscope

140a Final Exam, Fall 2007., κ T 1 V P. (? = P or V ), γ C P C V H = U + PV, F = U TS G = U + PV TS. T v. v 2 v 1. exp( 2πkT.

Single-Molecule Recognition and Manipulation Studied by Scanning Probe Microscopy

Piezoelectric Multilayer Beam Bending Actuators

Capillarity. ESS5855 Lecture Fall 2010

Characterization of MEMS Devices

PY5020 Nanoscience Scanning probe microscopy

Formation and breakage of noncovalent protein protein interactions

Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions

3.5. Kinetic Approach for Isotherms

11.1. FÖRSTER RESONANCE ENERGY TRANSFER

BMB November 17, Single Molecule Biophysics (I)

Atomic Force Microscopy imaging and beyond

STM: Scanning Tunneling Microscope

Adventures in nanoscale mechanics. Peter M. Hoffmann Department of Physics & Astronomy Wayne State University

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Lecture 2-3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability

2 Reaction kinetics in gases

Mechanical Proteins. Stretching imunoglobulin and fibronectin. domains of the muscle protein titin. Adhesion Proteins of the Immune System

Single-Molecule Force Spectroscopy on Poly(acrylic acid) by AFM

FROM LOCALIZATION TO INTERACTION

Tecniche sperimentali: le optical tweezers

Lecture 10 Thin Film Growth

Multimedia : Fibronectin and Titin unfolding simulation movies.

Minimal encounter time and separation determine ligand-receptor binding in cell adhesion SUPPLEMENTARY INFORMATION

Lecture 34 Protein Unfolding Thermodynamics

MS482 Materials Characterization ( 재료분석 ) Lecture Note 11: Scanning Probe Microscopy. Byungha Shin Dept. of MSE, KAIST

Lecture 15 - The pn Junction Diode (I) I-V Characteristics. November 1, 2005

L. Introduction to Chemical Engineering ETH Zürich. Page 1 of 7 FS Prof. Marco Mazzotti Written Examination,

GEM4 Summer School OpenCourseWare

Lecture 27. Transition States and Enzyme Catalysis

Supplementary Information

Detailed AFM Force Spectroscopy of the Interaction between. CD44-IgG-Fusion Protein and Hyaluronan

Dissociation of Ligand-Receptor Complexes Using Magnetic Tweezers

Sub -T g Relaxation in Thin Glass

Grundlagen der Systembiologie und der Modellierung epigenetischer Prozesse

Free energy, electrostatics, and the hydrophobic effect

Lecture 7. Surface Reaction Kinetics on a

Chemical Kinetics. Topic 7

Features of static and dynamic friction profiles in one and two dimensions on polymer and atomically flat surfaces using atomic force microscopy

Micro-Rheology Measurements with the NanoTracker

macroscopic view (phenomenological) microscopic view (atomistic) computing reaction rate rate of reactions experiments thermodynamics

Lecture: P1_Wk1_L1 IntraMolecular Interactions. Ron Reifenberger Birck Nanotechnology Center Purdue University 2012

SUPPLEMENTARY INFORMATION

Organische Chemie IV: Organische Photochemie

Statistical Methods in Particle Physics

Graphene mechanics: II. Atomic stress distribution during indentation until rupture. Supplementary Material

Statistics, Data Analysis, and Simulation SS 2013

Effects of Chemical Exchange on NMR Spectra

QENS in the Energy Domain: Backscattering and Time-of

FD-based AFM: The tool to image and simultaneously map multiple properties of biological systems

Concept review: Binding equilibria

Transcription:

Biophysics of Macromolecules Lecture 11: Dynamic Force Spectroscopy Rädler/Lipfert SS 2014 - Forced Ligand-Receptor Unbinding - Bell-Evans Theory 22. Mai. 2014

AFM experiments with single molecules custom-built instrument (M. Rief, H. Gaub et al., Science 275, 1295 (1997)):" Deflection" Piezopath" intermolecular forces" (binding interactions)" intramolecular forces" (polymer elasticity)" Force [pn]" 600" 400" 200" 0" -200" -400" 0" 100" 200" 300" 400" Extension [nm]"

Measuring the binding strength of individual ligand-receptor pair commercial instrument designed for! high resolution imaging:! H.L. Florin, H. Gaub et al., " Science 264, " 415 (1994)" lense" laser! " diode" segmented! photodiode! biotin" avidin! agarose bead" 40 35 sample" x-y-z-! piezo! tube" " Das Bild kann nicht angezeigt werden. Dieser Computer D verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild D zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen. cantilever with! integrated tip" " Counts 30 25 20 15 10 5 0 0" 200" 400" 600" 800" 1000" adhesion force [pn] Precision: position accuracy ~ 0.1 nm!! Sensitivity: measuring forces < 10 pn! adhesion force quantized! in integer multiples of ~160 pn!

Principle of the biomembrane force probe (BFP)! R. Merkel, Physics Reports 346, 343 (2001)"

The rupture force is loading rate dependent! Slow retraction (10 pn/sec ) Fast retraction (60000 pn/sec ) Evans, Annu. Rev. Biophys. Biomol. Struct. 2001. 30:105 28

Biotin-streptavidin bond strength measured by BFP! Merkel et al., Nature 397, 50 (1999)"

Probing potential landscapes by dynamic force spectroscopy" R. Merkel et al., Nature 397, 50 (1999)" External force along the molecular coordinate, x " adds a mechanical potential to the energy landsscape" inner barrier dominates! when outer barrier falls! below k B T! sharp barriers (transition states) change little" in shape or location under force, while" shallow barriers may completely vanish"

Desorption of single polymer chains from a solid surface! F Kraft! L k off << F s F u Binding sites! Between polymer! and substrate Länge! k on k off 'Kraft! k off >> F s F u s L Länge!

Chemical bonds in equilibrium k S D 1 S 2 k A S 2 [ ] = k off [ S 1 ] [ S 1 ] = k on S 2 [ ] [ S 2 ] [ ] = k off S 1 k on S 1 and S 2 are different states, e.g.conformations of a protein Free energy landscape G = H TS S 2 [ S ] ΔG 2 [ S ] = e kt 1 = k off k on =: K eq S 1 Δx ΔG(0) Def.: equilibrium constant

The energy landscape tilts under external force ΔG(F) ΔG(0) FΔx Δx ΔG(0) [ S ] ΔG FΔx 2 [ S ] (F) = K kt eq (F) = e 1

Chemische Bindungen unter Kraft II: Nichtgleichgewicht Beispiel: Das Rezeptor-Ligand System Biotin-Avidin k off (F) BA A + B Die Polymeranker verhindern eine mögliche Rückbindung k on =0 Gaub/SS 2005 BPM 1.5.2 11

The rate of escape is force dependent k off k off (F) ΔG a * : Free activation energy ΔG a* ΔG (F) a* (F=0) Arrhenius: Δx a * k off = ν e ΔG a kt ν: attempt frequency Under external force: k off = ν e ΔG a * F Δx a kt FΔx k off (F) = k 0 kt off e The escape rate increases exponentially under force (Bell, 1978) Gaub/SS 2005 BPM 1.5.2 12

Rate of Escape Over an Idealized Barrier Kramer Theory (1956) k off = ν e ΔG a kt * k off The attempts are described as a diffusive motion in a potential ν = l c l st D Δx a l c represents the thermal spread in bound states ound states limited by the rise in ene l c = R dx exp[ 1E c (x)/k B T]. l c 2πkT /κ c l ST 2πkT /κ ST κ c curvature at the minimum κ ST curvature at the maximum ν = τ D 1 = κ c κ ST / 2πζ m Kramers formula

k off (F) BA A + B Bond rupture as a statistical prozess dn BA = k off n BA dt dp Z = P Ü k off (t) dt dp Z : Probability that a bond breaks in the time interval dt P Z : Probability that bond is broken at time t P ü : Probability that bond still exisits at time t ( ) k off (t) dt dp Z = 1 P Z P Ü =1 P Z Spring const. Loading rate f(t) = v P k C t with: dp Z df (F) dp Z (F) ΔF df P Z (T )= 1 e P Z (F)= 1 e T 0 1 v P k C k off (t ) dt k off (f ) df dp Z df (F)= 1 k v P k off (F) e C : Probability density of bond rupture. Gaub/SS 2005 BPM 1.5.2 14 F 0 1 v P k C Probability that a bond ruptures in the force interval F 0 k off (f ) df

dp Z df (F)= 1 k off (F) e v P k C mit: 1 v P k C ( k off (F) = k 0 e ΔG * F Δx a ) k B T F 0 k off (f ) df ( ΔG* F Δx a ) 1 k dp Z df (F)= k B T 0 e v P k C * k, B T k 0, e v P k C Δx, a, + $ & ΔG * F Δx % a k B T ' ) ( ΔG* k e B T - / / / /. Maximum of the probability density yields most probable rupture force F A F A = kt $ ln Δx a k ' & c ) Δx a %& α 0 kt () + kt ln v Δx P a k 0 [ ] Gaub/SS 2005 BPM 1.5.2 15

F A = kt " % $ Δ x a k c ' ln$ ' + kt ln v P Δ x a # $ α 0 kt &' Δ x a k 0 [ ] Force [pn] 300 250 200 150 100 50 Δ x=3å 1/300000 s 1/30000 s 1/3000 s 1/300 s 1/30 s Force [pn] 600 500 400 300 200 100 0 k =1/30000 s 0 1Å 2Å 3Å 4Å 5Å 0 10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-13 10-12 10-11 10-10 10-9 10-8 10-7 10-6 Pulling Speed [m/s] Pulling Speed [m/s] Ratedependent force measurements yield information about the width of the energy landscape (Δx a ). Gaub/SS 2005 BPM 1.5.2 16

Die Verteilung der Entfaltungskräfte von Titindomänen spiegeln die Zufallsnatur des Bindungsbruchprozesses wider. Gaub/SS 2005 BPM 1.5.2 17

Schlußfolgerungen 1. Bindungsbrüche sind thermisch aktivierte statistische Prozesse und haben dementsprechend keinen scharfen Wert sondern eine charakteristische Verteilung 2. Die Bruchkräfte hängen von der Geschwindigkeit ab, mit der ein Experiment durchgeführt wird.