Supporting Information

Similar documents
Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

A Total Synthesis of Paeoveitol

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage

Stereoselective Synthesis of (-) Acanthoic Acid

Supporting information

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke *

Supporting Information

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic

Supporting Infromation

Seth B. Harkins and Jonas C. Peters

Molybdenum(0) Fischer ethoxycarbene complexes: Synthesis, X-ray crystal structures and DFT study

Supporting Information

Supplementary Information

Pyridyl vs bipyridyl anchoring groups of. porphyrin sensitizers for dye sensitized solar. cells

Supplementary Information

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

Structure Report for J. Reibenspies

Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies. Supporting Information

Copper Mediated Fluorination of Aryl Iodides

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes

Supporting Information

Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene

Diastereoselective Synthesis of C2 -Fluorinated Nucleoside Analogues using an Acyclic Strategy

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Supporting Information

Use of mixed Li/K metal TMP amide (LiNK chemistry) for the synthesis of [2.2]metacyclophanes

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei N N

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin

Supporting Information

Decomposition of Ruthenium Olefin Metathesis. Catalysts

Gulaim A. Seisenbaeva,, Geoffrey Daniel, Jean-Marie Nedelec,, Vadim G. Kessler,*, Supplementary materials

High-performance Single-crystal Field Effect Transistors of Pyreno[4,5-a]coronene

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles

Supporting Information

Proton grease: an acid catalyzed acceleration of a molecular rotor

Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine

Regioselective Synthesis of the Tricyclic Core of Lateriflorone

Supplementary Information. Single Crystal X-Ray Diffraction

The version of SI posted May 6, 2004 contained errors. The correct version was posted October 21, 2004.

Fluorescent-Cavity Host: An Efficient Probe to Study Supramolecular

Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions

4.1 1-acryloyl-3-methyl-2,6-bis(3,4,5-trimethoxy phenyl)piperidine-4-one (1)

Supporting Information:

Superacid promoted reactions of N-acyliminium salts and evidence for the involvement of superelectrophiles

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

Optically Triggered Stepwise Double Proton Transfer in an Intramolecular Proton Relay: A Case Study of 1,8-Dihydroxy-2-naphthaldehyde (DHNA)

Supporting information

Hai-Bin Yang, Xing Fan, Yin Wei,* Min Shi*

Super-Resolution Monitoring of Mitochondrial Dynamics upon. Time-Gated Photo-Triggered Release of Nitric Oxide

Electronic Supporting Information For. Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization. Content

Supporting Information. The Structure of the Strongest Brønsted Acid: The Carborane Acid H(CHB 11 Cl 11 )

Population and Interconversion of Neutral and Zwitterionic Forms of L-Alanine in Solution

Supporting Information For. metal-free methods for preparation of 2-acylbenzothiazoles and. dialkyl benzothiazole-2-yl phosphonates

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex

Supporting Information. for

Mechanism of Cu/Pd-Catalyzed Decarboxylative Cross-Couplings: A DFT Investigation

Supporting Information

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

Supporting Information

Notes. Rza Abbasoglu*, Abdurrahman Atalay & Ahmet Şenocak. Indian Journal of Chemistry Vol. 53A, March, 2014, pp

Supplementary Figures

Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide. Ka-Cheong Lau, Richard F. Jordan*

Supporting Information for:

1,5,2,4,6,8-dithiatetrazocine. Synthesis, computation, crystallography and voltammetry of the parent heterocycle. Supplemental Information

Supporting Information

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage

Supporting Information

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

Deep-red and near-infrared xanthene dyes for rapid live cell imaging

Chiral Sila[1]ferrocenophanes

Supporting Information

Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes

Analysis of Permanent Electric Dipole Moments of Aliphatic Amines.

Metal-free Synthesis of 3-Arylquinolin-2-ones from Acrylic. Experimental and Computational Study

Supporting Information

Supporting Information

Transformations: New Approach to Sampagine derivatives. and Polycyclic Aromatic Amides

Supporting Information for XXXXXXX

Supporting Information

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE

Understanding the relationship between crystal structure, plasticity and compaction behavior of theophylline, methyl gallate and their 1:1 cocrystal

1G (bottom) with the phase-transition temperatures in C and associated enthalpy changes (in

A Concise Approach to the Dalesconol Skeleton

Electronic Supplementary Information

,

Supplementary Information

Marcosende, Vigo, Spain. Fax: ; Tel: ; E mail:

Supporting Information for. an Equatorial Diadduct: Evidence for an Electrophilic Carbanion

Transcription:

Supporting Information Remote Stereoinductive Intramolecular Nitrile Oxide Cycloaddition: Asymmetric Total Synthesis and Structure Revision of ( )-11 -Hydroxycurvularin Hyeonjeong Choe, Thuy Trang Pham, Joo Yun Lee, Muhammad Latif, Haeil Park, Young Kee Kang* and Jongkook Lee* College of Pharmacy, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon-do 200-701, Korea Contents 1. Details for DFT calculations.. 2 2. X-ray crystal data for isoxazoline 10.. 28 3. Characterization data for -hydroxyketone 11. 39 4. Copies of the 1 H & 13 C NMR spectra of all new compounds, ( )-11- hydroxycurvularin (1a) and ( )-11- -hydroxycurvularin (1b), and copies of the NOESY and HMBC spectra of 4b....... 40 1

1. Details for DFT calculations 1.1 Systematic searching for local minima of macrolactones 4a-d Conformational analysis of macrolactones 4a-d with -OMe groups replacing the -OBn groups was carried out using DFT methods to understand the conformational effects on INOC reactions in CH2Cl2. All DFT calculations were carried out using the Gaussian 03 program. 1 GaussView 2 was used in editing the structures. To obtain feasible structures for macrolactones 4a-d, the initial structures for 4b and 4d were generated from the extended structure s1, whereas those for 4a and 4c were generated from the extended structure s2 (Figure S1). The 196 and 204 initial structures, respectively, were generated from these extended s1 and s2 structures with i = 0, ±60, ±120, and 180 (i = 1 3) using the systematic search module from the Discovery Studio package 3 using the CHARMm force field, with the maximum systematic conformations = 1000 and the energy threshold = 20 kcal mol 1. Among these initial structures, 44, 36, 43, and 25 structures were selected as being likely to form cyclic compounds 4a -d, and were cyclized using GaussView. First, these initial structures were optimized at the HF/3-21G(d) level of theory and we obtained six, six, eight, and five local minima for 4a -d, respectively. Then, these were reoptimized at the B3LYP/6-31G(d) level of theory, followed by further optimization at the B3LYP/6-31+G(d) level of theory with replacement of the -OH groups with -OMe groups, from which we obtained all feasible local minima for 4a-d. Vibrational frequencies were calculated for all local minima at the B3LYP/6-31+G(d) level of theory at 25 C and 1 atm. A scaling factor of 0.9780 was chosen to reproduce the experimental frequency for the amide I band of N-methylacetamide in Ar and N2 matrixes. 4 Zero-point energy and thermal energy corrections were employed in calculating the Gibbs free energy of each conformation. Here, the ideal gas, rigid rotor, and harmonic oscillator approximations were used for the translational, rotational, and vibrational contributions to the Gibbs free energy, 2

respectively. 5 Single-point energies were calculated at the B3LYP/6-311++G(d,p) level of theory for all local minima located at the B3LYP/6-31+G(d) level of theory. The solvation free energy ( Gs) of each local minimum was calculated using the conductor-like polarizable continuum model (CPCM) with the UAKS cavities 6 at the B3LYP/6-31+G(d) level of theory in CH2Cl2. The relative electronic energy ( Ee), the relative enthalpy ( H), and the relative Gibbs free energy ( G) of each of the local minima in CH2Cl2 were calculated from the sum of their values at the B3LYP/6-311++G(d,p)//B3LYP/6-31+G(d) level of theory in the gas phase and the corresponding Gs value. The population of each local minimum was calculated using its G value in CH2Cl2 at 25 C. The torsion angles and thermodynamic properties of the feasible local minima of macrolactones 4a-d obtained in CH2Cl2 are listed in Table S1. The structures for all local minima of 4a-d optimized at the B3LYP/6-31+G(d) level of theory are shown in Figure S2. 1.2 Exploring the paths for INOC reactions Each initial structure of transition states (TSs) for INOC reactions was generated from the most preferred products of 4b-1, 4a-1, 4c-1, and 4d-1 optimized at the B3LYP/6-31+G(d) level of theory, and this was followed by the TS optimization at the same level of theory. Each transition state was confirmed by checking whether it had one imaginary frequency following frequency calculations at the same level of theory. In addition, each transition state was checked using the intrinsic reaction coordinate (IRC) method 7 to determine whether it connects the reactants and products. However, as in most cases, the IRC calculation did not step all the way to the minimum on either side of the path. 8 Further optimizations were carried out starting from the reactants and products obtained by the IRC method to reach the two minima connected by the transition state. Single-point energies and solvation free energies of reactant, TS, and product of each INOC reaction were calculated at the same level of theory in CH2Cl2 as for local minima. The torsion angles and thermodynamic properties of reactant, TS, and product of each INOC reaction obtained in CH2Cl2 are listed in Table S2. Their structures optimized at the B3LYP/6-31+G(d) level of theory are shown in Figure S3. The free energy profiles for INOC reactions are depicted in Figure S4. Absolute energies of reactant, transition state, and product of each INOC reaction at the B3LYP/6-311++G(d,p)//B3LYP/6-31+G(d) and CPCM B3LYP/6-31+G(d) levels of theory are presented in Table S3. Cartesian coordinates of reactant, transition state, and product of each INOC reaction optimized at the B3LYP/6-31+G(d) level of theory are listed in the following pages. 3

1.3 References (1) Frisch, M. J. et al., Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, 2004. (2) Frisch, A.; Hratchian, H. P.; Dennington II, R. D.; Keith, T. A.; Millam, J. GaussView, Version 5.0, Gaussian, Inc., Wallingford, 2009. (3) Discovery Studio, Accelrys Software, Inc., San Diego, 2009. (4) Kang, Y. K. J. Mol. Struct. (Theochem) 2001, 546, 183. (5) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory, Wiley, New York, 1986, pp. 226 261. (6) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995. (7) (a) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.(b) Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523. (8) Foresman, J. B.; Frisch, A. Exploring Chemistry with Electronic Structure Methods, 2nd ed., Gaussian, Inc., Pittsburgh, 1996, Chapter 8. 4

+ s1 4b 4d + s2 4a 4c Figure S1. Generation of the initial structures for 4a -d. The initial structures for 4b and 4d were generated from the extended structure s1, whereas those for 4a and 4c were generated from the extended structure s2. The 196 and 204 initial structures, respectively, were generated from these extended s1 and s2 structures with i = 0, ±60, ±120, and 180 (i = 1 3) using the systematic search module from the Discovery Studio package. 3 The torsion angles 1, 2, and 3 in s1 and s2 are defined for the sequences of C1 O17 C15 C14, O17 C15 C14 C13, and C15 C14 C13 C12, respectively. The definition of torsion angles 1 4 in 4b was also applied to those for 4a, 4c, and 4d. 5

Table S1. Calculated torsion angles and thermodynamic properties of macrolactones 4a-d in CH2Cl2 at 25 C a Torsion angles b Thermodynamic properties Conformers Ee c H c G c P d 4b-1-95.6 83.8-150.9 85.1 0.00 0.00 0.00 50.4 4b-2-117.9 61.3-85.5 158.0 0.88 0.70 0.26 32.7 4b-3-75.5-57.8 155.3-91.1 0.69 0.72 0.79 13.2 4b-4-115.0 104.1-56.6-78.4 1.54 1.55 2.10 1.5 4b-5-81.2-67.2 59.2 84.8 2.88 2.77 2.26 1.1 4b-6-130.3 42.6 52.7-161.1 2.48 2.51 2.61 0.6 4a-1-96.5-55.7 150.0-65.7 3.77 3.65 3.26 0.2 4a-2-160.5 71.6-68.8 127.7 4.09 3.90 3.47 0.1 4a-3-98.1-65.1 64.4 77.0 4.49 4.41 4.28 0.0 4a-4-167.2 42.1 77.2-84.5 4.59 4.41 4.30 0.0 4a-5-138.8 42.3 52.2-154.5 4.22 4.20 4.42 0.0 4a-6-124.4 64.7-131.8 130.4 6.07 6.00 5.19 0.0 4c-1-145.4 42.5-98.5 150.6 4.85 5.17 4.87 0.0 4c-2-145.1 77.1-50.9-55.9 6.30 6.36 6.21 0.0 4c-3-92.4-75.6 63.3 64.8 6.40 6.76 6.63 0.0 4c-4-151.6-56.4 76.4-94.0 7.87 7.86 6.96 0.0 4c-5-125.0-71.8 62.1 63.6 7.09 7.52 7.12 0.0 4c-6-86.3-57.8 82.0-91.8 8.15 8.24 7.52 0.0 4c-7-139.8 78.5-58.7-73.6 9.41 9.33 8.90 0.0 4c-8-106.7 55.8-89.7 161.7 12.33 12.20 12.01 0.0 4d-1-145.7 39.1-92.4 160.7 5.16 5.39 5.41 0.0 4d-2-71.3-43.9 125.5-147.8 6.75 7.07 6.65 0.0 4d-3-150.2 82.7-56.6-69.1 7.22 7.66 7.71 0.0 4d-4-109.0 67.8-147.0 65.8 8.30 8.62 8.55 0.0 4d-5-126.5 69.5-49.0-166.3 13.29 13.41 13.43 0.0 a Calculated at the B3LYP/6-311++G(d,p)//B3LYP/6-31+G(d) level of theory with solvation free energies at the CPCM B3LYP/6-31+G(d) level of theory. b Torsion angles ( ) are defined in Figure S1. c Ee, H, and G are relative electronic energies, relative enthalpies, and relative Gibbs free energies in kcal mol 1, respectively. d Populations (%) were calculated using G values at 25 C. 6

a) 4b-1 4b-2 4b-3 4b-4 4b-5 4b-6 b) 4a-1 4a-2 4a-3 4a-4 4a-5 4a-6 7

c) 4c-1 4c-2 4c-3 4c-4 d) 4c-5 4c-6 4c-7 4c-8 4d-1 4d-2 4d-3 4d-4 4d-5 Figure S2. The local minima for 4a-d optimized at the B3LYP/6-31+G(d) level of theory in the gas phase: a) 4b, b) 4a, c) 4c, d) 4d. 8

Table S2. Calculated torsion angles and thermodynamic properties of reactant, transition state, and product of each INOC reaction in CH2Cl2 at 25 C a Torsion angles b Thermodynamic properties Conformers Ee c H c G c R -149.0 66.1 179.6-178.3 4.50 4.45 3.62 4b-1 TS -100.1 84.7-157.4 101.1 25.29 24.36 29.62 P -95.6 83.8-150.9 85.1-25.58-24.01-16.57 4a-1 4c-1 R -150.4-63.8 176.5-72.9 4.40 4.28 3.53 TS -93.9-61.2 153.0-78.5 26.00 25.07 31.06 P -96.5-55.7 150.0-65.7-21.81-20.36-13.31 R -155.1 71.1-76.8-174.6 5.44 5.43 5.31 TS -148.1 48.1-98.6 162.2 27.13 26.27 31.93 P -145.4 42.5-98.5 150.6-20.73-18.84-11.70 R -154.4 78.0-71.0-177.0 0.00 0.00 0.00 4d-1 TS -148.3 43.1-91.6 170.7 29.77 28.85 34.34 P -145.7 39.1-92.4 160.7-20.42-18.62-11.16 a Calculated at the B3LYP/6-311++G(d,p)//B3LYP/6-31+G(d) level of theory with solvation free energies at the CPCM B3LYP/6-31+G(d) level of theory. b Torsion angles ( ) are defined in Figure S1. c Ee, H, and G are relative electronic energies, relative enthalpies, and relative Gibbs free energies to the corresponding values of reactant of 4d-1, respectively; in units of kcal mol 1. The values for TS correspond to Ee, H, and G of the barrier. 9

a) 4b-1-TS 4b-1-R 4b-1-P b) 4a-1-TS 4a-1-R 4a-1-P 10

c) 4c-1-TS d) 4c-1-R 4c-1-P 4d-1-TS 4d-1-R 4d-1-P Figure S3. The structures of reactant (R), transition state (TS), and product (P) of each INOC reaction optimized at the B3LYP/6-31+G(d) level of theory in the gas phase: a) 4b-1, b) 4a-1, c) 4c-1, d) 4d-1. 11

Figure S4. The free energy profiles for INOC reactions relative to the Gibbs free energy of the reactant 4d-1. 12

Table S3. Absolute energies of reactant, transition state, and product of each INOC reaction at the B3LYP/6-311++G(d,p)//B3LYP/6-31+G(d) and CPCM B3LYP/6-31+G(d) levels of theory in CH2Cl2 at 25 C a Conformers B3LYP/6-31+G(d) B3LYP/6-311++G(d,p) b CPCM B3LYP/6-31+G(d) c Ee H G Ee Ee R -1130.5713209-1130.165694-1130.254510-1130.8498885-1130.571690 4b-1 TS -1130.5350947-1130.130870-1130.209981-1130.8117694-1130.540447 P -1130.6171981-1130.208979-1130.284619-1130.8894737-1130.625926 R -1130.5669022-1130.161387-1130.250081-1130.8457128-1130.571605 4a-1 TS -1130.5333085-1130.129074-1130.207020-1130.8095143-1130.539798 P -1130.6096529-1130.201632-1130.277890-1130.8817549-1130.620086 R -1130.5682471-1130.162558-1130.250236-1130.8470843-1130.569922 4c-1 TS -1130.5329886-1130.128647-1130.207123-1130.8094000-1130.537781 P -1130.6103816-1130.201653-1130.277770-1130.8828541-1130.617998 R -1130.5693071-1130.163594-1130.251093-1130.8477470-1130.578991 4d-1 TS -1130.5300781-1130.125827-1130.204569-1130.8062957-1130.533777 P -1130.6110070-1130.202430-1130.278036-1130.8833374-1130.617641 a Energies in Hartees. b Single-point energies for optimized structures at the B3LYP/6-31+G(d) level of theory. c Singlepoint solvation free energies calculated using the CPCM method in CH2Cl2 for optimized structures at the B3LYP/6-31+G(d) level of theory. 13

1.4 Cartesian coordinates of reactant, transition state, and product of each INOC reaction optimized at the B3LYP/6-31+G(d) level of theory (1) 4b-1 (a) reactant R E e = -1130.5713209 Hartrees C -1.1939550-2.302079 0.389695 C -0.0288430-2.172358 1.367024 C 1.0536190-1.258320 0.820919 C 1.9161860-1.751382-0.166612 C 2.9097030-0.926653-0.702039 C 3.0578910 0.397679-0.256629 C 2.2056020 0.892992 0.722518 C 1.1834130 0.068315 1.275727 C 0.3266800 0.612914 2.272950 C -0.5904380 2.811813-3.038190 C -1.7295300 3.261852-2.500658 C -2.7270440 2.473161-1.689087 C -2.3903790 0.997510-1.447816 C -3.4839830 0.273604-0.650319 C -3.1982840-1.204747-0.392985 C -4.3530020-1.940139 0.280009 O -2.0302610-1.255083 0.491061 O -1.3288310-3.225730-0.389392 O 3.7921870-1.312617-1.663174 O 2.2652960 2.152499 1.221184 O -1.0570650 1.683039 3.901501 N -0.3426040 1.147518 3.064884 H 0.3737370-3.177493 1.517997 H -0.4025230-1.794773 2.322638 H 1.7891800-2.772342-0.506538 H 3.8431710 1.001035-0.694950 H -0.2593870 1.781876-2.930756 H 0.0572380 3.469747-3.612523 H -1.4372560 0.922371-0.910527 H -2.2515290 0.489632-2.413074 H -3.6440880 0.774390 0.314590 H -4.4361250 0.332446-1.196738 H -2.9215710-1.712787-1.322122 H -4.0934450-2.987366 0.463604 H -5.2379890-1.918746-0.366780 H -4.6106010-1.465943 1.234009 H -3.7084770 2.549439-2.185104 H -1.9937730 4.310359-2.651416 H -2.8600070 2.978600-0.719376 C 3.7107860-2.639556-2.178463 14

H 3.8833150-3.381705-1.389164 H 2.7384380-2.821838-2.651963 H 4.5016030-2.711698-2.926478 C 3.2453490 3.052010 0.710000 H 4.2596130 2.678066 0.896858 H 3.1020850 3.221356-0.364194 H 3.0934050 3.986189 1.252106 (b) transition state TS E e = -1130.5350947 Hartrees C -1.0468220-1.817671-0.096319 C 0.0933880-1.804456 0.921110 C 1.2847710-0.964946 0.513575 C 2.4887870-1.602067 0.197373 C 3.6168020-0.846720-0.140466 C 3.5611160 0.554032-0.140754 C 2.3684240 1.193599 0.181809 C 1.2027240 0.445428 0.504985 C -0.0351600 1.137941 0.753780 C -0.8459890 2.353693-0.912607 C -2.1154410 2.708036-0.524911 C -3.3995540 2.081286-1.025196 C -3.3561740 0.568144-1.337860 C -3.9755520-0.302304-0.225315 C -3.4853490-1.756052-0.218263 C -4.4316380-2.716064 0.491940 O -2.2292360-1.793176 0.539586 O -0.8961360-1.878955-1.300507 O 4.8244630-1.377456-0.477819 O 2.2310450 2.545792 0.222958 O -2.0494230 1.786816 1.675991 N -0.9245830 1.264610 1.579019 H 0.4113660-2.847067 1.044963 H -0.3049380-1.473301 1.884366 H 2.5273050-2.684654 0.210686 H 4.4608580 1.101173-0.392404 H -0.6836450 1.573167-1.652328 H -0.0276620 3.052649-0.775280 H -2.3255480 0.252971-1.520657 H -3.8902680 0.367827-2.276202 H -3.7506850 0.126338 0.758376 H -5.0694710-0.299419-0.330414 H -3.2675920-2.106969-1.231722 H -4.0035550-3.723082 0.541947 H -5.3815150-2.772935-0.052021 H -4.6388460-2.375571 1.513068 15

H -3.6814740 2.634244-1.936030 H -2.2396600 3.644458 0.013692 H -4.1997470 2.289392-0.303349 C 4.9643990-2.794422-0.526248 H 4.7896220-3.244396 0.459164 H 4.2801930-3.235091-1.261837 H 5.9959120-2.976610-0.831494 C 3.3632090 3.364037-0.055301 H 4.1726680 3.175470 0.660788 H 3.7274830 3.203886-1.077787 H 3.0139290 4.392114 0.051682 (c) product P E e = -1130.6171981 Hartrees C -1.0964640-1.704588-0.207589 C 0.0464010-1.787069 0.798409 C 1.2535070-0.936649 0.444436 C 2.4733590-1.597064 0.235907 C 3.6252440-0.872738-0.075058 C 3.5734850 0.522789-0.173096 C 2.3629240 1.178563 0.033250 C 1.1751450 0.466478 0.339752 C -0.0983540 1.204681 0.510673 C -0.6789720 2.211051-0.464842 C -2.0471760 2.507428 0.176210 C -3.2855440 2.178060-0.670210 C -3.3914880 0.728487-1.182528 C -4.0292080-0.267552-0.185148 C -3.5324620-1.713502-0.332590 C -4.4812800-2.743276 0.268152 O -2.2797330-1.837713 0.417700 O -0.9565090-1.570062-1.408463 O 4.8523980-1.427463-0.299906 O 2.2446860 2.540418-0.019783 O -2.0459520 1.715119 1.412204 N -0.8673860 0.971521 1.514613 H 0.3505300-2.841007 0.835631 H -0.3438830-1.528728 1.784765 H 2.5006350-2.677798 0.308593 H 4.4882670 1.054102-0.403216 H -0.7503650 1.777243-1.469659 H -0.0455690 3.097909-0.536438 H -2.4022890 0.369995-1.481105 H -3.9860490 0.725088-2.105947 H -3.8291600 0.041955 0.846116 H -5.1204970-0.258028-0.312497 16

H -3.3164090-1.952702-1.378626 H -4.0516240-3.749155 0.211874 H -5.4299780-2.742912-0.280832 H -4.6903490-2.514527 1.319629 H -3.2646140 2.868684-1.526024 H -2.1096770 3.554046 0.496740 H -4.1812100 2.441215-0.090504 C 4.9878490-2.841509-0.219971 H 4.7402450-3.208748 0.784300 H 4.3559430-3.344840-0.962806 H 6.0374870-3.049418-0.434519 C 3.4011300 3.323853-0.288560 H 4.1672510 3.178409 0.483408 H 3.8218710 3.089789-1.274753 H 3.0634460 4.361726-0.273610 (2) 4a-1 (a) reactant R E e = -1130.5669022 Hartrees C -0.6909710-1.016840-0.413519 C 0.1147240-0.665998 0.837801 C 1.5745670-0.395646 0.565309 C 2.5084960-1.426561 0.709020 C 3.8608210-1.189032 0.443082 C 4.2976090 0.082772 0.040194 C 3.3756600 1.113200-0.102252 C 1.9956380 0.885265 0.159313 C 1.0734190 1.957077-0.001351 C -4.7763920 2.008436 1.373758 C -5.9444100 1.454824 1.031969 C -6.1999500 0.027008 0.606995 C -4.9729620-0.863873 0.350858 C -4.2269980-0.516528-0.948092 C -2.9475590-1.313832-1.215069 C -3.1203030-2.829542-1.269415 O -2.0092850-0.973238-0.139295 O -0.2187390-1.315688-1.490110 O 4.8417800-2.127543 0.549361 O 3.6942490 2.375291-0.484235 O -0.3694400 3.837921-0.308672 N 0.3787930 2.881950-0.156294 H 0.0084040-1.511484 1.529508 H -0.3680560 0.187519 1.325357 H 2.1634110-2.407167 1.014646 H 5.3539310 0.224781-0.151219 17

H -4.7173490 3.049115 1.681660 H -3.8376940 1.460512 1.355123 H -5.3170850-1.905082 0.305233 H -4.2855550-0.805292 1.203824 H -4.8959670-0.683414-1.805013 H -3.9714580 0.548866-0.960653 H -2.4955710-0.967190-2.148811 H -2.1759890-3.312972-1.537383 H -3.8634340-3.092011-2.032169 H -3.4588280-3.229129-0.307802 H -6.8260970-0.443399 1.381502 H -6.8399680 2.078088 1.073671 H -6.8327270 0.040904-0.294906 C 4.4863860-3.453575 0.929079 H 4.0425390-3.473284 1.932505 H 3.7911290-3.899342 0.206974 H 5.4202280-4.017716 0.933231 C 5.0539970 2.685418-0.775400 H 5.6899670 2.538117 0.106347 H 5.4272670 2.077801-1.608998 H 5.0581920 3.738747-1.058644 (b) transition state TS E e = -1130.5333085 Hartrees C -0.9475650-1.826059-0.461687 C 0.1395480-1.817516 0.609030 C 1.3386940-0.939097 0.314930 C 2.6126540-1.513617 0.399301 C 3.7539540-0.731162 0.197106 C 3.6372740 0.637488-0.080642 C 2.3741440 1.215337-0.164777 C 1.1968930 0.431219 0.016744 C -0.0882640 1.075490-0.116826 C -1.3611780 1.482688 1.653278 C -2.3985760 2.252417 1.171527 C -3.8273240 1.807415 0.933801 C -4.0884620 0.301674 0.748729 C -3.7357150-0.224281-0.659065 C -3.3547740-1.708819-0.715085 C -4.4074070-2.674323-0.186103 O -2.1638940-1.882275 0.120449 O -0.7455960-1.828620-1.657043 O 5.0300770-1.204329 0.251350 O 2.1701860 2.530399-0.426053 O -1.7004980 2.457716-1.006297 N -0.6861700 1.745092-0.948114 18

H 0.4752480-2.855784 0.722425 H -0.3166380-1.534698 1.563152 H 2.6968900-2.571907 0.615587 H 4.5447780 1.209712-0.227788 H -0.5178720 1.969118 2.135914 H -1.5210270 0.441710 1.917232 H -5.1491960 0.110107 0.956582 H -3.5305840-0.259047 1.507830 H -4.5823320-0.063340-1.341371 H -2.9039420 0.350552-1.074986 H -3.0758700-1.974156-1.738153 H -4.0629630-3.710280-0.275421 H -5.3311680-2.569305-0.767362 H -4.6391720-2.479207 0.866298 H -4.4073400 2.156318 1.804311 H -2.2687190 3.331917 1.182196 H -4.2303500 2.362140 0.075996 C 5.2399240-2.590998 0.499080 H 4.8490870-2.882707 1.482094 H 4.7769780-3.207328-0.281608 H 6.3217530-2.731652 0.481475 C 3.2931710 3.372029-0.665562 H 3.9516770 3.415038 0.211277 H 3.8616380 3.032827-1.540331 H 2.8781580 4.361881-0.860461 (c) product P E e = -1130.6096529 Hartrees C 0.9917530-1.891909 0.343838 C -0.0970930-1.801410-0.722478 C -1.2893720-0.922620-0.386713 C -2.5569180-1.526839-0.368008 C -3.6975970-0.758796-0.129243 C -3.5891820 0.622711 0.071947 C -2.3310030 1.220745 0.055159 C -1.1553490 0.455744-0.157017 C 0.1568640 1.156388-0.085869 C 1.0300380 1.580094-1.253961 C 2.1400450 2.369187-0.529466 C 3.6054710 1.958414-0.746169 C 3.9553870 0.459688-0.694217 C 3.7662820-0.223997 0.680272 C 3.4071670-1.714138 0.587884 C 4.4658890-2.600395-0.056624 O 2.2079340-1.815608-0.244530 O 0.8015610-2.055865 1.528224 19

O -4.9685160-1.256521-0.081532 O -2.1436380 2.561680 0.214439 O 1.8006910 2.243151 0.893677 N 0.6076720 1.538609 1.053125 H -0.4489530-2.827089-0.887189 H 0.3655100-1.480528-1.661260 H -2.6300130-2.595419-0.531840 H -4.4966740 1.189323 0.239454 H 0.4629600 2.202614-1.955465 H 1.4023990 0.715811-1.816077 H 4.9980400 0.352368-1.021355 H 3.3567460-0.069651-1.444450 H 4.6792090-0.125050 1.283844 H 2.9755680 0.273402 1.245875 H 3.1500410-2.089889 1.581748 H 4.1331720-3.643601-0.084797 H 5.3936500-2.552270 0.525722 H 4.6865610-2.283782-1.081785 H 3.9047710 2.348496-1.730138 H 2.0536240 3.439227-0.755531 H 4.2023480 2.510827-0.007420 C -5.1598550-2.656542-0.244967 H -4.8274980-2.991626-1.236204 H -4.6314490-3.223441 0.532059 H -6.2344980-2.820375-0.148437 C -3.2635770 3.382635 0.519181 H -3.9984460 3.377931-0.296656 H -3.7455550 3.063717 1.451881 H -2.8631720 4.390297 0.642634 (3) 4c-1 (a) reactant R E e = -1130.5682471 Hartrees C 0.6859220-1.673321 0.408070 C -0.0948500-0.883510 1.456493 C -1.4073960-0.363739 0.898171 C -2.5112270-1.224748 0.858428 C -3.7282540-0.778635 0.334571 C -3.8601560 0.532640-0.151910 C -2.7685970 1.391672-0.117156 C -1.5190980 0.952178 0.406851 C -0.4201440 1.855569 0.418854 C 5.2675380 0.676885 1.444744 C 6.5079130 0.183418 1.356255 C 4.1227840 0.459316 0.486832 20

C 4.4507520-0.368155-0.762509 C 3.3169070-0.478098-1.800275 C 2.1752240-1.444262-1.479496 C 1.2484280-1.684003-2.668974 O 1.3964500-0.854449-0.385444 O 0.6530510-2.884248 0.307149 O -4.8538370-1.538432 0.253850 O -2.7917850 2.673710-0.560358 O 1.4224080 3.377585 0.361080 N 0.4735600 2.603722 0.385575 H 0.5222560-0.055983 1.817351 H -0.2900530-1.565651 2.287835 H -2.3969440-2.235440 1.231666 H -4.8222460 0.839399-0.542952 H 5.0256890 1.312625 2.298691 H 4.7722650-1.378536-0.470102 H 5.3137550 0.091606-1.262816 H 2.8934350 0.514756-2.006317 H 3.7530750-0.828853-2.745534 H 2.5677890-2.398922-1.113983 H 0.4258740-2.351137-2.395033 H 1.8062040-2.152369-3.488230 H 0.8324480-0.737110-3.032446 H 3.7330570 1.442975 0.183234 H 7.2564040 0.407870 2.112159 H 6.8282140-0.456498 0.537631 H 3.2972530-0.006219 1.041717 C -4.8094690-2.885597 0.718836 H -4.0752170-3.474926 0.156302 H -4.5756000-2.926647 1.789884 H -5.8093840-3.286882 0.547989 C -4.0036630 3.196222-1.098257 H -4.3179370 2.631145-1.984463 H -4.8042790 3.187344-0.348376 H -3.7769600 4.225073-1.380615 (b) transition state TS E e = -1130.5329886 Hartrees C 1.2447340-1.964676 1.181757 C 0.0835430-1.255082 1.875269 C -0.9638730-0.589067 1.010607 C -2.0800260-1.347404 0.633682 C -3.0963580-0.774494-0.135374 C -3.0251940 0.573944-0.514110 C -1.9295040 1.338057-0.127344 C -0.8685940 0.769498 0.633468 21

C 0.2763030 1.584222 0.958991 C 1.4626190 2.447238-0.713930 C 2.4282130 3.126593-0.002949 C 1.7290450 1.211668-1.559183 C 3.0176320 0.432665-1.242181 C 2.9916450-1.001265-1.817155 C 2.6034990-2.075302-0.796432 C 2.3313740-3.439866-1.418381 O 1.4025730-1.601922-0.102938 O 1.9672450-2.745848 1.768486 O -4.2091740-1.435865-0.558242 O -1.7969990 2.658206-0.428620 O 2.0360050 2.493137 2.127439 N 0.9643580 1.892410 1.923606 H 0.5498850-0.527373 2.549400 H -0.3846800-2.005653 2.519817 H -2.1382140-2.382206 0.951368 H -3.8430550 0.986698-1.091217 H 0.5761130 3.008397-1.002386 H 3.1675700 0.385353-0.155968 H 3.8807680 0.977833-1.644140 H 2.3085910-1.048191-2.677202 H 3.9822530-1.283409-2.197368 H 3.3853280-2.163337-0.035704 H 2.0965540-4.180247-0.647963 H 3.2184780-3.784548-1.963424 H 1.4954720-3.382766-2.125559 H 1.7620220 1.523980-2.615615 H 2.2565230 4.142351 0.335681 H 3.4434290 2.757853 0.093903 H 0.8733090 0.531295-1.485276 C -4.3692390-2.807395-0.207828 H -3.5553450-3.419290-0.616317 H -4.4183720-2.935328 0.880745 H -5.3161160-3.115352-0.653811 C -2.8383190 3.310423-1.149178 H -2.9709870 2.866764-2.143882 H -3.7850040 3.271983-0.596302 H -2.5172350 4.348118-1.251412 (c) product P E e = -1130.6103816 Hartrees C 1.2140290-2.049805 1.050524 C 0.0933010-1.318948 1.777418 C -0.9521640-0.603557 0.942589 C -2.1085080-1.337082 0.629498 22

C -3.1372760-0.757399-0.111964 C -3.0343930 0.575397-0.528957 C -1.8926890 1.305974-0.213321 C -0.8116920 0.730423 0.509157 C 0.4072580 1.543229 0.752162 C 1.1864570 2.297966-0.327567 C 2.1610120 3.068600 0.572650 C 1.7936520 1.343256-1.385038 C 3.0594690 0.561063-0.966352 C 3.1758630-0.801910-1.686518 C 2.6863710-1.988765-0.845753 C 2.4397170-3.253256-1.659105 O 1.4503590-1.569524-0.186920 O 1.8664230-2.933139 1.571743 O -4.2909000-1.392975-0.469019 O -1.7533800 2.624473-0.551987 O 2.1200850 2.388262 1.856589 N 0.9549550 1.607078 1.913565 H 0.5952860-0.614127 2.448044 H -0.3884530-2.063092 2.418308 H -2.1832660-2.360565 0.978697 H -3.8633280 1.005655-1.076442 H 0.5148200 2.986169-0.843524 H 3.0672670 0.398691 0.118130 H 3.9472740 1.166755-1.186235 H 2.6250010-0.769658-2.637039 H 4.2208420-1.015051-1.946964 H 3.4060870-2.196711-0.047966 H 2.1428430-4.082261-1.010024 H 3.3567890-3.542778-2.186810 H 1.6537140-3.084819-2.404792 H 2.0199970 1.923890-2.290195 H 1.8371020 4.104593 0.732284 H 3.2007080 3.061024 0.236114 H 1.0061470 0.635532-1.668722 C -4.4774060-2.745603-0.066884 H -3.7019240-3.397096-0.489442 H -4.4808670-2.838195 1.026589 H -5.4524920-3.037799-0.460085 C -2.8205890 3.283495-1.223457 H -3.0187860 2.828463-2.202277 H -3.7359390 3.272502-0.618774 H -2.4886820 4.314089-1.361593 23

(4) 4d-1 (a) reactant R E e = -1130.5693071 Hartrees C -1.7203610-1.580341 1.006652 C -0.5524890-1.253903 1.931266 C 0.7099910-0.950971 1.141385 C 1.3035580-1.979208 0.397723 C 2.4611530-1.726030-0.343005 C 3.0422800-0.446601-0.350467 C 2.4583220 0.577053 0.384350 C 1.2758670 0.338391 1.144230 C 0.7058400 1.415328 1.879905 C -0.5729310 1.666266-2.963373 C 0.0590000 2.827849-3.163012 C -1.3888490 1.315187-1.747862 C -2.8583990 1.009046-2.102238 C -3.7893660 0.710131-0.913029 C -3.5837780-0.624138-0.191849 C -4.7805040-1.023867 0.668490 O -2.4138100-0.475446 0.681218 O -1.9709210-2.699258 0.599853 O 3.1086930-2.656214-1.095762 O 2.9378680 1.843800 0.444908 O -0.1134420 3.349925 3.019657 N 0.3176430 2.368890 2.429197 H -0.3903200-2.134392 2.560924 H -0.8172740-0.409213 2.570962 H 0.8402270-2.958449 0.402737 H 3.9386820-0.294042-0.938555 H -0.5143350 0.895889-3.736153 H -2.8959410 0.166432-2.809376 H -3.2675380 1.874014-2.641335 H -3.7357540 1.520424-0.172805 H -4.8213200 0.706378-1.289232 H -3.3550480-1.422517-0.905238 H -4.5809940-1.955543 1.206130 H -5.6610590-1.180810 0.034858 H -5.0141680-0.236931 1.395186 H 0.0309130 3.626916-2.423664 H -0.9419140 0.442709-1.254402 H 0.6273140 3.021092-4.069890 H -1.3482260 2.138597-1.022691 C 2.5850850-3.981427-1.150642 H 2.5767190-4.444836-0.156372 H 1.5722370-3.990335-1.571187 H 3.2590560-4.534961-1.806019 24

C 4.0985370 2.178943-0.311033 H 4.2797510 3.235974-0.112034 H 4.9649330 1.589396 0.013583 H 3.9257150 2.029273-1.383730 (b) transition state TS E e = -1130.5300781 Hartrees C -1.2414820-2.013774 0.932410 C -0.3463250-1.137691 1.802779 C 0.8475410-0.680899 0.973135 C 1.7956260-1.649686 0.613266 C 2.8924790-1.300035-0.176111 C 3.0648980 0.023607-0.611632 C 2.1334930 0.987895-0.247912 C 1.0040590 0.656417 0.558020 C 0.0883350 1.723151 0.894488 C -1.2991670 2.548105-0.642214 C -1.4713620 3.809224-0.114151 C -2.4542520 1.554058-0.658947 C -2.3649730 0.473047-1.751048 C -3.4314710-0.631058-1.574810 C -2.9768580-1.836644-0.739876 C -4.1248910-2.723225-0.273524 O -2.2518160-1.298016 0.410163 O -1.0265520-3.184957 0.686441 O 3.8559510-2.171469-0.581907 O 2.2205620 2.294341-0.616100 O -0.8173390 3.527669 1.985184 N -0.1251070 2.505230 1.814731 H 0.0008550-1.742785 2.646077 H -0.9082520-0.284253 2.185310 H 1.6430200-2.670449 0.940932 H 3.9314490 0.255316-1.218165 H -0.4917870 2.399366-1.357921 H -1.3625200 0.023250-1.751740 H -2.4870570 0.947841-2.733917 H -4.3340160-0.195196-1.123352 H -3.7388200-1.028070-2.551384 H -2.2528680-2.432497-1.306294 H -3.7497120-3.591698 0.275162 H -4.6933580-3.081948-1.140283 H -4.8071160-2.159784 0.373623 H -2.4281910 4.128714 0.287161 H -2.5386040 1.065288 0.316221 H -0.7239270 4.583407-0.253616 H -3.3948580 2.107219-0.798343 25

C 3.7522420-3.539167-0.191669 H 3.7898800-3.642658 0.899830 H 2.8293240-3.991522-0.573978 H 4.6162330-4.035951-0.635540 C 3.3434190 2.722175-1.380619 H 3.2033250 3.793650-1.530703 H 4.2807040 2.546583-0.838298 H 3.3777260 2.216021-2.353665 (c) product P E e = -1130.6110070 Hartrees C -0.9680240-2.158711 0.904869 C -0.2220320-1.193289 1.815932 C 0.8813270-0.530564 0.992982 C 2.0136960-1.315311 0.711764 C 3.0316070-0.816042-0.098347 C 2.9357640 0.475292-0.638231 C 1.8168560 1.250492-0.356011 C 0.7595150 0.764291 0.459251 C -0.3742530 1.677866 0.747488 C -1.3503140 2.296764-0.259566 C -1.9092460 3.400306 0.643307 C -2.4413000 1.297626-0.715841 C -2.0184150 0.268326-1.783067 C -2.9733250-0.946829-1.823942 C -2.5330180-2.121925-0.934723 C -3.6550860-3.101077-0.614580 O -1.9979540-1.538692 0.292398 O -0.6361540-3.307493 0.687561 O 4.1644750-1.500545-0.428541 O 1.6620020 2.529100-0.817773 O -1.7134800 2.906871 1.992846 N -0.6329700 2.006832 1.964115 H 0.2214310-1.769738 2.632246 H -0.9040880-0.453351 2.233109 H 2.0609430-2.319147 1.116028 H 3.7516540 0.836474-1.251692 H -0.8237460 2.710699-1.124125 H -0.9939970-0.076374-1.599573 H -2.0032590 0.759888-2.765055 H -3.9838960-0.625327-1.534498 H -3.0580390-1.338814-2.845937 H -1.7012250-2.654241-1.408534 H -3.2797630-3.943484-0.026745 H -4.0853730-3.493007-1.544545 H -4.4527490-2.601666-0.052209 26

H -2.9787420 3.588795 0.518679 H -2.8228320 0.777697 0.168862 H -1.3504700 4.340485 0.540154 H -3.2818420 1.882084-1.117657 C 4.3363500-2.819290 0.082196 H 4.3651380-2.818771 1.179141 H 3.5383940-3.487377-0.264716 H 5.2961510-3.162191-0.307656 C 2.7046370 3.112525-1.590283 H 2.3710590 4.126749-1.816773 H 3.6422870 3.154244-1.022157 H 2.8642020 2.561924-2.526271 27

2. Crystal data for isoxazoline 10. Figure S5. X-ray crystal structure of isoxazoline 10 with atom numbers (The thermal ellipsoids are set at a 25% probability level). 28

Table S4. Crystal data and structure refinement for isoxazoline 10 Identification code 20120906lt_0m Empirical formula C16 H19 N O5 Formula weight 305.32 Temperature 100(1) K Wavelength 0.71073 Å Crystal system Monoclinic Space group P2(1) Unit cell dimensions a = 7.2483(2) Å = 90 b = 7.3559(2) Å = 92.012(2) c = 13.6601(3) Å = 90 Volume 727.88(3) Å 3 Z 2 Density (calculated) 1.393 Mg/m 3 Absorption coefficient 0.104 mm -1 F(000) 324 Crystal size 0.20 x 0.14 x 0.10 mm 3 Theta range for data collection 1.49 to 28.41 Index ranges -9<=h<=9, -9<=k<=9, -16<=l<=18 Reflections collected 13151 Independent reflections 3632 [R(int) = 0.0313] Completeness to theta = 28.41 99.8 % Absorption correction Multi-scan Max. and min. transmission 0.9897 and 0.9795 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 3632 / 1 / 199 Goodness-of-fit on F 2 1.023 Final R indices [I>2sigma(I)] R1 = 0.0368, wr2 = 0.0857 R indices (all data) R1 = 0.0407, wr2 = 0.0884 Absolute structure parameter 0.2(8) Largest diff. peak and hole 0.401 and -0.408 e.å -3 29

Table S5. Atomic coordinates ( 10 4 ) and equivalent isotropic displacement parameters (Å 2 10 3 ) for isoxazoline 10. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) C(1) 1086(2) 3100(2) 7004(1) 17(1) C(2) 26(2) 1930(2) 6276(1) 17(1) C(3) 1149(2) 1417(2) 5408(1) 16(1) C(4) 475(2) 1912(2) 4486(1) 16(1) C(5) 1510(2) 1605(2) 3660(1) 16(1) C(6) 3247(2) 817(2) 3762(1) 18(1) C(7) 3929(2) 317(2) 4686(1) 17(1) C(8) 2876(2) 550(2) 5525(1) 15(1) C(9) 3619(2) -24(2) 6498(1) 15(1) C(10) 5546(2) 316(2) 6904(1) 18(1) C(11) 5443(2) -410(2) 7951(1) 19(1) C(12) 5857(2) 973(2) 8761(1) 22(1) C(13) 4718(2) 2727(2) 8712(1) 21(1) C(14) 2813(2) 2569(2) 9165(1) 21(1) C(15) 1378(2) 3889(2) 8724(1) 20(1) C(16) -134(2) 4396(2) 9413(1) 24(1) O(17) 428(2) 2934(2) 7898(1) 19(1) O(18) 2368(1) 4093(2) 6812(1) 19(1) O(19) 872(2) 2122(2) 2749(1) 19(1) O(20) 5632(2) -424(2) 4828(1) 22(1) O(21) 3556(2) -1124(2) 8011(1) 20(1) N(22) 2581(2) -827(2) 7110(1) 18(1) 30

Table S6. Bond lengths [Å ] and angles [ ] for isoxazoline 10 C(1)-O(18) 1.2180(19) C(1)-O(17) 1.3326(19) C(1)-C(2) 1.505(2) C(2)-C(3) 1.511(2) C(2)-H(2A) 0.9900 C(2)-H(2B) 0.9900 C(3)-C(4) 1.382(2) C(3)-C(8) 1.409(2) C(4)-C(5) 1.396(2) C(4)-H(4A) 0.9500 C(5)-O(19) 1.3656(19) C(5)-C(6) 1.388(2) C(6)-C(7) 1.390(2) C(6)-H(6A) 0.9500 C(7)-O(20) 1.3570(18) C(7)-C(8) 1.409(2) C(8)-C(9) 1.477(2) C(9)-N(22) 1.287(2) C(9)-C(10) 1.506(2) C(10)-C(11) 1.531(2) C(10)-H(10A) 0.9900 C(10)-H(10B) 0.9900 C(11)-O(21) 1.4698(18) C(11)-C(12) 1.525(2) C(11)-H(11A) 1.0000 C(12)-C(13) 1.531(2) C(12)-H(12A) 0.9900 C(12)-H(12B) 0.9900 C(13)-C(14) 1.537(2) C(13)-H(13A) 0.9900 C(13)-H(13B) 0.9900 C(14)-C(15) 1.530(2) C(14)-H(14A) 0.9900 C(14)-H(14B) 0.9900 31

C(15)-O(17) 1.4786(18) C(15)-C(16) 1.516(2) C(15)-H(15A) 1.0000 C(16)-H(16A) 0.9800 C(16)-H(16B) 0.9800 C(16)-H(16C) 0.9800 O(19)-H(19A) 0.8400 O(20)-H(20A) 0.8400 O(21)-N(22) 1.4146(17) O(18)-C(1)-O(17) 123.58(14) O(18)-C(1)-C(2) 125.17(14) O(17)-C(1)-C(2) 111.25(13) C(1)-C(2)-C(3) 112.65(12) C(1)-C(2)-H(2A) 109.1 C(3)-C(2)-H(2A) 109.1 C(1)-C(2)-H(2B) 109.1 C(3)-C(2)-H(2B) 109.1 H(2A)-C(2)-H(2B) 107.8 C(4)-C(3)-C(8) 120.50(14) C(4)-C(3)-C(2) 117.77(13) C(8)-C(3)-C(2) 121.65(14) C(3)-C(4)-C(5) 120.73(14) C(3)-C(4)-H(4A) 119.6 C(5)-C(4)-H(4A) 119.6 O(19)-C(5)-C(6) 118.97(14) O(19)-C(5)-C(4) 121.16(14) C(6)-C(5)-C(4) 119.84(14) C(5)-C(6)-C(7) 119.59(14) C(5)-C(6)-H(6A) 120.2 C(7)-C(6)-H(6A) 120.2 O(20)-C(7)-C(6) 121.89(14) O(20)-C(7)-C(8) 116.66(14) C(6)-C(7)-C(8) 121.45(14) C(3)-C(8)-C(7) 117.77(14) C(3)-C(8)-C(9) 121.75(13) 32

C(7)-C(8)-C(9) 120.42(13) N(22)-C(9)-C(8) 120.83(13) N(22)-C(9)-C(10) 113.15(13) C(8)-C(9)-C(10) 125.96(13) C(9)-C(10)-C(11) 102.14(12) C(9)-C(10)-H(10A) 111.3 C(11)-C(10)-H(10A) 111.3 C(9)-C(10)-H(10B) 111.3 C(11)-C(10)-H(10B) 111.3 H(10A)-C(10)-H(10B) 109.2 O(21)-C(11)-C(12) 110.93(13) O(21)-C(11)-C(10) 104.67(12) C(12)-C(11)-C(10) 115.47(13) O(21)-C(11)-H(11A) 108.5 C(12)-C(11)-H(11A) 108.5 C(10)-C(11)-H(11A) 108.5 C(11)-C(12)-C(13) 116.01(13) C(11)-C(12)-H(12A) 108.3 C(13)-C(12)-H(12A) 108.3 C(11)-C(12)-H(12B) 108.3 C(13)-C(12)-H(12B) 108.3 H(12A)-C(12)-H(12B) 107.4 C(12)-C(13)-C(14) 114.18(14) C(12)-C(13)-H(13A) 108.7 C(14)-C(13)-H(13A) 108.7 C(12)-C(13)-H(13B) 108.7 C(14)-C(13)-H(13B) 108.7 H(13A)-C(13)-H(13B) 107.6 C(15)-C(14)-C(13) 113.69(13) C(15)-C(14)-H(14A) 108.8 C(13)-C(14)-H(14A) 108.8 C(15)-C(14)-H(14B) 108.8 C(13)-C(14)-H(14B) 108.8 H(14A)-C(14)-H(14B) 107.7 O(17)-C(15)-C(16) 105.22(12) O(17)-C(15)-C(14) 106.90(12) 33

C(16)-C(15)-C(14) 114.10(14) O(17)-C(15)-H(15A) 110.1 C(16)-C(15)-H(15A) 110.1 C(14)-C(15)-H(15A) 110.1 C(15)-C(16)-H(16A) 109.5 C(15)-C(16)-H(16B) 109.5 H(16A)-C(16)-H(16B) 109.5 C(15)-C(16)-H(16C) 109.5 H(16A)-C(16)-H(16C) 109.5 H(16B)-C(16)-H(16C) 109.5 C(1)-O(17)-C(15) 118.92(12) C(5)-O(19)-H(19A) 109.5 C(7)-O(20)-H(20A) 109.5 N(22)-O(21)-C(11) 109.47(10) C(9)-N(22)-O(21) 110.52(12) 34

Table S7. Anisotropic displacement parameters (Å 2 10 3 ) for isoxazoline 10. The anisotropic displacement factor exponent takes the form: -2 2 [ h 2 a* 2 U 11 +... + 2 h k a* b* U 12 ]. U 11 U 22 U 33 U 23 U 13 U 12 C(1) 14(1) 14(1) 23(1) 0(1) 3(1) 3(1) C(2) 10(1) 18(1) 23(1) -2(1) 3(1) 1(1) C(3) 12(1) 12(1) 23(1) -2(1) 2(1) -2(1) C(4) 12(1) 14(1) 24(1) 0(1) 0(1) 1(1) C(5) 16(1) 12(1) 22(1) 1(1) 0(1) -3(1) C(6) 16(1) 16(1) 21(1) -2(1) 3(1) -1(1) C(7) 12(1) 13(1) 25(1) 0(1) 2(1) 0(1) C(8) 14(1) 11(1) 20(1) 0(1) 1(1) 0(1) C(9) 13(1) 12(1) 22(1) -3(1) 2(1) 2(1) C(10) 12(1) 20(1) 22(1) -1(1) 1(1) 0(1) C(11) 13(1) 20(1) 24(1) 2(1) 0(1) 0(1) C(12) 16(1) 26(1) 24(1) 0(1) -2(1) -1(1) C(13) 16(1) 21(1) 27(1) -2(1) 1(1) -2(1) C(14) 17(1) 22(1) 24(1) -1(1) 2(1) -2(1) C(15) 17(1) 20(1) 22(1) -4(1) 1(1) -3(1) C(16) 21(1) 26(1) 27(1) -7(1) 3(1) 2(1) O(17) 17(1) 21(1) 20(1) -3(1) 4(1) -3(1) O(18) 14(1) 20(1) 25(1) 1(1) 3(1) -3(1) O(19) 16(1) 21(1) 20(1) 2(1) -2(1) -2(1) O(20) 17(1) 28(1) 24(1) 2(1) 6(1) 10(1) O(21) 17(1) 22(1) 21(1) 3(1) -1(1) -2(1) N(22) 17(1) 16(1) 21(1) 0(1) -1(1) 0(1) 35

Table S8. Hydrogen coordinates ( 10 4 ) and isotropic displacement parameters (Å 2 10 3 ) for isoxazoline 10 x y z U(eq) H(2A) -1094 2592 6041 20 H(2B) -378 809 6607 20 H(4A) -705 2467 4415 20 H(6A) 3965 622 3203 21 H(10A) 5850 1628 6899 21 H(10B) 6472-357 6529 21 H(11A) 6330-1445 8032 23 H(12A) 7179 1303 8745 26 H(12B) 5656 381 9399 26 H(13A) 4545 3093 8018 25 H(13B) 5424 3702 9056 25 H(14A) 2353 1311 9074 25 H(14B) 2950 2797 9878 25 H(15A) 1999 5009 8484 23 H(16A) -996 5240 9082 37 H(16B) 414 4978 9999 37 H(16C) -798 3297 9602 37 H(19A) -91 1535 2598 29 H(20A) 6139-522 4286 34 36

Table S9. Torsion angles [ ] for isoxazoline 10 O(18)-C(1)-C(2)-C(3) 26.0(2) O(17)-C(1)-C(2)-C(3) -154.72(13) C(1)-C(2)-C(3)-C(4) -121.56(15) C(1)-C(2)-C(3)-C(8) 55.09(18) C(8)-C(3)-C(4)-C(5) -1.7(2) C(2)-C(3)-C(4)-C(5) 175.03(13) C(3)-C(4)-C(5)-O(19) -178.71(13) C(3)-C(4)-C(5)-C(6) -0.9(2) O(19)-C(5)-C(6)-C(7) 178.79(14) C(4)-C(5)-C(6)-C(7) 0.9(2) C(5)-C(6)-C(7)-O(20) -178.64(14) C(5)-C(6)-C(7)-C(8) 1.6(2) C(4)-C(3)-C(8)-C(7) 4.0(2) C(2)-C(3)-C(8)-C(7) -172.54(13) C(4)-C(3)-C(8)-C(9) -178.92(13) C(2)-C(3)-C(8)-C(9) 4.5(2) O(20)-C(7)-C(8)-C(3) 176.22(13) C(6)-C(7)-C(8)-C(3) -4.0(2) O(20)-C(7)-C(8)-C(9) -0.9(2) C(6)-C(7)-C(8)-C(9) 178.88(14) C(3)-C(8)-C(9)-N(22) 44.1(2) C(7)-C(8)-C(9)-N(22) -138.91(15) C(3)-C(8)-C(9)-C(10) -132.71(15) C(7)-C(8)-C(9)-C(10) 44.3(2) N(22)-C(9)-C(10)-C(11) -2.26(17) C(8)-C(9)-C(10)-C(11) 174.76(13) C(9)-C(10)-C(11)-O(21) 2.08(15) C(9)-C(10)-C(11)-C(12) -120.17(14) O(21)-C(11)-C(12)-C(13) -65.02(17) C(10)-C(11)-C(12)-C(13) 53.83(19) C(11)-C(12)-C(13)-C(14) 83.37(18) C(12)-C(13)-C(14)-C(15) -153.01(14) C(13)-C(14)-C(15)-O(17) 90.87(15) C(13)-C(14)-C(15)-C(16) -153.26(14) 37

O(18)-C(1)-O(17)-C(15) -4.8(2) C(2)-C(1)-O(17)-C(15) 175.92(12) C(16)-C(15)-O(17)-C(1) 147.10(13) C(14)-C(15)-O(17)-C(1) -91.23(15) C(12)-C(11)-O(21)-N(22) 123.72(13) C(10)-C(11)-O(21)-N(22) -1.46(15) C(8)-C(9)-N(22)-O(21) -175.75(12) C(10)-C(9)-N(22)-O(21) 1.44(17) C(11)-O(21)-N(22)-C(9) 0.07(16) Table S10. Hydrogen bonds for isoxazoline 10 [Å and ] D-H...A d(d-h) d(h...a) d(d...a) <(DHA) O(19)-H(19A)...O(18)#1 0.84 2.59 3.3068(16) 144.4 O(20)-H(20A)...O(18)#2 0.84 1.90 2.7335(15) 170.3 Symmetry transformations used to generate equivalent atoms: #1 -x,y-1/2,-z+1 #2 -x+1,y-1/2,-z+1 38

3. Characterization data for -hydroxyketone 11 To a solution of oxazoline 4a,c [4a/4c (or 4d), 3.7:1, 56.0 mg] in EtOH/ THF/H2O (5:5:1, ml) was added freshly activated Raney-Ni (2 scoop of spatula). The mixture was stirred 1 d at room temperature under a hydrogen atmosphere. To the mixture was added catalytic amount of Pd/C (5%, 10 mg). The mixture was stirred for 5 h at room temperature under a hydrogen atmosphere and filtered through a pad of Celite. The filtrate was concentrated and the resulting residue was purified by flash column chromatography on silica gel to give (-)-11 -hydroxycurvularin (1a) (15.4 mg) in 43% (55%, calculated from 4a) yield and alcohol 11 (3.6 mg) in 10% [46%, calculated from 4c (or 4d)] yield. 11: [ ] 20 D = +17.9 (c 1.00, EtOH); 1 H NMR (acetone-d 6, 500 MHz) δ 6.34 (d, J = 1.6 Hz, 1H), 6.32 (s, 1H), 4.77-4.72 (m, 1H), 4.14 (d, J = 17.1 Hz, 1H), 3.93 (t, J = 9.2 Hz, 1H), 3.74 (dd, J = 9.5, 5.6 Hz, 1H), 3.63-3.62 (m, 1H), 3.43 (d, J = 17.1 Hz, 1H), 1.59-1.41 (m, 6H), 1.12 (d, J = 6.0 Hz, 3H); 13 C NMR (acetone-d 6, 75 MHz) δ 210.7, 169.9, 161.4, 159.4, 137.3, 121.9, 112.4, 103.6, 70.6, 65.8, 53.8, 41.9, 33.6, 27.6, 24.1, 21.2; IR (neat) 3240, 2968, 2930, 1700, 1602, 1586, 1260, 1160, 1042; HRMS: (EI, magnetic sector) m/z calcd for C16H20O6 (M + ) 308.1260, found 308.1255. 39

4. Copies of the 1 H & 13 C NMR spectra of all new compounds, ( )-11- -hydroxycurvularin (1a) and ( )-11- -hydroxycurvularin (1b) ), and a copy of NOESY spectrum of 4b. 40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59