Lectures on Economic Inequality

Similar documents
Development Economics

Persistent Inequality

Persistent Inequality

Development Economics

The Real Business Cycle Model

Imperfect Credit Markets, Household Wealth Distribution, and Development. (Prepared for Annual Review of Economics)

The Ramsey Model. (Lecture Note, Advanced Macroeconomics, Thomas Steger, SS 2013)

Advanced Macroeconomics

Government The government faces an exogenous sequence {g t } t=0

Comprehensive Exam. Macro Spring 2014 Retake. August 22, 2014

u(c t, x t+1 ) = c α t + x α t+1

Aggregate Implications of Credit Market Imperfections (III) By Kiminori Matsuyama. Updated on February 12, 2010

1 The Basic RBC Model

The Dynamic Effect of Openness on Income Distribution and Long-Run Equilibrium

Advanced Macroeconomics

1. Money in the utility function (start)

ECON 5118 Macroeconomic Theory

Economic Growth: Lecture 8, Overlapping Generations

Lecture 2: Firms, Jobs and Policy

Macroeconomics Theory II

General Equilibrium and Welfare

Ramsey Cass Koopmans Model (1): Setup of the Model and Competitive Equilibrium Path

Equilibrium in a Production Economy

Neoclassical Business Cycle Model

Small Open Economy RBC Model Uribe, Chapter 4

Department of Economics Working Paper Series

Economic Policy and Equality of Opportunity

1 Bewley Economies with Aggregate Uncertainty

Economic Growth: Lecture 13, Stochastic Growth

Macroeconomics Qualifying Examination

A Theory of Occupational Choice with Endogenous Fertility

Markov Perfect Equilibria in the Ramsey Model

Competitive Equilibrium and the Welfare Theorems

"0". Doing the stuff on SVARs from the February 28 slides

New Notes on the Solow Growth Model

Economic Growth: Lecture 7, Overlapping Generations

A simple macro dynamic model with endogenous saving rate: the representative agent model

Economic Growth: Lecture 9, Neoclassical Endogenous Growth

problem. max Both k (0) and h (0) are given at time 0. (a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming

A Theory of Optimal Inheritance Taxation

1 Two elementary results on aggregation of technologies and preferences

Macroeconomics Qualifying Examination

Structural Change, Demographic Transition and Fertility Di erence

the growth rate in the labour force. fk () = F(,1): fk () and strictly concave, with positive marginal productivities. Given that the Inadaconditions

Lecture 15. Dynamic Stochastic General Equilibrium Model. Randall Romero Aguilar, PhD I Semestre 2017 Last updated: July 3, 2017

Problem 1 (30 points)

A suggested solution to the problem set at the re-exam in Advanced Macroeconomics. February 15, 2016

Internation1al Trade

Simple New Keynesian Model without Capital

2. What is the fraction of aggregate savings due to the precautionary motive? (These two questions are analyzed in the paper by Ayiagari)

Advanced Economic Growth: Lecture 8, Technology Di usion, Trade and Interdependencies: Di usion of Technology

Growth Theory: Review

Economics 2450A: Public Economics Section 8: Optimal Minimum Wage and Introduction to Capital Taxation

Foundations of Neoclassical Growth

Intergenerational mobility and macroeconomic history dependence

Chapter 4. Applications/Variations

Department of Economics The Ohio State University Final Exam Questions and Answers Econ 8712

Advanced Macroeconomics

The Solow Growth Model

Development Economics Unified Growth Theory: From Stagnation to Growth

Growth Theory: Review

Economic Growth: Lectures 5-7, Neoclassical Growth

Development Economics

Intergenerational Mobility under Education- Effort Complementarity

ECON 581: Growth with Overlapping Generations. Instructor: Dmytro Hryshko

A THEORY OF OCCUPATIONAL CHOICE WITH ENDOGENOUS FERTILITY. November Abstract

Redistributive Taxation in a Partial-Insurance Economy

Online Appendix for Investment Hangover and the Great Recession

General motivation behind the augmented Solow model

(a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming

Productivity Losses from Financial Frictions: Can Self-financing Undo Capital Misallocation?

Macroeconomics IV Problem Set I

Intermediate Macroeconomics, EC2201. L2: Economic growth II

Solow Growth Model. Michael Bar. February 28, Introduction Some facts about modern growth Questions... 4

Life Cycle Saving, Bequests, and the Role of Population in R&D based Growth

Dynamic Optimization: An Introduction

A Summary of Economic Methodology

Endogenous information acquisition

Lecture 2. (1) Aggregation (2) Permanent Income Hypothesis. Erick Sager. September 14, 2015

WORKING PAPER SERIES

slides chapter 3 an open economy with capital

Bequest Motives, Estate Taxes, and Wealth Distributions in Becker-Tomes Models with Investment Risk

WHY ARE THERE RICH AND POOR COUNTRIES? SYMMETRY BREAKING IN THE WORLD ECONOMY: A Note

Simple New Keynesian Model without Capital

Dilip Mookherjee Stefan Napel Intergenerational Mobility and Macroeconomic History Dependence. Aboa Centre for Economics

Global Value Chain Participation and Current Account Imbalances

Part A: Answer question A1 (required), plus either question A2 or A3.

Dynastic Altruism, Population Growth, and Economic Prosperity

Lecture 2: The Human Capital Model

Toulouse School of Economics, Macroeconomics II Franck Portier. Homework 1. Problem I An AD-AS Model

Uncertainty Per Krusell & D. Krueger Lecture Notes Chapter 6

Introduction to General Equilibrium: Framework.

1 Overlapping Generations

HOMEWORK #3 This homework assignment is due at NOON on Friday, November 17 in Marnix Amand s mailbox.

The 2005 Lawrence R. Klein Lecture: Emergent Class Structure. Kiminori Matsuyama 1. Final Version: October 2005

Ergodicity and Non-Ergodicity in Economics

Expanding Variety Models

A Modern Equilibrium Model. Jesús Fernández-Villaverde University of Pennsylvania

Handout: Competitive Equilibrium

Foundations of Modern Macroeconomics B. J. Heijdra & F. van der Ploeg Chapter 2: Dynamics in Aggregate Demand and Supply

Transcription:

Lectures on Economic Inequality Warwick, Summer 2018, Slides 2 Debraj Ray Inequality and Divergence I. Personal Inequalities, Slides 1 and 2 Inequality and Divergence II. Functional Inequalities Inequality and Conflict I. Polarization and Fractionalization Inequality and Conflict II. Some Empirical Findings Inequality and Conflict III. Towards a Theory of Class Conflict Slides 2. Markets and Personal Inequality Two views on the evolution of inequality: Equalization: Inequality an ongoing battle between convergence and luck. Solow 1956, Brock-Mirman 1972, Becker-Tomes 1979, 1986, Loury 1981... Disequalization: Markets intrinsically create and maintain inequality. Ray 1990, 2006, Banerjee-Newman 1993, Galor-Zeira 1993, Ljungqvist 1993, Freeman 1996, Mookherjee-Ray 2000, 2010...

Standard Accumulation Equations Becker-Tomes 1979, Loury 1981 y t = c t + k t, income consumption investment/bequest production function: y t+1 = f (k t ) or f (k t,a t ). Not surprising that this literature looks like growth theory. Lots of mini growth models, one per household. But it s more than that, as we shall see. Interpreting f Standard production function as in growth theory Competitive economy: f (k)= w +(1 + r)k. Returns to skills or occupations: for example, f (k) = w for k < x = w for k > x. May be exogenous to individual, but endogenous to the economy So interpret f as envelope of intergenerational investments: Financial bequests Occupational choice

Returns 1 + r Investments/Occupations Returns The envelope f 1 + r Investments/Occupations

Parental Preferences and Limited Mobility Parental utility U(c)+W(y 0 ), where: U increasing and strictly concave, and W(y 0 ) increasing in progeny income y 0. W(y 0 ) = d[qv (y 0 ) + (1 q)p(y 0 )] Future utility Bellman value Exogenous value Reduced-form maximization problem: maxu(c)+ie a W( f (k,a)). Theorem. Let h describe all optimal choices of k for each y. Then if y > y 0, k 2 h(y), and k 0 2 h(y 0 ), it must be that k k 0. Remarks: h is almost a function. h can only jump up, not down. Same assertion is not true of optimal c. Note how curvature of U is important, that of W is unimportant. Crucial for models in which f is endogenous with uncontrolled curvature.

Standard Assumption: f is exogenous, and typically assumed concave: Returns Financial capital Human capital 1 + r Investments/Occupations Generates convergence to unique steady state in the absence of uncertainty. But won t be needed in the theorem I state next. Theorem Brock-Mirman 1976, Becker-Tomes 1979, Loury 1981, but mo concavity Assume a mixing condition, such as f (0, 1) > 0(poor genius) and f (k, 0) < k for all k > 0(rich fool). Then there exists a unique measure on incomes µ such that µ t converges to µ as t! from every µ 0. I t = 2 = 0 = 1 k1 y1 t = 1 = 0 = 1 k0 y0 t = 0

Core assumption: a mixing zone. In this case, it fails: y t+1 45 0 Y I Y II y t Here s a case where a mixing zone exists: y t+1 45 0 y t Y II

Three major drawbacks of this model: I. The reliance on stochastic shocks Participation in national lottery ) mixing. Ergodicity could be a misleading concept. Convexities and non-convexities all lumped together (S-shaped example). II. No mixing condition ) multiple steady states: But must have disjoint supports, which is weird. III. The reliance on efficiency units: No way to endogenize the returns to different occupations. Can t ask the question about how rates of return vary with wealth. Inequality and Markets Return to the interpretation of f as occupational choice. Dropping efficiency units creates movements in relative prices: f isn t just technology anymore. An Extended Example with just two occupations Two occupations, skilled S and unskilled U. Training cost x. Population allocation (l, 1 l). Output: f (l,1 l) Skilled wage: w s (l) f 1 (l,1 l) Unskilled wage: w u (l) f 2 (l,1 l)

Households Continuum of households, each with one agent per generation. Starting wealth y; y = c + k, where k 2 {0,x}. Child wealth y 0 = w, where w = w s or w u. Parent maxes U(c)+dV (y 0 ) (Bellman equation) No debt! Child grows up; back to the same cycle. Equilibrium A sequence {l t,w t s,w t u} such that w t s = w s (l t ) and w t u = w u (l t ) for every t. l 0 given and the other l t s agree with utility maximization. Steady State: stationary equilibrium with positive output and wages: k u (l) b(l) k s (l), where k j (l) U (w j (l)) U (w j (l) X) (investment cost in utils) b(l) V (w s (l)) V (w u (l)) = 1 1 d [u(w s(l) X) u(w u (l))] (investment gain in utils)

κ u (λ) b(λ) κ s (λ) λ 6 λ 5 λ 4 λ 3 λ 2 λ 1 Two-occupation model useful for number of insights: No convergence; persistent inequality in utilities. Symmetry-breaking argument. Multiple steady states must exist. See diagram for multiple instances of k u (l) b(l) k s (l). Steady states with less inequality have higher net output. Net output maximization: max l F(l,1 l) X. Say at l. So F 1 (l,1 l ) F 2 (l,1 l )=X. All steady states to left of this point: inequality ", output #.

Can get an exact account of history-dependence (dynamics). κ u (λ) b(λ) κ s (λ) λ 6 λ 5 λ 4 λ 3 λ 2 λ 1 Two Applications/Examples I. Industrialization with Fixed Costs Each person can set up factory at cost X. Gets access to production function g(l), hire at wage w. Otherwise work as laborer. Multiple steady states in factory prevalence.

To embed this story into two-occupation model: Define u = laborer, s = entrepreneur. Let 1 f (l,1 l) lg l l. Then 1 l w u (l)= f 2 (l,1 l)=g 0 = w, l and w s (l)= f 1 (l,1 1 l)=g l l 1 l 1 g 0 l l l = profits. II. Conditionality in Educational Subsidies Recall that higher l associated with higher net output. So there is a role for educational subsidies. Assume all subsidies funded by taxing w s at rate t. Unconditional subsidies: give to unskilled parents. T t = l tt 1 l t w s (l t ). Add this to the unskilled wage: w u (l t )+T t. Conditional subsidies: give to all parents conditional on educating children. Z t = l tt l t+1 w s (l t ).

Theorem. With unconditional subsidies, every left-edge steady state declines, lowering the proportion of skilled labor and increasing pre-tax inequality, which undoes some or all of the initial subsidy. With conditional subsidies, every left-edge steady state goes up, increasing the proportion of skilled labor. In steady state, no direct transfer occurs from skilled to unskilled, yet unskilled incomes go up and skilled incomes fall. Conditional subsidies therefore generate superior macroeconomic performance (per capita skill ratio, output and consumption) and welfare (Rawlsian or utilitarian). Other Applications Trade theory in which autarkic inequality determines comparative advantage. The necessity of country-level specialization when national infrastructure is goodsspecific. Fertility patterns in models of occupational choice.

A General Model with Financial Bequests and Occupational Choice Why study this? Financial and human bequests No need for persistent inequality in two-occupation model Rich occupational structure Now the curvature of occupational returns is fully endogenous. New insights The exact nature of history-dependence Production with capital and occupations. Population distribution on occupations l (endogenous). Physical capital k. Production function y = F(k,l), CRS and strictly quasiconcave. Training cost function x on occupations: incurred up front. parents pay directly, or bequeath and then children pay.

Prices Perfect competition. Return on capital fixed at rate r (international k-mobility). Returns to occupational choice: wage vector w {w(n)}. w endogenous, together with r supports profit-maximization. Households Continuum of households, each with one agent per generation. Starting wealth y; y = c + b + x(n). Child wealth y 0 =(1 + r)b + w t+1 (n). Parent picks (b,n) to max utility. No debt! b 0. Child grows up; back to the same cycle.

Preferences and Equilibrium Preferences: mix of income-based and nonpaternalistic Equilibrium: U(c)+d[qV (y 0 )+(1 q)p(y 0 )] Wages w t, value functions V t, and occupational distributions l t such that at every date t: Each family i chooses {n t (i),b t (i)} optimally Occupational choices {n t (i)} aggregate to l t ; Firms willingly demand l t at prices ( w t,r). Note: physical capital willingly supplied to meet any demand. Steady State A stationary equilibrium with positive output and wages: w t = w 0, and (k t,l t )=(k,l) for all t, and F(k,l) > 0.

Divergence and History: Going Deeper Two notions of history-dependence. Individual (household destinies depend on past events) Economy-wide (multiple distributions of wealth) Former endemic in this model. Latter is what we are after. Literature usually studies a small number of occupations (two). Steady-state conditions written as inequalities Multiplicities are endemic (as we ve seen). Rich Occupational Structure Try the other extreme: The set of all training costs is a compact interval [0,X]. If l is zero on any positive interval of training costs, then y = 0. Jointly the richness assumption [R]. Want to investigate economy-wide history-dependence under this assumption.

A Benchmark With No Occupational Choice Financial bequests (at rate r) + just one occupation (wage w). Parent with wealth y selects b 0 to maxu(c)+d[qv (y 0 )+(1 q)p(y 0 )]. Child wealth y 0 w +(1 + r)b. Depends on (y,r,w); increasing in y. Limit wealth W(w,r): intersections with 45 0 line (or ). [U] W(ŵ, ˆr) independent of initial conditions for all (ŵ, ˆr). [F] W(ŵ,r) < for all ŵ. Descendant Wealth w (w ) Parental Wealth

Remarks on [U] and [F] Related to limited persistence (cf. Becker and Tomes). [U] requires some degree of paternalism in preferences: Recall U(c)+d[qV (y 0 )+(1 q)p(y 0 )] Need q < 1. Yet our results will generally extend to the dynastic case. Back to Occupational Choice Theorem. Assume [R], [U] and [F]. Every steady state has wage function w continuous in x. w is fully described by a two-phase property:

w Phase II Ω(w) w Phase I X(w) X x In Phase I w is linear in x: there is w > 0 such that w(x)=w +(1 + r)x for all x apple q. All families in Phase I have the same overall wealth W(w,r). In Phase II, w follows the differential equation w 0 (x)= U 0 (w(x) x) d[qu 0 (w(x) x)+(1 q)p 0 (w(x))] with endpoint to patch with I: w(x)=w +(1 + r)x at x = X(w). Families located in Phase II will have different wealths.

w 0 (x)= U 0 (w(x) x) d[qu 0 (w(x) x)+(1 q)p 0 (w(x))] Note that the shape of a steady state wage function depends fundamentally on preferences is independent of technology apart from baseline w Define the average return to occupational investment x by r(x) w(x) x w. Theorem. The average return to occupational investment is strictly increasing in x on [z,x]. Proof. Suppose not; then: Returns x 1 x 2 x Contradiction to unique limit wealth in the benchmark model.

Theorem stands the usual literature on its head. Compare: Returns Finance Occupations Investment Levels Theorem stands the usual literature on its head. Compare: Returns Occupations Finance Investment Levels Increasing occupational returns a (central) testable implication.

Unique Steady State with Rich Occupational Structure Now a fundamental difference from two-occupation case: Theorem. Assume [R], [U] and [F]. Then there is at most one steady state. Proof rests on the fact that two members of the two-phase family cannot cross. See succeeding slides. Once that is settled, then only one intercept wage is possible that supports profit maximization with positive output. (For all wages must climb along with intercept wage.) w No-crossing argument, part I Theory of differential equations won t allow this: w w X(w) X(w ) X x

No-crossing argument, part II Revealed preference argument rules this out: w x x X x But What About Divergence? In Phase I, there is perfect equality of overall wealth. (All families in Phase I must have wealth equal to W(w,r).) Families at different occupations in Phase II cannot have the same wealth. Thus, most inequality comes from nonalienable capital. Labor income inequality is as important or more important than all other income sources combined in explaining total income inequality. [Fields (2004)] When is Phase II nonempty? When there is a large occupation span relative to bequest motive.

Can examine this condition for different situations/applications. Discounting. Poverty, via TFP differences. Growth in TFP, lowers effective bequest motive World return on capital. Globalization: new occupations. Divergence and History-Dependence At the macro-level, history-dependence depends on occupational richness. A lot of history-dependence at the individual level. Individual dynasties have to occupy slots that are needed for aggregate production (or utility). Recall the world-economy interpretation, with individuals as countries. The distribution as a whole is pinned down, but not who occupies which slot.

Luck versus Markets: Philosophy of Inequality Equalization: Inequality an ongoing battle between convergence and luck Disequalization: Markets intrinsically create and maintain inequality We ve explored here the second approach, which: (i) relies on symmetry-breaking to generate inequality in non-alienable activities. (ii) is fundamentally interactive across agents (inequality is not the ergodic distribution of some isolated stochastic process). (iii) generates new predictions for the curvature of the rate of return (and does not assume that curvature via efficiency units and an aggregate production function) (iv) exhibits history-dependence at the level of individual dynasties, but less so at the macro level It remains to be seen if this is the right view of the world.