Reversely Well-Ordered Valuations on Polynomial Rings in Two Variables

Similar documents
Polynomials, Ideals, and Gröbner Bases

POLYNOMIAL DIVISION AND GRÖBNER BASES. Samira Zeada

PREMUR Seminar Week 2 Discussions - Polynomial Division, Gröbner Bases, First Applications

Lesson 14 Properties of Groebner Bases

Lecture 1. (i,j) N 2 kx i y j, and this makes k[x, y]

Lecture 2: Gröbner Basis and SAGBI Basis

Math 4370 Exam 1. Handed out March 9th 2010 Due March 18th 2010

4 Hilbert s Basis Theorem and Gröbner basis

A finite universal SAGBI basis for the kernel of a derivation. Osaka Journal of Mathematics. 41(4) P.759-P.792

Gröbner Complexes and Tropical Bases

Dense subfields of henselian fields, and integer parts

Problem Set 1 Solutions

M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA & GEOMETRY REVISION SOLUTIONS

On the minimal free resolution of a monomial ideal.

Lecture 15: Algebraic Geometry II

GROWTH OF RANK 1 VALUATION SEMIGROUPS

GRÖBNER BASES AND POLYNOMIAL EQUATIONS. 1. Introduction and preliminaries on Gróbner bases

Groebner Bases, Toric Ideals and Integer Programming: An Application to Economics. Tan Tran Junior Major-Economics& Mathematics

Algebraic function fields

Gröbner Bases. eliminating the leading term Buchberger s criterion and algorithm. construct wavelet filters

Groebner Bases and Applications

Intersections of valuation overrings of two-dimensional Noetherian domains

NOTES ON FINITE FIELDS

Abstract Algebra for Polynomial Operations. Maya Mohsin Ahmed

Additive Polynomials over Perfect Fields

Section II.1. Free Abelian Groups

THE ALGEBRA AND MODEL THEORY OF TAME VALUED FIELDS

THE ALGEBRA AND MODEL THEORY OF TAME VALUED FIELDS

Math 615: Lecture of January 10, 2007

ABSTRACT. Department of Mathematics. interesting results. A graph on n vertices is represented by a polynomial in n

Lecture Notes Introduction to Cluster Algebra

Valued Differential Fields. Matthias Aschenbrenner

Advanced Automata Theory 9 Automatic Structures in General

MATH 433 Applied Algebra Lecture 22: Semigroups. Rings.

Resolution of Singularities in Algebraic Varieties

1. Group Theory Permutations.

5 The existence of Gröbner basis

The generic Gröbner walk

Lecture 4 February 5

Lengths of developments in K((G))

Every Linear Order Isomorphic to Its Cube is Isomorphic to Its Square

Pairs of Definition and Minimal Pairs An overview of results by S.K. Khanduja, V. Alexandru, N. Popescu and A. Zaharescu

Gröbner Bases, Ideal Computation and Computational Invariant Theory

Toric Ideals, an Introduction

1 Absolute values and discrete valuations

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

A Generalization of Wilson s Theorem

Bounding the number of affine roots

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Higher Ramification Groups

Solving systems of polynomial equations and minimization of multivariate polynomials

Valuations and local uniformization

Counting Zeros over Finite Fields with Gröbner Bases

Computing Free Resolutions in Macaulay2

On finitely presented expansions of semigroups, algebras, and gr

Assigned homework problems S. L. Kleiman, fall 2008

Valuations in fields of power series

Tropical Varieties. Jan Verschelde

MATH 497A: INTRODUCTION TO APPLIED ALGEBRAIC GEOMETRY

Embedding theorems for normal divisible residuated lattices

SYMMETRICALLY COMPLETE ORDERED SETS, ABELIAN GROUPS AND FIELDS

Rota-Baxter Type Operators, Rewriting Systems, and Gröbner-Shirshov Bases, Part II

Gröbner bases for the polynomial ring with infinite variables and their applications

6 Lecture 6: More constructions with Huber rings

4.4 Noetherian Rings

Page 23, part (c) of Exercise 5: Adapt the argument given at the end of the section should be Adapt the argument used for the circle x 2 +y 2 = 1

ZEROS OF SPARSE POLYNOMIALS OVER LOCAL FIELDS OF CHARACTERISTIC p

Limit computable integer parts

WEIERSTRASS THEOREMS AND RINGS OF HOLOMORPHIC FUNCTIONS

MCS 563 Spring 2014 Analytic Symbolic Computation Monday 27 January. Gröbner bases

Deviations of graded algebras

SEMIGROUPS OF VALUATIONS ON LOCAL RINGS

A proof of Bézout s theorem using the Euclidean algorithm

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

Dynamic Computations Inside the Algebraic Closure of a Valued Field

Lengths of developments in K((G))

CLASS FIELD THEORY WEEK Motivation

Math 40510, Algebraic Geometry

ALGEBRAIC METHODS OF AUTOMATED REASONING IN MONADIC LOGIC by José A. Alonso in Sevilla (Spain)

Overweight deformations of affine toric varieties and local uniformization

ATOMIC AND AP SEMIGROUP RINGS F [X; M], WHERE M IS A SUBMONOID OF THE ADDITIVE MONOID OF NONNEGATIVE RATIONAL NUMBERS. Ryan Gipson and Hamid Kulosman

A COMMON GENERALIZATION OF METRIC, ULTRAMETRIC AND TOPOLOGICAL FIXED POINT THEOREMS ALTERNATIVE VERSION

Part 1. For any A-module, let M[x] denote the set of all polynomials in x with coefficients in M, that is to say expressions of the form

Extension theorems for homomorphisms

Notes on QE for ACVF

On the BMS Algorithm

Exercises for algebraic curves

Rewriting Polynomials

A Harvard Sampler. Evan Chen. February 23, I crashed a few math classes at Harvard on February 21, Here are notes from the classes.

arxiv: v3 [math.ag] 29 May 2017

A decoding algorithm for binary linear codes using Groebner bases

Computational methods in the study of symplectic quotients

MATH 101: ALGEBRA I WORKSHEET, DAY #1. We review the prerequisites for the course in set theory and beginning a first pass on group. 1.

Elliptic Curves Spring 2017 Lecture #5 02/22/2017

Valuation bases for generalized algebraic series

The Group Structure of Elliptic Curves Defined over Finite Fields

TROPICAL SCHEME THEORY

Math 203A - Solution Set 3

ALGEBRA II: RINGS AND MODULES OVER LITTLE RINGS.

Fields and Galois Theory. Below are some results dealing with fields, up to and including the fundamental theorem of Galois theory.

Transcription:

Reversely Well-Ordered Valuations on Polynomial Rings in Two Variables Edward Mosteig Loyola Marymount University Los Angeles, California, USA Workshop on Valuations on Rational Function Fields Department of Mathematics and Physics, University of Szczecin May 8-13, 2018 1/27

Preliminaries The set of nonzero elements of R is denoted R. The power product x 1 x n is abbreviated as x. The polynomial ring K [x 1,..., x n] is abbreviated as K [x]. The rational function field K (x 1,..., x n) is abbreviated as K (x). A monomial is a product of powers of variables. 2/27

Ideal Membership in One Variable Problem: Given f, f 1,..., f s K [x], determine whether f I = f 1,..., f s. Easy solution: 1 Write I = g where g =gcd(f 1,..., f s). 2 Divide f by g to get quotient q and remainder r. 3 f I if and only if r = 0. 3/27

Monomial Orders Definition A monomial order is a total order on the set of monomials such that (i) x α 1; (ii) x α > x β x α x γ > x β x γ. Example (Lexicographical Order) x α > x β the first nonzero coordinate of α β is positive. Example (Graded Lex Order) Compare total degrees and break ties using lexicographic order. Example: x 2 y > lex y 5, but x 2 y < grlex y 5. Definition Given a polynomial f K [x], the monomial of f that is larger than all of the other monomials appearing in f is called the leading monomial, which we denote lm(f ). 4/27

Reduction Consider the following polynomials: f = x 2 y + 4xy 3y 2, g = 2x + y + 1. We perform one step of dividing f by g via long division (with graded lex): 1 2 xy 2x + y + 1 x 2 y + 4xy 3y 2 x 2 y + 1 2 xy 2 + 1 2 xy 1 2 xy 2 + 7 xy 3y 2 2 We denote this by f g 1 2 xy 2 + 7 2 xy 3y 2. Definition F Given F = {f 1,..., f s}, we write f h whenever there exists a sequence of reductions of the form f f i1 f i2 h1 h2 f i3 f ij h. 5/27

Gröbner Bases Question Does the ideal contain y 2? f 1, f 2 = 2x 2 y 5xy 2 + y, 2xy 2 5y 3 Yes! Unfortunately, y 2 = y (2x 2 y 5xy 2 + y) + ( x) (2xy 2 5y 3 ). regardless of the choice of monomial order. Definition (Gröbner Bases) y 2 {f 1,f 2 } 0 Let I be a nonzero ideal in K [x] and let G I be a set of nonzero polynomials. Then G is a Gröbner basis with respect to the monomial order < if for all f K [x], Theorem (Buchberger) f I f G 0. For any monomial order, every nonzero ideal in K [x] has a finite Gröbner basis with respect to that monomial order. 6/27

Intersections of Surfaces Where do the following three surfaces intersect? x 2 + y 2 + z 2 = 4 y 2 = z 2 1 y = xz A lexicographic Gröbner basis of x 2 + y 2 + z 2 4, xz y, y 2 z 2 + 1 is {2z 4 4z 2 1, y 2 z 2 + 1, x 2yz 3 + 4yz}. 7/27

Valuations Definition Given a field extension L K and a totally ordered abelian group (Γ, +, <), we say that v : L Γ { } is a K -valuation on L if for all f, g L, the following hold: (i) v(f ) = if and only if f = 0; (ii) v(fg) = v(f ) + v(g); (iii) v(f + g) min{v(f ), v(g)}; (iv) If v(f ) = v(g), then!λ K such that v(f + λg) > v(f ). Note that condition (iv) means that K is a field of representatives for the residue field O v /M v. 8/27

Valuations from Monomial Orders Definition Given a monomial order < on K [x], define v to be the K -valuation on K (x) such that for all f K [x], v(f ) = exponent(lm(f )). We say v comes from a monomial order on K [x]. Example Using the lexicographic order, v(x 3 y + x 2 y 2 ) = ( 3, 1) (Z 0 ) 2. Lemma Let v be a K -valuation on K (x). If v comes from a monomial order on K [x], then v(k [x] ) = (Z 0 ) n. What about the converse? 9/27

Monomial Orders in Suitable Variables Definition Given a K -algebra automorphism ϕ : K [x] K [x], define v to be the K -valuation on K (x) such that for all f K [x], v(f ) = exponent(lm(ϕ(f ))). We say v comes from a monomial order in suitable variables. Define v(f ) = exponent(lm(ϕ(f ))) with lexicographic order, where Then v(k [x, y] ) = (Z 0 ) 2 since K [x, y] ϕ K [u, v] x u + v y u v. v(x y) = exponent(lm(2v)) = (0, 1), v(x) = exponent(lm(u + v)) = ( 1, 0). Theorem (M_, Sweedler) Let v be a K -valuation on K (x). Then v comes from a monomial order in suitable variables iff v(k [x] ) = (Z 0 ) n. 10/27

Value Monoids and Suitable Valuations Definition Recall that v : L Γ { } is a K -valuation on L if for all f, g L, the following hold (i) v(f ) = if and only if f = 0; (ii) v(fg) = v(f ) + v(g); (iii) v(f + g) min{v(f ), v(g)}; (iv) If v(f ) = v(g), then!λ K such that v(f + λg) > v(f ). Definition We call v(k [x] ) the value monoid of v with respect to K [x]. We say that the K -valuation v on K (x) is suitable relative to K [x] if (v) f K [x] : v(f ) = 0 iff f K ; (vi) v(k [x] ) is a reversely well-ordered set. Open Question Which monoids are of the form v(k [x] ) for a K -valuation on K (x) that is suitable relative to K [x]? 11/27

Generalized Gröbner Bases Replacing monomial orders with K -valuations on K (x) that are suitable relative to K [x], one can still do the following: Divide one polynomial by another with respect to the valuation; Reduce one polynomial by a finite collection of polynomials with respect to the valuation. Definition Let v be a K -valuation on K (x) that is suitable relative to K [x], and let I be a nonzero ideal of K [x]. Let G I be a nonempty set of nonzero polynomials. Then G is a Gröbner basis with respect to v if for all f K [x], Proposition (Sweedler) f I f G 0. Let v be a K -valuation on K (x) that is suitable relative to K [x]. There is a natural algorithm that will produce a (potentially infinite) Gröbner basis with respect to v. 12/27

Generalized Power Series Definition Given a function f : S M, where M is an additive monoid, the support of f, denoted Supp(f ), is the subset of the domain consisting of the elements that are not sent to 0. Definition The field of Hahn power series, K ((t Q )), is the set of all functions from Q to K with well-ordered support. Addition is defined pointwise and multiplication is defined via convolution. It is often useful to think of such functions z : Q K as series (in the variable t, say) of the form z = e Q z(e)t e. Example z = t 1 2 + t 1 4 + t 1 8 + t 1 16 +. Squaring z, the support of the resulting series no longer has ordinal type ω: z 2 = t 1 + 2t 3 4 + 2t 5 8 + 2t 9 16 + 2t 17 32 + + t 1 2 +. 13/27

Transcendental Series Characteristic Zero Theorem (Puiseux s Theorem) The series z K ((t Q )) is transcendental over the field of Laurent series K ((t)) if and only if the set of denominators that appear in the reduced-form exponents of z is infinite. Corollary If the set of denominators that appear in the reduced-form exponents of z is infinite, then z is transcendental over K (t). Open Question How can we decide whether a given series z K ((t Q )) is algebraic or transcendental over K (t)? 14/27

Transcendental Series Positive Characteristic Example Consider z = t p i = t 1/p + t 1/p2 + t 1/p3 + t 1/p4 +. i=1 By Puiseux s Theorem, z is transcendental over K (t) in case char K = 0. If char k = p, then z p ( ) = t p i p = t p i+1 = t p i = t + z, i=1 and so z is algebraic over K (t). i=1 i=0 Theorem (Kedlaya) When K has positive characteristic, the algebraic closure of the field of Laurent series depends on both the support and the coefficients of the series. 15/27

Value Group Definition Given a series z K ((t Q )) that is transcendental over K (t), define ϕ : K (x, y) K ((t Q )) by x t 1 y z = z(e i )t e i. Using this, we define a valuation v z : K (x, y) Q given by i=1 v z(f ) = min(supp(ϕ(f ))). Example (z = t 1 2 + t 1 4 + t 1 8 + ) We have and so v z(y 2 x) = 3/4. ϕ(y 2 x) = z 2 t 1 = 2t 3/4 + 2t 5/8 + 2t 9/16 + Proposition (MacLane, Schilling) The value group v z(k (x, y) ) is the additive subgroup of Q generated by 1, e 1, e 2, e 3,.... 16/27

Bounded Growth For n 0, V n = {f k[x, y] deg y (f ) n}. Given z = t 1 + t 1/2 + t 1/4 + t 1/8 +, with some work one can show v z(v 0 ) = Z 0 ; ( v z(v 1 ) = Z 0 Z 0 1 ) ; 2 v z(v 2 ) = ( Z 0 Z 0 1 ) ( Z 0 3 ) ; 2 4 v z(v 3 ) = ( Z 0 Z 0 1 ) ( Z 0 3 ) ( Z 0 5 ). 2 4 4 Proposition (M_, Sweedler) The quotient of monoids v z(v n)/v z(v 0 ) has cardinality exactly n + 1. 17/27

Exponents and Ramification Given where z = z(e i )t e i, i=1 e i = n i d i, gcd(n i, d i ) = 1, n i 0, the exponent sequence and ramification sequence of z are where r 0 = 1 and r i = lcm(d 1,..., d i ). e = (e 1, e 2, e 3,... ), r = (r 0, r 1, r 2,... ), Example (z = t 9/2 + t 9/5 + t 17/10 + t 17/15 + ) We have exponent and ramification sequences given by e = ( 9/2, 9/5, 17/10, 17/15,... ), r = (1, 2, 10, 10, 30,... ). 18/27

Reduced Ramification Series Consider the following series z = t 5/2 + t 2 + t 5/3 + t 3/4 + t 1/3 + t 1/4 + t 1/5 +, which has ramification sequence 1, 2, 2, 6, 12, 12, 12, 60,.... If we remove repetitions from the ramification sequence and then extract the corresponding first terms from the original series, we obtain z red = t 5/2 + t 5/3 + t 3/4 + t 1/4 + t 1/5 +. Proposition (M_) The value monoids v z(k [x, y] ) and v zred (K [x, y] ) are identical. Open Question Although the value monoids v z(k [x, y] ) and v zred (K [x, y] ) are identical, the valuations themselves are different. How can we classify equivalence classes of such valuations that share the same value monoid? 19/27

Explicit Value Semigroups We now assume that z has negative support. Define Theorem (M_) λ 1 = e 1, λ i+1 = (r i /r i 1 )λ i e i + e i+1. Suppose that z K ((t Q )) has negative support such that no term of the ramification sequence is divisible by char K and that there are no repetitions in the ramification sequence. Then the value monoid v z(k [x] ) is the submonoid of Q generated by { 1, λ 1, λ 2, λ 3,... }. Open Question For a given valuation, there are efficient algorithms to generate polynomials with a prescribed image in the value monoid v z(k [x] ). Surprisingly, the inverse problem is more challenging. Given a polynomial, how does one efficiently compute its image in the value monoid v z(k [x] )? 20/27

A Pathological Example Example Given z = t 2 3 + t 1 2 i = t 3 2 + t 3 4 + t 7 8 + t 15 16 +, i=2 the corresponding value monoid v z(k [x, y] ) is nonpositive and reversely well ordered when working over characteristic zero! Open Question Can the value monoid v z(k [x] ) be easily described for examples like those above where some of the support is positive? When working over positive characteristic, do there exist examples of valuations induced by series with partially positive support such that the corresponding value monoid v z(k [x] ) is reversely well ordered? For which series does the induced valuation produce a reversely well-ordered value monoid v z(k [x] )? 21/27

Infinite Gröbner Bases Example Suppose char K 2. The ideal x, y does not have a finite Gröbner basis with respect to the valuation induced by z = t 1 2 + t 1 4 + t 1 8 + t 1 16 +.... Open Question For any given nonzero ideal in a polynomial ring, there exists a finite set of generators that form a Gröbner basis with respect to all possible monomial orders. Do there exist any nonzero ideals such that there exists a finite set of generators that form a Gröbner basis with respect to all valuations? 22/27

An Interesting Gröbner Basis with Respect to a Valuation Question (Bernd Sturmfels) Given a Gröbner basis G with respect to a valuation, does it necessarily follow that there exists a monomial order such that G is a Gröbner basis with respect to the monomial order? Example Let K be a field that is not of characteristic 2. Define f 1 = y 2 x and f 2 = xy. Then G = {f 1, f 2 } is a Gröbner basis for the ideal f 1, f 2 with respect to the valuation induced by z = t 1 2 + t 1 4 + t 1 8 + t 1 16 +.... However, G is not a Gröbner basis with respect to any monomial order. 23/27

Examples of Discrete Valuations of Rank 2 Endow Z 2 with the lexicographic ordering so that its positive elements are ordered pairs (a, b) such that either (i) a > 0 or (ii) a = 0 and b > 0. Let v : K [x, y] Z 2 be a valuation. The shaded points below are nonpositive. Question Can v(k [x, y] ) be a reversely well-ordered subset of Z 2 without being isomorphic to (Z 0 ) 2? 24/27

Generating Sets for Value Monoids Example There is a unique valuation v : K (x, y) Z 2 such that ν(x y) = (0, 1), ν(x) = ( 1, 0). As we have seen before, the value monoid is simply (Z 0 ) 2. It comes from a monomial order in suitable variables. Example There is a unique valuation v : K (x, y) Z 2 such that ν(x) = ( 2, 2), ν(y) = ( 3, 3), ν(y 2 + x 3 ) = ( 2, 1). The value monoid v z(k [x, y] ) is nonpositive and reversely well ordered. It is minimally generated by {( 2, 2), ( 3, 3), ( 2, 1)}. Open Question How can we classify value monoids v(k [x, y] ) based on the minimum number of generators? 25/27

A Most Surprising Example Example There is a unique valuation v : K (x, y) Z 2 such that ν(x) = ( 2, 2), ν(y) = ( 3, 3), ν(xy 2 + y + x 4 ) = ( 2, 1). This valuation exhibits interesting behaviors: The value monoid is v(k [x, y] ) is contained in (Z <0 ) Z, and hence, is nonpositive. However, v(k [x, y] ) is not reversely well ordered! In particular, it is not finitely generated. Open Question Do there exist value monoids (contained in Z 2 ) that are not reversely well ordered and are not finitely-generated? 26/27

Gratitude Thank you, Franz-Viktor Kuhlmann and Kasia Kuhlmann, for organizing this worskhop! 27/27