Christine Joblin Institut de Recherche en Astrophysique et Planétologie Université de Toulouse [UPS] CNRS

Similar documents
Relaxation of energized PAHs

Astrochimistry Spring 2013 Lecture 4: Interstellar PAHs NGC HST

Astronomy. Astrophysics. Evolution of polycyclic aromatic hydrocarbons in photodissociation regions. Hydrogenation and charge states

ANALYZING ASTRONOMICAL OBSERVATIONS WITH THE NASA AMES PAH DATABASE

Laser Dissociation of Protonated PAHs

8: Composition and Physical state of Interstellar Dust

Simulating chemistry on interstellar dust grains in the laboratory

Chemical Enrichment of the ISM by Stellar Ejecta

arxiv: v1 [astro-ph.ga] 29 Jun 2011

Physics 224 The Interstellar Medium

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas

Lecture 5. Interstellar Dust: Chemical & Thermal Properties

Interstellar Dust and Extinction

Lecture 18 - Photon Dominated Regions

Beyond the Visible -- Exploring the Infrared Universe

Astrochimistry Spring 2013

Photo-Dissociation Resonances of Jet-Cooled NO 2 by CW-CRDS

LABORATORY SPECTROSCOPY OF PROTONATED PAH MOLECULES RELEVANT FOR INTERSTELLAR CHEMISTRY

Physics and Chemistry of the Interstellar Medium

Cosmic Evolution, Part II. Heavy Elements to Molecules

Class 3. The PAH Spectrum, what does it tell us??

GAS PHASE CHEMICAL KINETICS : EXPERIMENTAL ADVANCES AND PROSPECTS

Astronomy 106, Fall September 2015

Cosmic Evolution, Part II. Heavy Elements to Molecules

D. Romanini a,), L. Biennier a, F. Salama b, A. Kachanov a, L.J. Allamandola b, F. Stoeckel a

Interstellar Medium. Alain Abergel. IAS, Université Paris-Sud, Orsay Cedex, France

The Interstellar Medium in Galaxies: SOFIA Science

Dust: Grain Populations, Extinction Curves, and Emission Spectra Monday, January 31, 2011

Status of the Diffuse Interstellar Band Problem

The Interstellar Medium

AMO at FLASH. FELs provide unique opportunities and challenges for AMO physics. due to essentially three reasons:

Astrochemistry the summary

Aromatic Features in M101 HII Regions and Starburst Galaxies

Astrochemistry (2) Interstellar extinction. Measurement of the reddening

OUTLINE OF A GAS-GRAIN CHEMICAL CODE. Dima Semenov MPIA Heidelberg

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Exploring ISM dust with IRSIS. Emmanuel DARTOIS IAS-CNRS

Astrophysics of Gaseous Nebulae and Active Galactic Nuclei

LASERS. Amplifiers: Broad-band communications (avoid down-conversion)

Foundations of Chemical Kinetics. Lecture 19: Unimolecular reactions in the gas phase: RRKM theory

The GEM scintillation in He-CF 4, Ar-CF 4, Ar-TEA and Xe-TEA mixtures

Spectroscopic Investigation of Polycyclic Aromatic Hydrocarbons Trapped in Liquid Helium Clusters

Lecture 7: Molecular Transitions (2) Line radiation from molecular clouds to derive physical parameters

Chapter 10 The Interstellar Medium

Dust Polarization. J.Ph. Bernard Institut de Recherche en Astrophysique et Planetologie (IRAP) Toulouse

19. Interstellar Chemistry

kev e - and H + ECR source Shock wave Molecular ices 3 C 2 H 2 C 6 H 6 2 C 3 H 3 Dust impact Europa

The Interstellar Medium

The ionisation state of PAHs in interstellar environments

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Probing the Chemistry of Luminous IR Galaxies

Cryochemistry in the inert and interstellar media

Giant Star-Forming Regions

Galactic dust in the Herschel and Planck era. François Boulanger Institut d Astrophysique Spatiale

arxiv: v1 [astro-ph.ga] 16 Feb 2016

E. Rauls. Department of Theoretical Physics, Faculty of Natural Sciences, University of Paderborn, D Paderborn, Germany;

The formation of stars and planets. Day 1, Topic 2: Radiation physics. Lecture by: C.P. Dullemond

PDR Modelling with KOSMA-τ

Components of Galaxies Gas The Importance of Gas

Protonated Polycyclic Aromatic Hydrocarbons and the Interstellar Medium

Electronic Transition Spectra of Thiophenoxy and Phenoxy Radicals in Hollow cathode discharges

Interstellar Medium and Star Birth

The 158 Micron [C II] Line: A Measure of Global Star Formation Activity in Galaxies Stacey et al. (1991) ApJ, 373, 423

3 - Atomic Absorption Spectroscopy

H 2 reformation in post-shock regions

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc.

CHM 5423 Atmospheric Chemistry Notes on kinetics (Chapter 4)

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10

A Far-ultraviolet Fluorescent Molecular Hydrogen Emission Map of the Milky Way Galaxy

A SMALL FULLERENE (C 24 ) MAY BE THE CARRIER OF THE 11.2 MICRON UNIDENTIFIED INFRARED BAND

Astrochemistry. Lecture 10, Primordial chemistry. Jorma Harju. Department of Physics. Friday, April 5, 2013, 12:15-13:45, Lecture room D117

Aromatic emission from the ionised mane of the Horsehead nebula ABSTRACT

arxiv:astro-ph/ v1 9 Feb 2000

Laboratory and observational studies. of C 60 and C 60. Susanna L. Widicus Weaver, Matthew C. Zwier, Yun Ding, and Benjamin J.

Giant Star-Forming Regions

PIs: Louis DiMauro & Pierre Agostini

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation

Dust. The four letter word in astrophysics. Interstellar Emission

A. G. G. M. TIELENS SRON, Kapteyn Astronomical Institute, P.O. Box 800, 9700 AV Groningen, The Netherlands

SOFIA observations of far-infrared hydroxyl emission toward classical ultracompact HII/OH maser regions

Abstract... I. Acknowledgements... III. Table of Content... V. List of Tables... VIII. List of Figures... IX

Lec 3. Radiative Processes and HII Regions

Unscrambling the Egg. Yvonne Pendleton NASA Ames Research Center. JWST Workshop Nov. 14, 2017

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and

Electron temperature is the temperature that describes, through Maxwell's law, the kinetic energy distribution of the free electrons.

Physics and chemistry of the interstellar medium. Lecturers: Simon Glover, Rowan Smith Tutor: Raquel Chicharro

arxiv: v3 [astro-ph.ga] 20 Jan 2012

Diffuse Interstellar Medium

2- The chemistry in the. The formation of water : gas phase and grain surface formation. The present models. Observations of molecules in the ISM.

Thermal Equilibrium in Nebulae 1. For an ionized nebula under steady conditions, heating and cooling processes that in

Studying Galaxy Evolution with FIRI. A Far-InfraRed Interferometer for ESA. Dimitra Rigopoulou Oxford/RAL-STFC

A World of Dust. Bare-Eye Nebula: Orion. Interstellar Medium

gas-phase measurements (Romanini, Biennier, & Stoeckel as a DIB carrier (Galazutdinov, Krelowski, & Musaev 7

Astr 2310 Thurs. March 23, 2017 Today s Topics

The formation of super-stellar clusters

7. Dust Grains & Interstellar Extinction. James R. Graham University of California, Berkeley

Astronomy. Astrophysics. H 2 formation and excitation in the diffuse interstellar medium

Polycyclic Aromatic Hydrocarbon from the Magellanic Clouds

Analysis of recombination and relaxation of non-equilibrium air plasma generated by short time energetic electron and photon beams

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics

Transcription:

Christine Joblin Institut de Recherche en Astrophysique et Planétologie Université de Toulouse [UPS] CNRS Negative ions and molecules in astrophysics Gothenburg and Onsala, Sweden 22-24/08/2011

Outline The astrophysical context : the PAH model Photophysics of an isolated PAH Statistical theories: rate constant for fragmentation A dedicated experimental set-up: PIRENEA Photodissociation studies Astrophysical implications Reactivity with H, H 2 A model for the evolution of interstellar PAHs

[Ne ] [Ne ] [S ] [Ar ] [Ar ] «Infrared Space Observatory ESA; 1995-1998 «Spitzer Space Telescope NASA; 2003-2009 H 2 H 2 H 2 H 2 SST IRAC 8 µm image NGC 7023 Werner et al. 2004, ApJ Supp 154, 309 ISO SWS spectra Vertratete et al. 2001, A&A 372, 981

...very good tracers of regions that are exposed to UV photons... Adapted from http://www.nrao.edu/pr/2006/gbtmolecules/ Bill Saxton, NRAO/AUI/NSF

Fluorescence Phosphorescence emission Vibrational emission 10-12 s - 10-8 s IVR 10-12 s - 10-10 s Radiation field UV radiation field absorption τ IR slow Broad absorption in the UV Discrete absorption features in the visible

From Désert et al. 1990, A&A 237, 215 UV-visible extinction IR emission 100 µm far-uv rise AIBs 10 µm far-ir DIBs 220nm bump radio Polycyclic Aromatic Hydrocarbons PAH Very Small Grains VSG Nano-objects (1-20 nm) composition? C, Si, Fe,. Big Grains 0.1 µm - BG silicates

Interaction of PAHs with UV photons Account for the Aromatic Infrared Bands - Léger & Puget A&A (1984) ; Allamandola et al. ApJ (1985) Account for most (all?) of the UV bump at 220 nm and non-linear far-uv rise of the extinction curve - Joblin et al. ApJ (1992); Cecchi-Pestellini et al. A&A Let. (2008); Steglich et al., ApJ 712, L16 (2010) Good carriers for the Diffuse Interstellar Bands - Léger & d Hendecourt A&A (1985),... Main contributor to the photoelectric heating of the gas - Bakes & Tielens. ApJ (1994) Could help traditional dust grains in promoting H 2 formation - Habart et al., A&A 414, 531 (2004) - Bauschlicher, ApJ 509, L125 (1998) Could produce other observed features such as the Blue Luminescence (by electronic fluorescence) and the Extended Red Emission (by phosphorescence). Compared to other molecules, PAHs have a remarkable stability against photodissociation

Photophysics of an isolated PAH / IR emission Ex: reflection nebula: <hν UV > = 10 ev Go=10 3 (1 Go =10 8 photons cm -2 s -1 ) The stochastic heating and slow IR emission... Typical timescales for IS PAH: Absorption of a UV-Vis photon every 10 hours Emission of a pure rotational photon once a year Collisions with dominant species once in 20 days Joblin et al. (2002), Mol. Phys. 100(22), 3595 Importance of the events involving IR cooling: dissociation in competition with IR cooling, radiative association

Relaxation mechanims IV. NRT, PAH et MIS ~10-12 s From short timescales (~ps) to very long timescales (~s) Energy IC IVR IC IVR Dissociation? A B D n Q 1? D 1 IR Emission AIBs 10-2 - 1 s hν interstellar D 0 PAH = AB 10

A key mechanism : IVR Single Vibronic Level Dispersed Fluorescence Spectrum of 9MA in a Supersonic Jet - IVR starts at 388 cm -1 Baba et al., J. Phys. Chem. A 113, 2366 (2009) Anthracene - W. R. Lambert, P. M. Felker, and A. H. Zewail, J. Chem. Phys. 81, 2209 (1984)

Statistical theories rate Cte for fragmentation Rate constant for fragmentation: The characteristic timescale for dissociation T disso depends on the internal energy (or temperature), on the dissociation energy and on the number of degrees of freedom role of the density of states Density of states ρ(e) = dn(e) de Microcanonical ensemble: enthropy / temperature S(E) = k B ln(ρ(e) 1 T(E) = S(E) E Canonical ensemble: C V (T) = E T

Unimolecular dissociation - RRKM Theory Rice-Ramsperger-Kassel and Marcus Arrhenius equation: k(t) = A e E a/rt RRKM equation: k(e) = σ N (E,E 0,R*) h ρ(e) k(t) k 4 3 k 2 k 1 k(e) M Simplified formalism: Boissel et al. (1997), J. Chem. Phys. 106, 4973 based on Forst (1972) J. Phys. Chem. 76, 342 Barker (1983) Chem. Phys. 77, 301 M

Density of quantum states (DOS) For g harmonic oscillators that are not coupled g E({n}) = ω i (n i 1 2 ) i=1 with {n} the vibrational quantum numbers The discretisation of the energy density of states can be defined Counting using the Beyer- Swinehart (1973) algorithm. Ex. calculations for C 24 H 12 Mulas et al. 2006, A&A 460, 93 More sophisticated calculations to derive the anharmonic DOS

Photodissociation rate of PAHs: experiments Usual methods: - 1- Time-resolved photo-ionisation in the VUV RRKM modelling t ~ 10 µs k~10 5-10 6 s -1 Jochims et al. (1994) ApJ 420, 307; Ling & Lifshitz (1998) J. Phys. Chem. A 102, 708-2- Time-resolved photodissociation RRKM modelling t ~ 1 ms k~10 3-10 4 s -1 Cui et al. (2000) J. Phys. Chem. A 104, 6339 C 14 H 10

Photodissociation at threshold: trapped PAHs under continuous irradiation of the Xe lamp Boissel et al., J. Chem. Phys. 106, 4973 (1997) Anthracene cation - C 14 H 10 hν abs = 1.78 ev k DISS k IR Sequential absorption of photons E thresh. Increase of internal energy a) Internal energy distribution for t irr = 3 s The ion dissociate for k diss (U) > k IR (U) at U > E threshold In the ISM where hν <13.6 ev and PAHs are larger than anthracene, photodissociation at thereshold is the dominant photodissociation process.

P ~ 10-11 mbar T=35 K UV-Visible irradiation Superconductor magnet (5T) Solid pellet Internal cold shield ICR cell r z Gas injection Laser irradiation (MPD) Ablation laser (266 nm) External cold shield Turbo-molecular pump

PIRENEA* Physics and chemistry of macromolecules and nanograins in interstellar conditions * Piège à Ions pour la Recherche et l Etude de Nouvelles Espèces Astrochimiques 1 2 3 1- Photophysics 2- Spectroscopy 3- Chemistry Photodissociation / IR Emission Isolation (P e ~10-11 mbar) Trapping --> long timescales Photodissociation spectroscopy Production and control of laboratory analogues of interstellar species Radiative association Gas-grain interactions with a truly isolated grain Low temperatures (<40K)

Photodissociation of 12 C 24 H p / Xe lamp C 24 H 4 C 24 H 6 C 24 H 5 12 C 24 H 12 C 24 H 10 C 24 H 8 C 24 H 7 C 24 H 9 12 C 24 C 24 H 2 C 24 H 4 C 24 H 6 C 24 H 8 C 24 H 10 C 24 H 12 C 24 H C 24 H 3 C 24 H 5 C 24 H 7 C 24 H 9 C 24 H 11

t irr =30s C 24 H 12-6H -1H -7H -4H -2H -3H -9H -8H -10H C 24 H 11 t irr =0.5 s C 24 H 5 t irr =0.4 s -5H -11H C 24 H 12 C 24 H 11.C 24 by successive H losses Dissociation kinetics of C 24 H 2p1 much faster than C 24 H 2p

UV absorption rate k UV = σ UV F UV IR emission rate k i IR,v =A i v, v-1 p i v p iv = ρ*(u-vhνi) / ρ(u) density of states Dissociation rates k(- H, - H 2, - C 2 H 2 ) k d = A ρ(u- E d ) H(U- E d d ) ρ(u) /simplified statistical theory Forst 1972, JPC 76, 342 Exact stochastic method (Monte Carlo kinetics) Gillespie 1976, J. Comp. Phys. 22,403 Barker 1983, Chem. Phys. 77,301 Joblin et al. 2003, SF2A, EDP Sciences, p.84 <E diss (C 24 H 2p ) > = 10.5 ev <E diss (C 24 H 2p1 ) > = 5.7 ev

Dissociation rates k(- H, - H k d = A ρ(u- 2, - C E 2 H d ) 2 ) H(U- E d d ) ρ(u) /simplified statistical theory Forst 1972, JPC 76, 342 Joblin et al. 2003, SF2A, EDP Sciences, p.84 E d_hduo = 4.48 ev (RRKM fit C 10 H 8 ) Ho et al. 1995, JACS (4.8 ev DFT larger PAHs) A d calibration Photoion appearance potential/ 10 4 s -1 Jochims et al. 1994, ApJ k IR E d_hsolo = 3.0-3.2 ev derived from PIRENEA measurements, assuming same A d as for H duo allows to probe dissociation at threshold (E crit ) E crit

Astrophysical implications: E crit (H loss) multiple photon events C 16 H 10 C 24 H 12 C 10 H 8 Simple extrapolation towards larger sizes: if no multiple photon events, no dissociation (H loss) for N<58 (ex: C 42 H 16 ) Need to study the competition with H recombination

Reactivity of coronene C 24 H 12 with H, O, N, H 2 Selected Ion Flow Tube apparatus, Boulder (CO, USA) 298 K 0.4 Torr He Coronene cations are formed via Ar M C 14 H 12 Ar C 14 H 12 e where metastable argon is generated by a cold cathode discharge N atoms are formed by N 2 dissociation through a microwave discharge N NO O N 2 H atoms by thermal dissociation of H 2

Reactivity of coronene C 24 H 12 with H, O, N, H 2 H atoms Betts et al., ApJ 651, L129 (2006) No size dependency of the reactivity with H and O Relatively fast reactions O atoms N atoms Association reactions are favoured and the branching ratio increases with the PAH size for O Reactivity of N atoms decreases when the PAH size increases No reactions with H 2

Reactivity of PAHs with H, H 2 C 24 H p H 2 (1 p 11) experiments in progress (PIRENEA) Montillaud, Joblin, Toublanc, PAHs and the Universe, EAS Publications Series vol. 46, 2011

Modeling the evolution of PAHs in photodissociation regions PhD thesis J. Montillaud, Toulouse University Realistic astrophysical conditions (Meudon PDR code; Le Petit et al. 2006, ApJ) C N C H NH q (E) Species modeled: Charge state: q = 2, 1, 0, -1 Hydrogenation state: N H N 0 H 1 & N H > N 0 H 1 ( method Internal energy (discrete Processes: Photoionization vs electron recombination Photodissociation (H-loss) vs reactivity (H, H 2 ( T n tot n H n H2 n e Competition between IR emission & dissociation Possible successive absorption of several photons Pseudo-time dependence: time evolution in fixed conditions characteristic timescales steady state

G 0 = 2200 (UV flux [6-13.6 ev] x 10 8 photons cm -2 s -1 ) n tot = 2 10 4 cm -3 ; Montillaud et al. C 24 C 24 C 24 H 12 C 24 H 12 C 54 C 54 H 18 C 54 C 54 H 18 Model by Le Page et al. 2003, ApJ 584, 316 N c < 20 - small PAHs are destroyed N c ={20,30} - fully dehydrogenated carbon clusters C n larger N c - fully hydrogenated / surhydrogenated more modelling effort required (laboratory data)

Photoprocessing of AIB carriers Ex: NGC 7023 NW PDR Rapacioli, Joblin, Boissel, 2005, A&A 429, 193 Sellgren et al. 2010, ApJ 722, L54 Presence of C 60 close to the star VSG PAH 0 PAH C 60

Thanks

To learn more about interstellar PAHs