A DIMENSION-REDUCTION METHOD FOR STOCHASTIC ANALYSIS SECOND-MOMENT ANALYSIS

Similar documents
Research on Complex Networks Control Based on Fuzzy Integral Sliding Theory

Sampling-based Approach for Design Optimization in the Presence of Interval Variables

Predicting Model of Traffic Volume Based on Grey-Markov

Differentiating Gaussian Processes

Reliability Sensitivity Algorithm Based on Stratified Importance Sampling Method for Multiple Failure Modes Systems

An Effective Space Charge Solver. for DYNAMION Code

Research Article H Estimates for Discrete-Time Markovian Jump Linear Systems

Supplementary Material: Learning Structured Weight Uncertainty in Bayesian Neural Networks

Delay tomography for large scale networks

Deriving the Dual. Prof. Bennett Math of Data Science 1/13/06

Uncertainty Specification and Propagation for Loss Estimation Using FOSM Methods

MARKOV CHAIN AND HIDDEN MARKOV MODEL

Global Sensitivity. Tuesday 20 th February, 2018

The line method combined with spectral chebyshev for space-time fractional diffusion equation

Example: Suppose we want to build a classifier that recognizes WebPages of graduate students.

Nested case-control and case-cohort studies

Characterizing Probability-based Uniform Sampling for Surrogate Modeling

COXREG. Estimation (1)

Gaussian Processes and Polynomial Chaos Expansion for Regression Problem: Linkage via the RKHS and Comparison via the KL Divergence

Note 2. Ling fong Li. 1 Klein Gordon Equation Probablity interpretation Solutions to Klein-Gordon Equation... 2

Solutions Homework 4 March 5, 2018

REAL-TIME IMPACT FORCE IDENTIFICATION OF CFRP LAMINATED PLATES USING SOUND WAVES

Numerical integration in more dimensions part 2. Remo Minero

Professor Chris Murray. Midterm Exam

LECTURE 21 Mohr s Method for Calculation of General Displacements. 1 The Reciprocal Theorem

A univariate decomposition method for higherorder reliability analysis and design optimization

Stability Problems of Pyramidal von Mises Planar Trusses with Geometrical Imperfection

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Adaptive Reduction of Design Variables Using Global Sensitivity in Reliability-Based Optimization

G : Statistical Mechanics

On the Power Function of the Likelihood Ratio Test for MANOVA

Review: Fit a line to N data points

NUMERICAL DIFFERENTIATION

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin

ACCURATE COMPUTATION OF CRITICAL RESPONSE QUANTITES FOR LAMINATED COMPOSITE STRUCTURES

Multispectral Remote Sensing Image Classification Algorithm Based on Rough Set Theory

A finite difference method for heat equation in the unbounded domain

FITTING A RECTANGULAR FUNCTION BY GAUSSIANS AND APPLICATION TO THE MULTIVARIATE NORMAL INTEGRALS

Thermodynamics II. Department of Chemical Engineering. Prof. Kim, Jong Hak

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Structural reliability analysis by univariate decomposition and numerical integration

Numerical Heat and Mass Transfer

REPORT DOCUMENTATION PAGE

Optimization of JK Flip Flop Layout with Minimal Average Power of Consumption based on ACOR, Fuzzy-ACOR, GA, and Fuzzy-GA

On an Extension of Stochastic Approximation EM Algorithm for Incomplete Data Problems. Vahid Tadayon 1

Lecture 2: Numerical Methods for Differentiations and Integrations

Representation of correlation functions in variational assimilation using an implicit diffusion operator

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Chapter 6. Rotations and Tensors

Development of whole CORe Thermal Hydraulic analysis code CORTH Pan JunJie, Tang QiFen, Chai XiaoMing, Lu Wei, Liu Dong

Why Monte Carlo Integration? Introduction to Monte Carlo Method. Continuous Probability. Continuous Probability

An Efficient Sampling Method for Regression-Based Polynomial Chaos Expansion

Probabilistic Sensitivity Analysis for Novel Second-Order Reliability Method (SORM) Using Generalized Chi-Squared Distribution

Two-factor model. Statistical Models. Least Squares estimation in LM two-factor model. Rats

Module 3: Element Properties Lecture 1: Natural Coordinates

Hydrological statistics. Hydrological statistics and extremes

On Uplink-Downlink Sum-MSE Duality of Multi-hop MIMO Relay Channel

Sampling-Based Stochastic Sensitivity Analysis Using Score Functions for RBDO Problems with Correlated Random Variables

Outline. Multivariate Parametric Methods. Multivariate Data. Basic Multivariate Statistics. Steven J Zeil

CHALMERS, GÖTEBORGS UNIVERSITET. SOLUTIONS to RE-EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD

THE STURM-LIOUVILLE EIGENVALUE PROBLEM - A NUMERICAL SOLUTION USING THE CONTROL VOLUME METHOD

Application of support vector machine in health monitoring of plate structures

Associative Memories

Research Article Green s Theorem for Sign Data

Response Surface Method Using Sequential Sampling for Reliability-Based Design Optimization

Gaussian Conditional Random Field Network for Semantic Segmentation - Supplementary Material

Lecture 3: Dual problems and Kernels

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

3. Stress-strain relationships of a composite layer

ONE DIMENSIONAL TRIANGULAR FIN EXPERIMENT. Technical Advisor: Dr. D.C. Look, Jr. Version: 11/03/00

Random walks for spike-timing-dependent plasticity

Structural Analysis I

RELIABILITY ASSESSMENT

Statistics and Probability Theory in Civil, Surveying and Environmental Engineering

Strong Markov property: Same assertion holds for stopping times τ.

Correspondence. Performance Evaluation for MAP State Estimate Fusion I. INTRODUCTION

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

PHYS 450 Spring semester Lecture 02: Dealing with Experimental Uncertainties. Ron Reifenberger Birck Nanotechnology Center Purdue University

Maximum Likelihood Estimation

Relevance of Radiative Transfer Model in Physical Inversion. Xu Liu and Richard Lynch AER Inc.

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

Introduction to Regression

Lecture 10 Support Vector Machines II

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Multi-joint kinematics and dynamics

ERROR MODELING FOR STRUCTURAL DEFORMATIONS OF MULTI-AXIS SYSTEM BASED ON SVR

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

U-Pb Geochronology Practical: Background

Advances in Longitudinal Methods in the Social and Behavioral Sciences. Finite Mixtures of Nonlinear Mixed-Effects Models.

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems

Testing for seasonal unit roots in heterogeneous panels

Statistics Spring MIT Department of Nuclear Engineering

COMBINING SPATIAL COMPONENTS IN SEISMIC DESIGN

T E C O L O T E R E S E A R C H, I N C.

Number of cases Number of factors Number of covariates Number of levels of factor i. Value of the dependent variable for case k

FTCS Solution to the Heat Equation

IV. Performance Optimization

Boundary Value Problems. Lecture Objectives. Ch. 27

Adjoint Methods of Sensitivity Analysis for Lyapunov Equation. Boping Wang 1, Kun Yan 2. University of Technology, Dalian , P. R.

Transcription:

A DIMESIO-REDUCTIO METHOD FOR STOCHASTIC AALYSIS SECOD-MOMET AALYSIS S. Rahman Department of Mechanca Engneerng and Center for Computer-Aded Desgn The Unversty of Iowa Iowa Cty, IA 52245 June 2003

OUTLIE Introducton Dmenson-Reducton Method Appcaton to Stochastc Probems umerca Exampes Concusons Future Works

ITRODUCTIO PDF of Input Random Varabe/ Fed Data Anayss Statstcs Dstrbuton Cacuate Reabty CDF Second Moments Confdence Interva Importance Factors Math. Mode Fatgue/Fracture Crashworthness MEMS Mcroeectroncs VH PDF of Output Random Varabe/ Fed Probabstc Methods FORM SORM AMV Monte Caro Imp. Sampng Dr. Smuaton Vadaton Statstcs Dstrbuton If Y = Y( X ) s a response, + + The th moment E Y( X ) y ( x) f ( x) dx X Expectaton operator

ITRODUCTIO Anaytca Methods Tayor Expanson (FOSM, SOSM) eumann Expanson Decomposton Method Poynoma Chaos Expanson Statstcay Equvaent Souton Pont Estmate Method Others Smuaton Methods Drect Monte Caro smuaton Quas-Monte Caro smuaton Importance sampng Drectona smuaton Others

DIMESIO-REDUCTIO METHOD Mut-dmensona Integraton + [ ( )] a + a (,, ) I y x y x x dx dx a a y y y I[ y( x) ] = I[ y( 0) ] + ( 0) I x + ( ) I x + ( ) I x x + 2! 0 4! 0 2!2! 2 4 4 2 4 2 2 2 4 2 2 j = x = x < j x xj Tayor expanson at x = 0 Proposed Approxmaton yˆ( x) = yˆ( x,, x ) y(0,,0, x,0,,0) ( ) y(0,,0) = y y I[ yˆ( x) ] = I[ y( 0) ] + ( 0) I x + ( ) I x + 2! 0 4! 2 4 2 4 2 2 2 = x = x xj Tayor expanson at x = 0

DIMESIO-REDUCTIO METHOD Resdua Error 4 y I y I y I x x O I x 2!2! x x 2 2 [ ] [ ] ( ) ( 4 ( x) ˆ( x) = 0 ) 2 2 j = < j j Exact Approxmate I[ŷ(x)] represents reduced ntegraton, because ony number of -dmensona ntegratons are requred, as opposed to one -dmensona ntegraton n I[y(x)] If parta dervatves 4 y(0)/ x 2 x j2 and/or I[x 2 x j2 ] are neggby sma, I[ŷ(x)] provdes a convenent approxmaton of I[y(x)]

DIMESIO-REDUCTIO METHOD on-symmetrc Doman [ ] b ( ) (,, ) a a b I y x y x x dx dx = = b + a b a x = + ξ, =,, 2 2 b a I[ y( x) ] = ηξ (,, ξ) dξ dξ 2 Arbtrary Expanson Pont (At x = µ) I yˆ( ) I y(,,, x,,, ) ( ) I y(,, ) [ x ] = [ µ µ µ µ ] [ µ µ ] = +

STOCHASTIC PROBLEMS Statstca Moments of Response m = E Y( X ) y( x) f ( ) d X x x R Usng the Dmenson-Reducton method: ˆ( ) m E Y Y (,, j, X j, j+,, ) ( ) y (,, ) X = E µ µ µ µ µ µ j= ˆ( ) m E Y X = S ( ) y( µ,, µ ) = 0 j Sj = E Y( µ,, µ j, X j, µ j, +, µ ) ; j =,, ; =,, = Requres ony -D ntegratons

STOCHASTIC PROBLEMS Recursve Reaton ( ) S = E Y X, µ 2,, µ ; =,, k k S2 = S Y(, X2, 3,, ) ; k 0 k E µ µ µ = k k S3 = S2 Y(, 2, X3, 4,, ) ; k 0 k E µ µ µ µ = =,, =,, k k Sj = S j Y( µ,, µ j, X j, µ j+, µ ) ; k= 0 k E =,, k k S = S Y( µ,, µ, X) ; k= 0 k E =,,

STOCHASTIC PROBLEMS Moment-based Quadrature Rue Dmenson-Reducton Method: ( µ µ µ + µ ) ( µ µ µ + µ ) E Y,,, X,, y,,, x,, f ( x ) dx j j j j j j j X j j n-order Quadrature Rue: n ( µ,, µ j, j, µ j+, µ ) j, ( µ,, µ j, j,, µ j+, µ ) E Y X w y x = w nput moment n n k ( xj xj, k) fx ( x ) ( ) j j dxj j, n k q j, k k =, k µ k= 0 j, = = n n ( x x ) ( x x ) j, jk, j, jk, k=, k k=, k eed to sove near eqn. once

STOCHASTIC PROBLEMS Lnear Equbrum Equatons K( X) Y( X) = F( X) where: X R ( m, g) mean of X covarance of X Usng the Dmenson-Reducton method: [ ] = j( X j) j( X j) ( ) ( ) ( ) my =E Y E K F K m F m j= g E YY m m T T = Y Y Y ( X ) ( X ) ( X ) ( X ) ( ) ( ) ( ) ( ) ( ) T T T T T YY = K j j Fj j Fj j K j j K F F K j= E E m m m m

EXAMPLES Exampe : Mathematca Functon Y = Y( X, X ) = exp 2 2 2 2 2 + 00X + 2X2 + X X2 X j j =, 2 2 ( 0, σ ) Standard devaton of response (å Y ) 0.3 0.2 0.2 0. 0. umerca Integraton Dmenson-Reducton 2nd-Order Tayor Expanson 0.0 0.02 0.04 0.06 0.08 0.0 0.2 0.4 0.6 0.8 Standard devaton of nput varabes (å)

EXAMPLES Exampe 2: Stochastc Fnte-Dfference Anayss S x L = 20 n.; = 30 n.; EI = 6.45 0 8 b-n 2 Y(x) ξ(x) L S Lognorma random varabe Mean µ S = 000 b/n; Varance = σ S 2 ξ(x) Homogeneous ognorma fed Mean µ ξ = 2000 b/n 2 ; Varance = σ ξ 2 Exponenta covarance functon 2 3 Dscrete Equbrum Equaton: 7+ζX 4 Y 4 6 X 4 +ζ Y = ζx 4 5 2 2 4 +ζx 3 Y3 X Lognorma random varabes

EXAMPLES Exampe 2: Dspacement Statstcs st-order Tayor Expanson Dmenson- Reducton Method Monte Caro Smuaton (0 6 sampes) (a) v ξ =0.3; v S = 0.2 Mean Vector (m Y ) Covarance Matrx (γ Y ) 0.285 0.457 0.373 0.0065 0.0079 0.00 0.006 0.026 (sym.) 0.0206 0.297 0.480 0.39 0.0066 0.03 0.009 0.098 0.059 (sym.) 0.030 0.297 0.480 0.392 0.0070 0.02 0.0096 0.022 0.070 (sym.) 0.039 (b) v ξ =0.6; v S = 0.2 Mean Vector (m Y ) Covarance Matrx (γ Y ) 0.285 0.457 0.373 0.063 0.057 0.0320 0.07 0.0296 (sym.) 0.0653 0.328 0.540 0.439 0.063 0.0292 0.023 0.0535 0.0428 (sym.) 0.0348 0.328 0.539 0.439 0.073 0.032 0.0247 0.0573 0.0459 (sym.) 0.0373 st-order Tayor: 0.69 2.25 ( σˆ σ ) ( ˆ ) Y Y Dmenson-Reducton: 0.99 σ σ.04 Y Y

EXAMPLES Exampe 3: Stochastc Mesh-Free Anayss x 2 å ì Dð(0,L) Eð(L,L) 20 6 Homogeneous Gaussan RF [ x ] E ( x) = µ +α( ) E 2L Crcuar Hoe 2a Cð(0,a) Að(a,0) 2L = 40, 2a =2 å ì x Bð(L,0) 2 8 4 0 0 4 8 2 6 20 (90 nodes) 2 x Γ α ( x) =σe exp bl µ = ; σ = 0.; = 0.5 E E b (2 Random Varabes) 2L Standard Devaton of Response Locaton Response Varabe 2nd-order eumann Expanson Method 4th-order eumann Expanson Method Dmenson Reducton Method Monte Caro (5000 sampes) A u.06 0 -. 0 -.09 0 -.2 0 - B u 4.36 0-4.60 0-4.52 0-4.6 0 - C u 2 2.36 0-2.48 0-2.43 0-2.46 0 - D u 2.24.33.30.33 E u 5.74 0-5.94 0-5.83 0-5.99 0 - u 2.30.37.35.38

Exampe 3: CPU Tme EXAMPLES ormazed CPU tme 00.0 0.0.0 ormazed = CPU.0 CPU CPU by Dmenson Reducton 2.6 8. 29.2 0. Dmenson Reducton eumann Expanson (2nd Order) eumann Expanson (4th Order) Monte Caro Smuaton (5000 Sampe

EXAMPLES Exampe 4: Determnstc onnear FEA P = 40 P k 5 R = 00 mm β = 4.04 h = 2mm Dspacement at center (y), mm 4 3 2 0 0 50 00 50 200 250 300 350 400 Concentrated Load (P),

EXAMPLES Exampe 4: Stochastc Fnte-Eement Anayss Statstca Moments (m = E[Y ]) [ ] E ( x) =µ +α( x) Homogeneous Gaussan RF E x Γ =σ µ = = bl 2 α( x) α exp ; E ; b 0.5 st-order Tayor Expanson Method 2nd-order Tayor Expanson Method (a) σ α = 0.2; P = 400 (4 Random Varabes) Dmenson Reducton Method umerca Integraton m 4.7535 4.7625 4.7626 4.7629 m 2 22.624 22.70 22.7 22.74 m 3 07.8 08.42 08.43 08.46 m 4 54.36 58.30 58.36 58.53 m 5 2457. 2480.7 248. 2482.2 (b) σ α = 0.2; P = 200 m.604.943.9674.9742 m 2 2.8458 4.4572 4.343 4.479 m 3 5.3958 2.6826 0.766.493 m 4 0.844 46.08 29.937 32.339 m 5 22.9 22.36 92.555 96.850

COCLUSIOS A new dmenson-reducton method has been deveoped for predctng statstca moments Reducton of -dmensona ntegraton to mutpe -dmensona ntegratons Moment-based quadrature rue The method s more accurate than st- and 2 nd -order Tayor seres expanson methods The method s smpe (does not requre cacuaton of parta dervatves and nverson of random matrces) The accuracy of the proposed method s comparabe to the 4 th -order eumann expanson method, but the proposed method s computatonay far more effcent than eumann expanson methods

FUTURE WORK Senstvty of statstca moments w.r. t. desgn parameters (robust desgn) Deveopment of dmenson-reducton method for reabty anayss (faure probabty) Potenta appcatons n reabty-based desgn optmzaton