If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

Similar documents
If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

Physical Properties of Period 3 Elements

Trends in Atomic Radius

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

How Cell potentials Depend on Concentrations

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

15.5A: Electrophilic aromatic substitution reactions - the general picture

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

3D: Selecting an Analytical Method

3.1 Energy minimum principle

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

4.3A: Electronic transitions

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

13.3A: The general mechanism for an aldol reaction

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

Electronic Structure and Reactivity of the Transition Metals

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

The Hydrogen Molecule-Ion

Electronegativity Trends

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

2.1A: Another look at the H 2 molecule: bonding and antibonding sigma molecular orbitals

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

1 A thermodynamic view of the world

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

Zeroth-Order Reactions

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

1 Enthalpy diagrams and their uses

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

1.5A: Formation of sigma bonds: the

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

1.4A: Common functional groups in organic compounds

Oxygen and the aquatic environment

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

Physics 215 Quantum Mechanics 1 Assignment 1

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

Periodic Properties of the Elements

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

( ) in the interaction picture arises only

Statistical Interpretation

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

Summary of Last Time Barrier Potential/Tunneling Case I: E<V 0 Describes alpha-decay (Details are in the lecture note; go over it yourself!!) Case II:

The Birth of Quantum Mechanics. New Wave Rock Stars

Lecture 01. Introduction to Elementary Particle Physics

Non-relativistic scattering

A. Evolution of a Reaction Mechanism

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

Problem Set 5 Solutions

An Algebraic Approach to Reflectionless Potentials in One Dimension. Abstract

Time part of the equation can be separated by substituting independent equation

Quantum Mechanics for Scientists and Engineers

Lecture 12. The harmonic oscillator

PHYS 508 (2015-1) Final Exam January 27, Wednesday.

Physics 70007, Fall 2009 Answers to Final Exam

Total Angular Momentum for Hydrogen

04. Five Principles of Quantum Mechanics

5.1 Uncertainty principle and particle current

Lecture 4: Equations of motion and canonical quantization Read Sakurai Chapter 1.6 and 1.7

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015)

Physics 606, Quantum Mechanics, Final Exam NAME ( ) ( ) + V ( x). ( ) and p( t) be the corresponding operators in ( ) and x( t) : ( ) / dt =...

UNIVERSITY OF SURREY FACULTY OF ENGINEERING AND PHYSICAL SCIENCES DEPARTMENT OF PHYSICS. BSc and MPhys Undergraduate Programmes in Physics LEVEL HE2

Solution Set of Homework # 6 Monday, December 12, Textbook: Claude Cohen Tannoudji, Bernard Diu and Franck Laloë, Second Volume

Transcription:

Sign In Forgot Password Regter username username password password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter now complete, check it out. ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki PhysWiki: The Dynamic Physics E-textbook > Quantum Mechanics > Fitzpatrick's Quantum Mechanics > 9: Scattering Theory > 9.2: Fundamental Equations 9.2: Fundamental Equations Consider time-independent scattering theory, for which the Hamiltonian of the system written (910) the Hamiltonian of a free particle of mass, (911) and represents the non-time-varying source of the scattering. Let be an energy eigenket of, (912) whose wavefunction. Th state assumed to be a plane wave state or, possibly, a spherical wave state. Schrödinger's equation for the scattering problem (913) an energy eigenstate of the total Hamiltonian whose wavefunction. In general, both and have continuous energy spectra: i.e., their energy eigenstates are unbound. We require a solution of Equation (913) that satfies the boundary condition as. Here, a solution of the free particle Schrödinger equation, (912), corresponding to the same energy eigenvalue. Adopting the Schrödinger representation, we can write the scattering problem (913) in the form (914) http://physwiki.ucdav.edu/quantum_mechanics/fitzpatrick's_quantum_mechanics/09%3a_scattering_theory/9.2%3a_fundamental_equations 1/5

(915) Equation (914) called the Helmholtz equation, and can be inverted using standard Green's function techniques. Thus, (916) (917) Note that the solution (916) satfies the boundary condition as. As well-known, the Green's function for the Helmholtz problem given by (918) Thus, Equation (916) becomes (919) Let us suppose that the scattering Hamiltonian,, only a function of the position operators. Th implies that (920) We can write (921) Thus, the integral equation (919) simplifies to (922) Suppose that the initial state a plane wave with wavevector (i.e., a stream of particles of definite momentum ). The ket corresponding to th state denoted. The associated wavefunction takes the form http://physwiki.ucdav.edu/quantum_mechanics/fitzpatrick's_quantum_mechanics/09%3a_scattering_theory/9.2%3a_fundamental_equations 2/5

(923) The wavefunction normalized such that (924) Suppose that the scattering potential only non-zero in some relatively localized region centered on the origin ( ). Let us calculate the wavefunction a long way from the scattering region. In other words, let us adopt the ordering. It easily demonstrated that (925) to first order in, (926) a unit vector that points from the scattering region to the observation point. Here, and. Let us define (927) Clearly, the wavevector for particles that possess the same energy as the incoming particles (i.e., ), but propagate from the scattering region to the observation point. Note that (928) In the large- limit, Equation (922) reduces to (929) The first term on the right-hand side the incident wave. The second term represents a spherical wave centred on the scattering region. The plus sign (on ) corresponds to a wave propagating away from the scattering region, as the minus sign corresponds to a wave propagating towards the scattering region. It obvious that the former represents the physical solution. Thus, the wavefunction a long way from the scattering region can be written (930) http://physwiki.ucdav.edu/quantum_mechanics/fitzpatrick's_quantum_mechanics/09%3a_scattering_theory/9.2%3a_fundamental_equations 3/5

(931) Let us define the differential cross-section,, as the number of particles per unit time scattered into an element of solid angle, divided by the incident flux of particles. Recall, from Chapter 3, that the probability current (i.e., the particle flux) associated with a wavefunction (932) Thus, the probability flux associated with the incident wavefunction, (933) (934) Likewe, the probability flux associated with the scattered wavefunction, (935) (936) Now, (937) giving http://physwiki.ucdav.edu/quantum_mechanics/fitzpatrick's_quantum_mechanics/09%3a_scattering_theory/9.2%3a_fundamental_equations 4/5

(938) Thus, gives the differential cross-section for particles with incident momentum to be scattered into states whose momentum vectors are directed in a range of solid angles about. Note that the scattered particles possess the same energy as the incoming particles (i.e., ). Th always the case for scattering Hamiltonians of the form specified in Equation (920). Contributors Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin) Copyright 2015 PhysWiki Powered by MindTouch Unless otherwe noted, content in the UC Dav PhysWiki by University of California, Dav licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permsions beyond the scope of th license may be available at copyright@ucdav.edu. http://physwiki.ucdav.edu/quantum_mechanics/fitzpatrick's_quantum_mechanics/09%3a_scattering_theory/9.2%3a_fundamental_equations 5/5