Atomic Spectral Lines

Similar documents
Introduction to Solar Radiative Transfer II Non-LTE Radiative Transfer

Radiative Transfer with Polarization

Introduction to Solar Radiative Transfer IBasicRadiativeTransfer

The Solar Chromosphere

Opacity and Optical Depth

(c) Sketch the ratio of electron to gas pressure for main sequence stars versus effective temperature. [1.5]

Lecture 3: Emission and absorption

Lecture 2 Line Radiative Transfer for the ISM

SOLAR SPECTRUM FORMATION

2. Stellar atmospheres: Structure

Spectroscopy Lecture 2

Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11)

Interstellar Medium Physics

Lecture Notes: Basic Equations

ATMO/OPTI 656b Spring 2009

3: Interstellar Absorption Lines: Radiative Transfer in the Interstellar Medium. James R. Graham University of California, Berkeley

SISD Training Lectures in Spectroscopy

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev

Lecture 2 Solutions to the Transport Equation

PHYS 231 Lecture Notes Week 3

5. Atomic radiation processes

Optical Depth & Radiative transfer

ν is the frequency, h = ergs sec is Planck s constant h S = = x ergs sec 2 π the photon wavelength λ = c/ν

Spontaneous Emission, Stimulated Emission, and Absorption

Supporting Calculations for NASA s IRIS Mission. I. Overview

Limb Darkening. Limb Darkening. Limb Darkening. Limb Darkening. Empirical Limb Darkening. Betelgeuse. At centre see hotter gas than at edges

1 Radiative transfer etc

Astronomy 421. Lecture 14: Stellar Atmospheres III

Emitted Spectrum Summary of emission processes Emissivities for emission lines: - Collisionally excited lines - Recombination cascades Emissivities

Lecture 2 Interstellar Absorption Lines: Line Radiative Transfer

Lecture 4: Absorption and emission lines

2 The solar atmosphere

AGN Physics of the Ionized Gas Physical conditions in the NLR Physical conditions in the BLR LINERs Emission-Line Diagnostics High-Energy Effects

Scales of solar convection

Atomic Physics 3 ASTR 2110 Sarazin

Substellar Atmospheres II. Dust, Clouds, Meteorology. PHY 688, Lecture 19 Mar 11, 2009

Stellar Atmospheres: Basic Processes and Equations

The Sun as a Typical Star. Stellar Spectra. Stellar Spectroscopy

a few more introductory subjects : equilib. vs non-equil. ISM sources and sinks : matter replenishment, and exhaustion Galactic Energetics

3. Stellar Atmospheres: Opacities

Example: model a star using a two layer model: Radiation starts from the inner layer as blackbody radiation at temperature T in. T out.

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk

Electron temperature is the temperature that describes, through Maxwell's law, the kinetic energy distribution of the free electrons.

Section 11.5 and Problem Radiative Transfer. from. Astronomy Methods A Physical Approach to Astronomical Observations Pages , 377

Solar radiation and plasma diagnostics. Nicolas Labrosse School of Physics and Astronomy, University of Glasgow

2. NOTES ON RADIATIVE TRANSFER The specific intensity I ν

Some recent work I. Cosmic microwave background, seeds of large scale structure (Planck) Formation and evolution of galaxies (Figure: Simpson et al.

Relations between the Einstein coefficients

Lecture 7: Molecular Transitions (2) Line radiation from molecular clouds to derive physical parameters

Components of Galaxies Gas The Importance of Gas

Photoionized Gas Ionization Equilibrium

Fundamental Stellar Parameters

Solar and Stellar Atmospheric Modeling Using the Pandora Computer Program

If light travels past a system faster than the time scale for which the system evolves then t I ν = 0 and we have then

The Sun. Basic Properties. Radius: Mass: Luminosity: Effective Temperature:

The formation of stars and planets. Day 1, Topic 2: Radiation physics. Lecture by: C.P. Dullemond

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7

arxiv: v1 [astro-ph.sr] 30 Nov 2014

The Interstellar Medium

LECTURE NOTES. Ay/Ge 132 ATOMIC AND MOLECULAR PROCESSES IN ASTRONOMY AND PLANETARY SCIENCE. Geoffrey A. Blake. Fall term 2016 Caltech

Collisional radiative model

Radiative Transfer Plane-Parallel Frequency-Dependent

Collisionally Excited Spectral Lines (Cont d) Diffuse Universe -- C. L. Martin

Lecture 10. Lidar Effective Cross-Section vs. Convolution

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H -

II. HII Regions (Ionization State)

Astrochemistry and Molecular Astrophysics Paola Caselli

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H -

Quantum Electronics/Laser Physics Chapter 4 Line Shapes and Line Widths

7. Non-LTE basic concepts

ATMO 551a Fall Resonant Electromagnetic (EM) Interactions in Planetary atmospheres. Electron transition between different electron orbits

Preliminary Examination: Astronomy

5.111 Lecture Summary #5 Friday, September 12, 2014

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H -

Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar

Beer-Lambert (cont.)

Plumes as seen in the Ultraviolet

ASTR240: Radio Astronomy

Astronomy 1 Winter 2011

September 8, Tuesday 2. The Sun as a star

12.815/12.816: RADIATIVE TRANSFER PROBLEM SET #1 SOLUTIONS

I ν. di ν. = α ν. = (ndads) σ ν da α ν. = nσ ν = ρκ ν

Physics 221 Lecture 31 Line Radiation from Atoms and Molecules March 31, 1999

Physics Homework Set I Su2015

(c) (a) 3kT/2. Cascade

arxiv: v1 [astro-ph.sr] 14 May 2010

Radiation in the Earth's Atmosphere. Part 1: Absorption and Emission by Atmospheric Gases

Ay Fall 2004 Lecture 6 (given by Tony Travouillon)

Overview of Astronomical Concepts III. Stellar Atmospheres; Spectroscopy. PHY 688, Lecture 5 Stanimir Metchev

Next quiz: Monday, October 24

Notes on Photoionized Regions Wednesday, January 12, 2011

Physics of Primordial Star Formation

Radiation Processes. Black Body Radiation. Heino Falcke Radboud Universiteit Nijmegen. Contents:

Theory of optically thin emission line spectroscopy

M.Phys., M.Math.Phys., M.Sc. MTP Radiative Processes in Astrophysics and High-Energy Astrophysics

Lecture 6 - spectroscopy

5. Atomic radiation processes

The Solar Chromosphere

Influence of Mass Flows on the Energy Balance and Structure of the Solar Transition Region

Transcription:

Han Uitenbroek National Solar Observatory/Sacramento Peak Sunspot, USA Hale COLLAGE, Boulder, Feb 18, 216

Today s Lecture How do we get absorption and emission lines in the spectrum? Atomic line- and continuum transitions Non-LTE radiative transfer in atomic models Real world examples: Ca i H& K lines He i 183 nm line

Some History 182 Wollaston was the first to observe dark gaps in spectrum: spectral lines. 1814 Fraunhofer rediscovers lines. Assigns names that we still use, e.g., C (Hα), D (Na i), F (Hβ), G (CH molecules), and H (Ca i).

The spectrum at much better resolution

Remember: Eddington-Barbier approximation a I = S(τ=μ) b Ia > Ib τ=1 τ=μ

Limb Darkening Explained b a θ S ν a I ν a b b h sin θ 1 r/r = sin θ

Can we now explain the Darkening in the Cores of Spectral Lines? Intensity [J m 2 s 1 Hz 1 sr 1 ] 2.5 1 8 2. 1 8 1.5 1 8 1. 1 8 5. 1 9 391 392 393 394 395 396 397 398 399 Wavelength [nm] Intensity [J m 2 s 1 Hz 1 sr 1 ] 4 1 8 3 1 8 2 1 8 1 1 8 588 589 59 591 592 593 594 595 596 Wavelength [nm]

Explanation of Absorption Lines in the Spectrum α ν total τ ν ν ν 1 ν ν 1 ν 1 h I ν Sν ν 1 ν ν h

In the UltraViolet the Spectral Lines are in Emission 1..8 Intensity.6.4.2. 126 128 13 132 134 Wavelength [nm]

Explanation of Emission in Spectral Lines total α ν τ ν ν ν 1 ν ν 1 ν 1 h I ν Sν ν 1 ν ν h

Explanation of the Shape of the CaII Resonance Lines log total α ν h ( ) log τ ν ν ν 1 ν 1 ν ν h h I ν S ν total B ν ν 1 ν ν h

Hα Spectral Line 5 1 8 4 1 8 Intensity [J m 2 s 1 Hz 1 sr 1 ] 3 1 8 2 1 8 1 1 8 Disk center 655.5 656. 656.5 657. Wavelength [nm]

Image of the Sun in the light of Hα

Energy Levels and Transitions in Hydrogen Atom E = hν = hc λ 14 12 1 56 4 3 2 Energy [ev] 8 6 4 2 1

Energy Levels and Transitions in Hydrogen Atom E = hν = hc λ 14 12 1 56 4 3 2 Energy [ev] 8 6 4 2 121.6 12.6 97.3 95. 93.8 1

Energy Levels and Transitions in Hydrogen Atom E = hν = hc λ 14 12 56 4 3 1 656.3 486.1 434. 41.2 2 Energy [ev] 8 6 4 2 121.6 12.6 97.3 95. 93.8 1

Energy Levels and Transitions in Hydrogen Atom E = hν = hc λ 14 12 1875.1 1281.8 193.8 56 4 3 1 656.3 486.1 434. 41.2 2 Energy [ev] 8 6 4 2 121.6 12.6 97.3 95. 93.8 1

Radiative bound bound Transitions E 2 Radiative bound - bound hν ΔE = E 2 - E 1 = hν = hc/λ E 1 absorption hν hν hν hν Spontaneous emission Stimulated emission

Collisional bound bound Transitions E 2 e - E b e - E a Collisional bound - bound E 1 collisional excitation E 2 - E 1 = E b - E a E 2 e - E b e - E a E 1 collisional de-excitation

Radiative bound free Transitions Radiative bound - free e - E e E cont hν E e = hν - (E cont - E 1 ) E 1 radiative ionization e - E e e - E e E cont E cont hν E 1 radiative recombination hν hν E 1 hν stimulated radiative recombination

Collisional bound free Transitions Collisional bound - free e - E a E cont e- e - E b E c E a - (E b + E c ) = (E cont - E 1 ) E 1 collisional ionization E a e - E c e - E b E cont E 1 collisional recombination

Absorption and Emission Coefficients for bound-bound Transitions Spontaneous emission j i: j spont ν Stimulated emission j i: = n j (A ji hν ij /4π)φ ν j stim ν = n j (B ji hν ij /4π)φ ν I ν, A ji = (2hν 3 /c 2 )B ji Absorption i j: α ν = n i (B ij hν ij /4π)ϕ ν, g i B ij = g j B ji

Source Function of bound bound Transition Transfer equation: di ν ds = jspont ν + jν stim α ν I ν = n j (A ji hν ij /4π)φ ν hν ij /4πφ ν (n i B ij n j B ji )I ν Source function: S ν = j ν α ν = = 2hν3 ij c 2 n j A ji n i B ij n j B ji n j g j /g i n i n j = (1 ɛ)j + ɛb ν ɛ C ji C ji + A ji + B ji J ; J J ν φ ν dν; B ν 2hν3 c 2 1 e hν/kt 1

Radiative Rates Radiative excitation R ij = B i j hν 4π dν dω hν I νφ ν = B i jj; J 1 4π dω dνi ν φ ν Radiative de-excitation hν R ij = Aji + B ji 4π = A ji + B ji J dν dω hν I νφ ν

Basic Equation: Statistical Equilibrium Consider and atom (or molecule) with levels i =,..., N 1. Statistical equilibrium for level i: 12 N 1 j= n j (Cji + Rji) = CA III 3P6 1SE N 1 j= n i (Cij + Rij) 1 8 Energy [ev] 6 4 CA II 3P6 4P 2 396.85 393.37 CA II 3P6 4S 866.21 849.8 854.21 2SE 2PO 2DE CA II 3P6 3D The set of equations for all levels forms a, generally non-linear, and non-local, set of equations for the population numbers n i

Complicated Termdiagram for Magnesium Energy [ev] 8 6 4 MG II 2P6 3S 2SE 1/2 MG MG I MG 2P6 MG I 2P6 MG 3S I 2P6 3S 1S 9S 2P6 MG I 2P6 MG 3S 8S 2P6 MG 3S 3S I 7S MG 3S I 1P 6S 2P6 MG 9P 8P 2P6 MG 3S I 7P 2P6 MG 3S 6P 2P6 MG 3S I 9D MG 3S 8D 7D 2P6 I 6D 2P6 MG 3S 2P6 MG 3S I 1S 9S 2P6 MG 3S I 5D MG 3S 8S 2P6 MG I 7S 2P6 MG 3S MG I 3S 9P I 8P 2P6 7P 2P6 MG 2P6 MG 3S 3S I 3S 9D 8D 7D 2P6 6D 2P6 MG MG 3S 3S I 9F 8F 7F 2P6 6F 2P6 MG MG 3S 3S I 9G 8G 7G 2P6 6G 2P6 MG MG 3S 3S I 9H 8H 7H 2P6 6H 2P6 MG 3S 3S I 9I 8I 7I 2P6 MG 3S I 9K 8K 2P6 3S 9L 2P6 2P6 3S 6S MG 3S 6P 2P6 MG 3S I 5D 2P6 MG 3S I 5F 2P6 3S 5G MG I 2P6 3S 5P MG I 2P6 MG I 2P6 3S 5S MG I 2P6 3S 4D MG 3S I 5P 2P6 MG 3S I 4D 2P6 3S 4F MG I 2P6 3S 5S MG I 2P6 3S 4P MG I 2P6 MG 3S I 4P 2P6 3S 3D MG I 2P6 3S 3D MG I 2P6 3S 4S MG I 2P6 3S 4S 1999.22 411.55 8871.64 2299.82 5437.63 964.95 129.92 326.84 1154.6 1461.56 6753.38 45.47 9723.86 4177.9 416.51 318.31 2666.11 435.45 473. 3114.92 4649.18 2145.9 1659.57 146.1 1354.56 571.11 1182.82 663.8 729.11 892.36 171.86 2755.4 1469.75 323.35 1594.83 1835.84 44.5 738.7 769.1 12584.33 12368.97 17513.87 7172.84 5187.4 5224.9 11162.53 32892.99 34856.2 43557.27 7244.74 21122.92 21695.93 28591.72 1132.53 4534.33 52449.7 2764.86 1387.2 17948.8 98.48 6462.32 245.1 82.98 1127.15 5474.86 439.29 924.65 3432.83 636. 123.99 6241.8 314.21 236.45 26.9 1844.27 3396.2 2639.26 398.68 45.75 416.73 435.19 47.3 552.84 966.55 927.34 1436.5 1152.22 131.25 MG I 2P6 3S 3P 88.68 57441.35 13761.24 1852.12 38.13 6442.66 8531.93 342.22 897.31 1834.16 421.84 2121.96 5141.67 1994.13 7932.69 11178.23 5442.85 229.65 2774.8 4388.54 5228.34 899.44 7257.46 11946.51 1812.27 1226.79 2987.29 1668.5 6721.77 4894.27 998.98 253.76 2756.35 3232.88 449.67 11159.32 694.43 6126.76 264.76 269.67 2483.96 534.6 55.96 578.54 277.97 294.2 719.32 1242.82 8874.1 3866.52 2897.16 2495.53 1394.97 147.3 1595.45 1837.44 2456.56 6483.28 422.52 738.77 769.16 821.3 925.57 1942.78 1513.62 1338.32 1245.71 128.34 333.44 631.9 765.84 153.26 517.81 3412.47 1752.19 687.92 1941.13 421.65 11112.27 2598.31 11882.6 2779.41 21475.85 26324.53 169.88 17263.75 3263.3618559.1 1853.97 837.23 2333.2 6624.37 878.7 7121.64 5597. 95.28 3537.48 113.29 718.22 4345.89 3492.12 38.63 1588.29 3679.76 2385.16 1972.87 1775.78 1662.84 83.79847.13 1575.74 196.14 26.52 263.15 267.1 273.5 285. 39.49 383.53 943.58 871.53 85.2 3267.79 1789.4 5922.29 11586.68 192.87 3734.6 5215.19 3459.87 16354.4 4742.14 7656.77 2153.59 34564.63 289.17 4195.18 27335.92 23797.52 4727.91 1345.47 16213.59 1175.25 2654.46 871.41 1436.58 6698.25 5379.42 4362.59 622.1 419.83 3369.33 2999.44 3319.18 228.8 1919.42 174.75 1636.48 MG I 2P6 3S 3P 941.5 873.6 834.61 89.87 1487.78 181.11 329.32 5913.82 11389.9 28526.69 374.83 7547.49 1953.37 26526.46 4676.3 12655.26 18174.53 1968.2 7616.33 11789.51 7269.5 5756.33 717.71 454.82 3639.9 3216.62 3865.54 2541.15 216.9 1895.51 1773.95 594.17 11317.18 27946.63 756.4 19153.72 27459.96 12426.81 18826. 11215.15 1222.25 7439.91 5866.57 7372.8 4615.58 3714.21 3275.65 1134.23 27829.63 1978.35 27678.84 18977.89 11273.1 12319.25 7479.24 5892.13 27798.83 27743.6 1921.76 11289.92 27765.63 2 166.84 168.34 17.71 174.78 182.79 22.58 285.21 456.68 MG I 2P6 3S 3S 1SE 1PO 1DE 3SE 3PO 3DE 3FO 3GE 3HO 3IE 3KO 3LE

We want to Reproduce the Spectrum of the Ca i H&K 3. 1 8 2.5 1 8 Intensity [J m 2 s 1 Hz 1 sr 1 ] 2. 1 8 1.5 1 8 1. 1 8 5. 1 9 Disk center 39 392 394 396 398 Wavelength [nm]

Ingredients for Reproducing the Ca i H&K spectrum Atomic Model: Atmospheric Model: 12 CA III 3P6 1SE 2 1 8 15 Energy [ev] 6 4 2 396.85 393.37 CA II 3P6 4S CA II 3P6 4P 866.21 849.8 854.21 CA II 3P6 3D temperature [1 K] 1 5 2SE 2PO 2DE.1.1.1.1.1 1. 1. log column mass [kg m 2 ] Solve Equations for radiative transfer and statistical equilibrium simultaneously.

Collisional and Radiative Excitation in a realistic Case Photosphere Chromosphere e - hν e - hν deep high deep high

Source function Ca i K line (Non-LTE) 1 6 1 6 S total S total S active S backgr B Planck J 1 7 S active S backgr B Planck J S, J [J m 2 s 1 Hz 1 sr 1 ] 1 7 1 8 392.8 392.9 393. 393.1 393.2 393.3 λ[nm] S, J [J m 2 s 1 Hz 1 sr 1 ] 1 8 393.1 393.2 393.3 393.4 393.5 393.6 λ[nm] 1 9 1 9.1.1.1.1 1. 1. 1. Column Mass [kg m 2 ] 1 1.1.1.1.1 1. 1. 1. Column Mass [kg m 2 ] 1 6 S total 1 6 S total S active S active S backgr S backgr 1 7 B Planck J 1 7 B Planck J S, J [J m 2 s 1 Hz 1 sr 1 ] 1 8 393.1 393.2 393.3 393.4 393.5 393.6 λ[nm] S, J [J m 2 s 1 Hz 1 sr 1 ] 1 8 393.1 393.2 393.3 393.4 393.5 393.6 λ[nm] 1 9 1 9 1 1.1.1.1.1 1. 1. 1. Column Mass [kg m 2 ] 1 1.1.1.1.1 1. 1. 1. Column Mass [kg m 2 ]

Full disk images of He i equivalent width and B

Full disk images of He i EQW and Fe xii 19.3 nm

Line profiles of the He i 183 nm triplet 1 7 4.6 1 8 4.4 1 8 Intensity [J m 2 s 1 Hz 1 sr 1 ] Intensity [J m 2 s 1 Hz 1 sr 1 ] 4.2 1 8 4. 1 8 3.98 1 8 Disk center 3.96 1 8 Disk center 1 8 182.6 182.8 183. 183.2 183.4 Wavelength [nm] 3.94 1 8 182.6 182.8 183. 183.2 183.4 Wavelength [nm]

The He i 183. nm line: chromospheric? Courtesy Bernhard Fleck

The He i 183. nm termdiagram HE III HE II 3S HE II 3P HE II 3D 164.5 164.4 HE II 2S 164.4 HE II 2P 6 Energy [ev] 4 25.63 3.38 2 HE I 1S 3S 4SHE I 1S 3P HE I 1S 3D 4DHE II 1S HE I 1S 2SHE 1S 2P 54.77 2113.2 728.13 7435.48 258.13 51.57 9576.17 198.93 667.81 492.19 HE I 1S 3S 4S HE I 1S 3PHE 4PHE I 1S 3D 4D HE I 1S 2S HE I 1S 2P 471.31 76.52 4294.78 1252.75 183.2 183.3 388.86 318.77 182.91 1954.31 2112. 18617.44 1879.16 43957.16 17.24 587.56 447.15 587.56 587.56 587.56 587.56 587.6 53.7 58.43 HE I 1S2 1SE 1PO 1DE 2SE 2PO 2DE 3SE 3PO 3DE

The He i 183. nm termdiagram, triplet system 587.6 24 HE I 1S 4S 1879.16 43957.16 2112. 1954.31 HE I 1S 4P 587.56 HE I 1S 4D 587.56 Energy [ev] 23 22 471.31 1252.75 4294.78 HE I 1S 3S 76.52 17.24 HE I 1S 3P 18617.44 587.56 587.56 HE I 1S 3D 21 2 318.77 388.86 183.3 183.2 HE I 1S 2S 182.91 447.15 587.56 HE I 1S 2P 3SE 3PO 3DE

EUV irradiation from Corona populates triplet levels

The He i 183. nm contribution function Height [km] 2 15 1 5 182.6 182.8 183. 183.2 183.4 Wavelength [nm] 3. 1 1 2.5 1 1 2. 1 1 1.5 1 1 1. 1 1 5. 1 11 Contribution function [J m 2 s 1 Hz 1 sr 1 km 1 ] Contribution function: τ dτ C S(τ)e dh

He i Line contribution function Height [km] 2 15 1 5 8 1 13 6 1 13 4 1 13 2 1 13 Contribution function [J m 2 s 1 Hz 1 sr 1 km 1 ] Line contribution function: 182.6 182.8 183. 183.2 183.4 Wavelength [nm] S tot = (η l + η c ) (χ l + χ c ) [ C = η l (χ l + χ c ) + η c (χ l + χ c ) ] τ dτ e dh

He i Line contribution function with irradiation 1x 1x Height [km] 2 15 1 5 1.4 1 12 1.2 1 12 1. 1 12 8. 1 13 6. 1 13 4. 1 13 2. 1 13 Contribution function [J m 2 s 1 Hz 1 sr 1 km 1 ] Height [km] 2 15 1 5 6 1 12 4 1 12 2 1 12 Contribution function [J m 2 s 1 Hz 1 sr 1 km 1 ] 182.6 182.8 183. 183.2 183.4 Wavelength [nm] 182.6 182.8 183. 183.2 183.4 Wavelength [nm]

Next lecture: Molecular line formation

Details of the CaII K line 1.2 1 8 1. 1 8 Intensity [J m 2 s 1 Hz 1 sr 1 ] 8. 1 9 6. 1 9 4. 1 9 2. 1 9 393. 393.2 393.4 393.6 393.8 394. Wavelength [nm] Back

Voigt Functions log H(a, v) / sqrt(π) 1 1 2 1 4 1 6 a = 1.E 4 1.E 3 5.E 3 1.E 2 1.E 1 H(a, v) φ(ν ν ) = π νd ν D ν 2kT c m Γ a = 4π ν D 1 8 1 5 5 1 v [Doppler units] Back