Newton s Third Law of Motion

Similar documents
5 th Grade Force and Motion Study Guide

Chapter 06 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

A. true. 6. An object is in motion when

Make sure you know the three laws inside and out! You must know the vocabulary too!

Chapter 2. Force and Newton s Laws

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List:

Do Now: Why are we required to obey the Seat- Belt law?

Laws of Force and Motion

Newton s Contributions. Calculus Light is composed of rainbow colors Reflecting Telescope Laws of Motion Theory of Gravitation

How things move and the forces that act on them.

12-Newton's law os Motion. The net force acting on a box is 18 newtons upward. The box accelerates at a rate of 3 m/s 2.

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors

How Do Objects Move? Describing Motion. Different Kinds of Motion

Sir Isaac Newton ( ) One of the world s greatest scientists Developed the 3 Laws of Motion

Isaac Newton was a British scientist whose accomplishments

NEWTON S LAWS OF MOTION. Review

What Is a Force? Slide Pearson Education, Inc.

Isaac Newton was a British scientist whose accomplishments

Chapter 5 Force and Motion

Newton s Third Law KEY IDEAS READING TOOLBOX. As you read this section keep these questions in mind: Name Class Date

Redhound Day 2 Assignment (continued)

Newton s Laws of Motion. Steve Case NMGK-8 University of Mississippi October 2005

Newton s Laws of Motion

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION.

3. What type of force is the woman applying to cart in the illustration below?

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

Newton s Laws of Motion. Chapter 4

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

Newton s Laws of Motion. Chapter 3, Section 2

Newton s Laws of Motion

TEK 8.6C: Newton s Laws

Motion, Forces, and Energy

Chapter 6 Study Questions Name: Class:

Chapter 12 Study Guide

Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs.

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force.

Chapter 23 Section 2

Newton s Laws of Motion

Station 1 Block, spring scale

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

Name Date Hour Table

Forces & Newton s Laws. Honors Physics

5. All forces change the motion of objects. 6. The net force on an object is equal to the mass of the object times the acceleration of the object.

Lecture Presentation. Chapter 4 Forces and Newton s Laws of Motion. Chapter 4 Forces and Newton s Laws of Motion. Reading Question 4.

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object.

Newton's Third Law. Examples of Interaction Force Pairs

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion.

Dynamics Multiple Choice Homework

Motion and Forces. Forces

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

UNIT 4: FORCES IN NATURE Test review: 4_1_ Forces in nature. Fundamentals

Forces. Brought to you by:

Chapter 3 Laws of Motion

NEWTON S LAWS OF MOTION

4.2. Visualize: Assess: Note that the climber does not touch the sides of the crevasse so there are no forces from the crevasse walls.

Chapter 4 NEWTONS LAWS. Newton s 3 Laws Force Diagrams Balanced Forces Unbalanced Forces

Go on to the next page.

Newton s Wagon. Materials. friends rocks wagon balloon fishing line tape stopwatch measuring tape. Lab Time Part 1

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

What does the lab partner observe during the instant the student pushes off?

4 Newton s Third Law of Motion Action and Reaction. For every force, there is an equal and opposite force.

A N D. c h a p t e r 1 2 M O T I O N F O R C E S

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

Laws of Motion. What is force? What happens when you push or pull objects? Some examples of pushing and pulling. Definition Force:

12.1 Forces and Motion Notes

1 In the absence of a net force, a moving object will. slow down and eventually stop stop immediately turn right move with constant velocity turn left

Ch. 2 The Laws of Motion

Science Teaching Junkie Science Teaching Junkie

A force is could described by its magnitude and by the direction in which it acts.

FORCES. Chapter 2: Section 3, Chapter 3: Sections 1-3

Chapter Introduction. Motion. Motion. Chapter Wrap-Up

Chapter: Newton s Laws of Motion

Overview The Laws of Motion

TEACHER BACKGROUND INFORMATION FORCE

Name: Class: Date: GRAVITY. 1. Gravity is the force of between all objects. It increases when items are or together.

Chapter: The Laws of Motion

Forces and Newton s Laws

Unit 8B: Forces Newton s Laws of Motion

Copyright 2014 Edmentum - All rights reserved.

Who was Isaac Newton?

7.1 Forces and Interactions. A force is always part of a mutual action that involves another force. For every force, there. opposite force.

Exercises. 7.1 Forces and Interactions (page 107) 7.2 Newton s Third Law (page 108)

Test Corrections Use these concepts to explain corrected answers. Make sure you apply the concepts to the specific situation in each problem.

Chapter 4 Newton s Laws

Essential Question: How do gravity, inertia, and friction affect the balance of forces?

Newton s Laws of Motion

FORCES. Integrated Science Unit 8. I. Newton s Laws of Motion

NEWTON S LAWS OF MOTION

Directed Reading B. Section: Newton s Laws of Motion NEWTON S FIRST LAW OF MOTION

Changes in Motion. Section 1. Force. Objectives. Forces can cause accelerations.

4.6 Free Body Diagrams 4.7 Newton's Third Law.notebook October 03, 2017

Newton s Laws of Motion

Properties of Motion. Force. Examples of Forces. Basics terms and concepts. Isaac Newton

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that

Forces and Motion Forces Gravity Net Forces Free Body Diagrams

CHAPTER 9 FORCE AND LAWS OF MOTION

Forces. Video Demos. Graphing HW: October 03, 2016

Dynamics-Newton's 2nd Law

AP Physics II Summer Packet

Transcription:

The world you see is full of motion caused by forces that push or pull. What forces are acting in the image of the biker? To start, look where objects are in contact. Examples of these pairs of contact forces are the interactions between the road and the tires (the force of the road acts on the tires, and the force of the tires acts on the road), the biker and the air, the seat and the biker, etc. Any pair could be analyzed as a system of interacting forces. Other force pairs can act at a distance, such as the force of gravity between Earth and the rider. motion the change in an object s position with respect to time and force a push or pull in comparison to the position of other objects used as reference that can change the points motion of an object Laws of Motion Sir Isaac Newton, a 17th-century Englishman, was the first to correctly explain the relationship between force and motion. He developed three laws of motion. The first two laws explain the motion of a single object where forces are absent or present. Newton s first law of motion states that a body at rest remains at rest and a body in motion continues to move at a constant velocity unless acted upon by an external force (law of inertia). Newton s second law of motion states that acceleration is directly proportional to force and inversely proportional to mass (F = ma or a = F/m). Newton s third law of motion involves pairs of forces that act on two interacting objects, such as those in the biker image. The law states that for every action force, there is an equal and opposite reaction force. Where objects contact, they interact with pairs of forces (action-reaction) equal in strength but in the opposite direction. When one object exerts a force on a second object, the second object also exerts a force on the first object at the same time. Mass matters! The biggest misunderstanding about Newton s third law is the incorrect assumption that equal and opposite forces result in equal motion. Objects do exert the same amount of force in action-reaction pairs, but the final effect of the forces depends on the mass of the objects. For example, your foot exerts an action force on a kicked soccer ball, while at the same time, the ball exerts an equal and opposite reaction on your foot. You stay put, but the ball flies off. Why? You have much more mass than the ball, so the ball accelerates. The same force that sent the ball into the air is not enough to accelerate your massive body (Newton s second law, in which F = ma). 1

Complete the missing labels for the action-reaction force pairs for the systems within the dotted lines. Use the format on. Ball and bat Shoes and track Action: Reaction: track on shoes (forward) Action: ball on bat (backward) Reaction: In the first picture, do you see the runner s back foot pushing backward on the track (action)? The track interacts by pushing on the runner s foot, propelling him forward (reaction). In the second picture, the ball forces the bat in one direction (action) and the bat forces the ball in the opposite direction (reaction). The force of the ball can sometimes break a bat! Action-reaction force pairs are NOT cause-and-effect interactions. Naming which force is the action or reaction is arbitrary, because the interaction happens at the same time. One force does not come first, nor does the other force follow. The action-reaction name is really a misnomer, because both forces are part of a single interaction. A single event takes place in which force pairs happen at the same time, have equal size, and are in the opposite direction. Either force can be labeled as the action force or the reaction force. ground on rock rock on ground ground on rock Many forces can act on objects. So how do you know which two forces are the action-reaction force pair? First, be sure you are looking for pairs of the same type of force, i.e., two contact forces or two at-a-distance forces; do NOT pair a contact force with an at-a-distance force. Contact forces occur where objects in the system gravity are touching or colliding. Forces that act at AT-ADISTANCE a distance are gravitational, magnetic, or electrical charges. Which diagram do you think has the correct action-reaction force pair? GRAVITY GROUND ROCK GROUND. 2

Balanced vs. Unbalanced Forces If the force pairs act on objects so that the net forces acting on one object are not being balanced by any other force, then the force on that object is considered unbalanced. Unbalanced forces cause a change in motion (acceleration). Consider an avalanche. Before the avalanche, the force of gravity on the snow was equal to the force of friction between snowflakes (and any other force acting in opposition to gravity). The forces were balanced, so the snow was motionless. If some event, such as melting, reduces the frictional force so that it is less than the gravitational force, the net force will become unbalanced and the snow will accelerate down the slope. The same unbalanced forces result when a coffee cup falls to the floor. Before, the coffee cup pushed down on the table, which pushed back up on the coffee cup. The cup got knocked off the table. With no contact force supporting the cup, gravity accelerated the cup downward. If an object is accelerating (speeding up, slowing down, or changing directions), then we know the forces acting on that object must be unbalanced. However, not all pairs of forces result in an acceleration. If all the forces acting on a particular object are balanced so that the net force is zero, the object will not accelerate (Newton s first law). The object will continue its current state of motion. If the object was at rest, it will stay at rest. Such is the case with the rock sitting on the ground. The net force is balanced, so the rock will remain at rest. If the object was in motion and all forces on it are balanced, the object will continue to move at the same speed in the same direction, such as with a plane moving north at 250 m/s. If all the forces acting on the plane are balanced, it will continue north at 250 m/s; the plane cannot slow down, speed up, or change directions without an unbalanced force to make it accelerate. How can rockets accelerate? Rockets move forward by expelling gas backward at high velocity. This means the rocket exerts a large backward force on the gas in the rocket combustion chamber, and the gas, therefore, exerts a large reaction force forward on the rocket. This reaction force is called thrust. It is a common misconception that rockets propel themselves by pushing on the ground or on the air behind them. They actually work better in a vacuum, where they can more readily expel the exhaust gases. 3

Contact Forces vs. Forces at a Distance Action-reaction paired forces can occur between objects in direct contact (contact forces) and between objects that are not touching (action-at-a-distance forces). Examples of contact forces are colliding football players, car wrecks, and playing tug-of-war. Fields around objects, such as gravitational fields, electric fields, and magnetic fields, can cause interactions between objects even without the objects touching. When objects interact due to gravitational, magnetic, or electrical forces, the forces are called action-at-a-distance forces, and they can cause objects to interact even from a distance. The resulting action-reaction forces between the interacting objects are equal in magnitude and opposite in direction. Distinguish the force from the effect of the force when considering forces acting at a distance. Forces such as gravitational, electrical, and magnetic forces act at a distance, but their effect depends on mass and distance.. Gravitational Force The action-reaction of gravitational force pairs at a distance are equal and opposite. The motion effect of the pair is dependent on the mass and strength of the gravitational field. A roller coaster car moving down a hill is not in direct contact with Earth, yet action-reaction forces exist between them. The car exerts a gravitational pull on Earth, and Earth exerts an equal and opposite pull on the car. However, the effect of those forces depends on mass. The mass of the car is so small compared to the mass of Earth that the net effect will be the car accelerating down the hill. The Moon s orbit around Earth is an example of action-reaction at-a-distance gravitational force. The Moon pulls on Earth while Earth pulls on the Moon; however, the effect on the two objects (motion of orbit) is different due to the large mass of Earth and the smaller mass of the Moon. Electrical and Magnetic Forces Objects with magnetic fields can also exert action from paired forces at a distance. Magnets can attract or repel. Electrically charged objects with electric fields also exert paired action-at-a-distance attraction or repulsion forces between objects. The resulting motion depends on the strengths and charges of the magnetic or electrical fields and the mass of the particles. 4

For each scenario below, identify the opposite reaction force. A baseball bat hits a ball. A bowling ball pushes up against pins. Air particles push outward against a balloon. 5