Lok С. Lew Yan Voon Morten Willatzen. The k-p Method. Electronic Properties of Semiconductors. Springer

Similar documents
The k p Method. Electronic Properties of Semiconductors. Bearbeitet von Lok C Lew Yan Voon, Morten Willatzen

LokC.LewYanVoon Morten Willatzen. The k p Method. Electronic Properties of Semiconductors

QUANTUM WELLS, WIRES AND DOTS

M.S. Dresselhaus G. Dresselhaus A. Jorio. Group Theory. Application to the Physics of Condensed Matter. With 131 Figures and 219 Tables.

Symmetries in Quantum Physics

Group Theory and Its Applications in Physics

Electronic and Optoelectronic Properties of Semiconductor Structures

wave mechanics applied to semiconductor heterostructures

Quantum Mechanics: Fundamentals

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Conserved Spin Quantity in Strained Hole Systems with Rashba and Dresselhaus Spin-Orbit Coupling

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES

Physics of Low-Dimensional Semiconductor Structures

Spin-Orbit Interactions in Semiconductor Nanostructures

Preface Introduction to the electron liquid

Symmetries in Physics

GROUP THEORY IN PHYSICS

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

Electron spins in nonmagnetic semiconductors

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

Basic Semiconductor Physics

Lie Algebras in Particle Physics

Project Report: Band Structure of GaAs using k.p-theory

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

Quantum Mechanics: Foundations and Applications

The Raman Effect. A Unified Treatment of the Theory of Raman Scattering by Molecules. DerekA. Long

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

Modelling of Silicon-Germanium Alloy Heterostructures using Double Group Formulation of k p Theory

Optical Characterization of Solids

Applicability of the k p method to the electronic structure of quantum dots

Practical Quantum Mechanics

Exact Envelope Function Theory Band Structure of Semiconductor Heterostructure

Electron Correlation

Notes on Quantum Mechanics

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

Lecture. Ref. Ihn Ch. 3, Yu&Cardona Ch. 2

LECTURES ON QUANTUM MECHANICS

VERSION 4.0. Nanostructure semiconductor quantum simulation software for scientists and engineers.

Spectra of Atoms and Molecules. Peter F. Bernath

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

Handbook of Computational Quantum Chemistry. DAVID B. COOK The Department of Chemistry, University of Sheffield

Calculation on the Band Structure of GaAs using k p -theory FFF042

It is seen that for heavier atoms, the nuclear charge causes the spin-orbit interactions to be strong enough the force between the individual l and s.

Spin orbit interaction in semiconductors

Quantum Physics II (8.05) Fall 2002 Outline

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 17 Sep 1997

9 Electron orbits in atoms

Defense Technical Information Center Compilation Part Notice

GROUP REPRESENTATION THEORY FOR PHYSICISTS

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 20 Group Theory For Crystals

Analytical Mechanics for Relativity and Quantum Mechanics

ATOMIC AND LASER SPECTROSCOPY

THEORY OF THE GAIN CHARACTERISTICS OF InGaN/AlGaN QD LASERS. A.D. Andreev * and E.P. O Reilly **

Minimal Update of Solid State Physics

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

ATOMIC SPECTROSCOPY: Introduction to the Theory of Hyperfine Structure

MAGNETO-OPTICAL PROPERTIES OF NARROW-GAP SEMICONDUCTOR HETEROSTRUCTURES

Diode Lasers and Photonic Integrated Circuits

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction

Solid State Physics. GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pavia, and INFM

THEORY OF GROUP REPRESENTATIONS AND APPLICATIONS

Physics of Semiconductors (Problems for report)

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

FYS Vår 2017 (Kondenserte fasers fysikk)

Inter-valence-band hole-hole scattering in cubic semiconductors

Multielectron Atoms.

Chemistry 483 Lecture Topics Fall 2009

Defense Technical Information Center Compilation Part Notice

2.3 Band structure and lattice symmetries: example of diamond

MAGNETISM MADE SIMPLE. An Introduction to Physical Concepts and to Some Useful Mathematical Methods. Daniel C. Mattis

Supplementary Figures

Symmetry Properties of Superconductors

MAGNETIC FIELD DEPENDENT COUPLING OF VALENCE BAND STATES IN ASYMMETRIC DOUBLE QUANTUM WELLS

PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY

Maxwell s equations. electric field charge density. current density

Electronic Structure of a Hydrogenic Acceptor Impurity in Semiconductor Nano-structures

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Mn in GaAs: from a single impurity to ferromagnetic layers

Exciton spectroscopy

Laminated Composite Plates and Shells

Lectures on Quantum Mechanics

Maxwell s equations. based on S-54. electric field charge density. current density

G : Quantum Mechanics II

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

Handbook of Computational Quantum Chemistry

FINAL EXAM GROUND RULES

Physics 221A Fall 1996 Notes 14 Coupling of Angular Momenta

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology.

Elementary Lectures in Statistical Mechanics

POEM: Physics of Emergent Materials

Concepts in Spin Electronics

Anomalous spin suscep.bility and suppressed exchange energy of 2D holes

Boundary-condition problem in the Kane model

ELECTRON PARAMAGNETIC RESONANCE Elementary Theory and Practical Applications

CONTENTS. vii. CHAPTER 2 Operators 15

Addition of Angular Momenta

Principles of Nuclear Magnetic Resonance in One and Two Dimensions

List of Comprehensive Exams Topics

The Transition to Chaos

Statistical Mechanics

Transcription:

Lok С. Lew Yan Voon Morten Willatzen The k-p Method Electronic Properties of Semiconductors Springer

Acronyms xxi 1 Introduction 1 1.1 What Is к p Theory? 1 1.2 Electronic Properties of Semiconductors 1 1.3 Other Books 3 Part I Homogeneous Crystals 2 One-Band Model 7 2.1 Overview 7 2.2 к p Equation 7 2.3 Perturbation Theory 9 2.4 Canonical Transformation 9 2.5 Effective Masses 12 2.5.1 Electron 12 2.5.2 Light Hole 13 2.5.3 Heavy Hole 14 2.6 Nonparabolicity 14 2.7 Summary 15 3 Perturbation Theory - Valence Band 17 3.1 Overview 17 3.2 Dresselhaus-Kip-Kittel Model 17 3.2.1 Hamiltonian 17 3.2.2 Eigenvalues 21 3.2.3 L, M, N Parameters 22 3.2.4 Properties 30 3.3 Six-Band Model for Diamond 32 3.3.1 Hamiltonian 32 3.3.2 DKKSolution 40 3.3.3 Kane Solution 43 xiii

xiv 3.4 Wurtzite 45 3.4.1 Overview 45 3.4.2 Basis States 46 3.4.3 Chuang-Chang Hamiltonian 46 3.4.4 Gutsche-Jahne Hamiltonian 52 3.5 Summary 54 4 Perturbation Theory - Kane Models 55 4.1 Overview 55 4.2 First-Order Models 55 4.2.1 Four-Band Model 56 4.2.2 Eight-Band Model 57 4.3 Second-Order Kane Model 61 4.3.1 Löwdin Perturbation 61 4.3.2 Four-Band Model 62 4.4 Full-Zone к p Model 64 4.4.1 15-Band Model 64 4.4.2 Other Models 69 4.5 Wurtzite 69 4.5.1 Four-Band: Andreev-O'Reilly 70 4.5.2 Eight-Band: Chuang-Chang 71 4.5.3 Eight-Band: Gutsche-Jahne 71 4.6 Summary 77 5 Method of Invariants 79 5.1 Overview 79 5.2 DKK Hamiltonian - Hybrid Method 79 5.3 Formalism 84 5.3.1 Introduction 84 5.3.2 Spatial Symmetries 84 5.3.3 Spinor Representation 88 5.4 Valence Band of Diamond 88 5.4.1 No Spin 89 5.4.2 Magnetic Field 90 5.4.3 Spin-Orbit Interaction 93 5.5 Six-Band Model for Diamond 114 5.5.1 Spin-Orbit Interaction 115 5.5.2 /t-dependent Part 115 5.6 Four-Band Model for Zincblende 116 5.7 Eight-Band Model for Zincblende 117 5.7.1 Weiler Hamiltonian 117 5.8 14-Band Model for Zincblende 120 5.8.1 Symmetrized Matrices 121 5.8.2 Invariant Hamiltonian 123

xv 5.8.3 T Basis Matrices 125 5.8.4 Parameters 128 5.9 Wurtzite 132 5.9.1 Six-Band Model 132 5.9.2 Quasi-Cubic Approximation 136 5.9.3 Eight-Band Model 137 5.10 Method of Invariants Revisited 140 5.10.1 Zincblende 140 5.10.2 Wurtzite 146 5.11 Summary 151 6 Spin Splitting 153 6.1 Overview 153 6.2 Dresselhaus Effect in Zincblende 154 6.2.1 Conduction State 154 6.2.2 Valence States 154 6.2.3 Extended Kane Model 156 6.2.4 Sign of Spin-Splitting Coefficients 160 6.3 Linear Spin Splittings in Wurtzite 161 6.3.1 Lower Conduction-Band e States 163 6.3.2 А, В, С Valence States 164 6.3.3 Linear Spin Splitting 165 6.4 Summary 166 7 Strain 167 7.1 Overview 167 7.2 Perturbation Theory 167 7.2.1 Strain Hamiltonian 167 7.2.2 Löwdin Renormalization 170 7.3 Valence Band of Diamond 170 7.3.1 DKK Hamiltonian 171 7.3.2 Four-Band Bir-Pikus Hamiltonian 171 7.3.3 Six-Band Hamiltonian 172 7.3.4 Method of Invariants 174 7.4 Strained Energies 177 7.4.1 Four-Band Model 177 7.4.2 Six-Band Model 179 7.4.3 Deformation Potentials 179 7.5 Eight-Band Model for Zincblende 180 7.5.1 Perturbation Theory 181 7.5.2 Method of Invariants 182 7.6 Wurtzite 183 7.6.1 Perturbation Theory 183 7.6.2 Method of Invariants 184

xvi 7.6.3 Examples 186 7.7 Summary 186 Part II Nonperiodic Problem 8 Shallow Impurity States 189 8.1 Overview 189 8.2 Kittel-Mitchell Theory 190 8.2.1 Exact Theory 191 8.2.2 Wannier Equation 193 8.2.3 Donor States 194 8.2.4 Acceptor States 197 8.3 Luttinger-Kohn Theory 198 8.3.1 Simple Bands 199 8.3.2 Degenerate Bands 210 8.3.3 Spin-Orbit Coupling 213 8.4 Baldereschi-Lipari Model 214 8.4.1 Hamiltonian 216 8.4.2 Solution 217 8.5 Summary 219 9 Magnetic Effects 221 9.1 Overview 221 9.2 Canonical Transformation 222 9.2.1 One-Band Model 222 9.2.2 Degenerate Bands 230 9.2.3 Spin-Orbit Coupling 232 9.3 Valence-Band Landau Levels 235 9.3.1 Exact Solution 235 9.3.2 General Solution 239 9.4 Extended Kane Model 240 9.5 Lande g-factor 240 9.5.1 Zincblende 241 9.5.2 Wurtzite 243 9.6 Summary 244 10 Electric Field 245 10.1 Overview 245 10.2 One-Band Model of Stark Effect 245 10.3 Multiband Stark Problem 246 10.3.1 Basis Functions 246 10.3.2 Matrix Elements of the Coordinate Operator 248 10.3.3 Multiband Hamiltonian 249 10.3.4 Explicit Form of Hamiltonian Matrix Contributions... 253

xvli 10.4 Summary 255 11 Excitons 257 11.1 Overview 257 11.2 Excitonic Hamiltonian 258 11.3 One-Band Model of Excitons 259 11.4 Multiband Theory of Excitons 261 11.4.1 Formalism 261 11.4.2 Results and Discussions 266 11.4.3 Zincblende 267 11.5 Magnetoexciton 268 11.6 Summary 270 12 Heterostructures: Basic Formalism 273 12.1 Overview 273 12.2 Bastard's Theory 274 12.2.1 Envelope-Function Approximation 274 12.2.2 Solution 276 12.2.3 Example Models 277 12.2.4 General Properties 279 12.3 One-Band Models 280 12.3.1 Derivation 280 12.4 Burt-Foreman Theory 282 12.4.1 Overview 283 12.4.2 Envelope-Function Expansion 283 12.4.3 Envelope-Function Equation 287 12.4.4 Potential-Energy Term 294 12.4.5 Conventional Results 299 12.4.6 Boundary Conditions 305 12.4.7 Burt-Foreman Hamiltonian 306 12.4.8 Beyond Burt-Foreman Theory? 316 12.5 Sercel-Vahala Theory 318 12.5.1 Overview 318 12.5.2 Spherical Representation 319 12.5.3 Cylindrical Representation 324 12.5.4 Four-Band Hamiltonian in Cylindrical Polar Coordinates 329 12.5.5 Wurtzite Structure 336 12.6 Arbitrary Nanostructure Orientation 350 12.6.1 Overview 350 12.6.2 Rotation Matrix 350 12.6.3 General Theory 352 12.6.4 [110] Quantum Wires 353 12.7 Spurious Solutions 360 12.8 Summary 361

xviii 13 Heterostructures: Further Topics 363 13.1 Overview 363 13.2 Spin Splitting 363 13.2.1 Zincblende Superlattices 363 13.3 Strain in Heterostructures 367 13.3.1 External Stress 367 13.3.2 Strained Heterostructures 369 13.4 Impurity States 371 13.4.1 Donor States 371 13.4.2 Acceptor States 372 13.5 Excitons 373 13.5.1 One-Band Model 373 13.5.2 Type-II Excitons 376 13.5.3 Multiband Theory of Excitons 377 13.6 Magnetic Problem 378 13.6.1 One-Band Model 379 13.6.2 Multiband Model 382 13.7 Static Electric Field 384 13.7.1 Transverse Stark Effect 384 13.7.2 Longitudinal Stark Effect 386 13.7.3 Multiband Theory 388 14 Conclusion 391 A Quantum Mechanics and Group Theory 393 A.l Löwdin Perturbation Theory 393 A. 1.1 Variational Principle 393 A.1.2 Perturbation Formula 394 A.2 Group Representation Theory 397 A.2.1 Great Orthogonality Theorem 397 A.2.2 Characters 398 A.3 Angular-Momentum Theory 399 A.3.1 Angular Momenta 399 A.3.2 Spherical Tensors 399 A.3.3 Wigner-Eckart Theorem 400 A.3.4 Wigner 3y Symbols 400 В Symmetry Properties 401 B.l Introduction 401 B.2 Zincblende 401 B.2.1 Point Group 402 B.2.2 Irreducible Representations 403 B.3 Diamond 406 B.3.1 Symmetry Operators 406 B.3.2 Irreducible Representations 407

xix B.4 Wurtzite 407 B.4.1 Irreducible Representations 410 С Hamiltonians 413 C.l Basis Matrices 413 C.1.1 s = i 413 C.1.2 / = 1 413 C.1.3 J = \ 413 C.2 \JMj) States 414 C.3 Hamiltonians 414 C.3.1 Notations 416 C.3.2 Diamond 416 C.3.3 Zincblende 416 C.3.4 Wurtzite 416 C.3.5 Heterostructures 416 C.4 Summary ofkp Parameters 416 References 431 Index 443