Planet Occurrence Within 0.25 AU

Similar documents
Outline. RV Planet Searches Improving Doppler Precision Population Synthesis Planet Formation Models Eta-Earth Survey Future Directions

Occurrence of 1-4 REarth Planets Orbiting Sun-Like Stars

The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets

Why Search for Extrasolar Planets?

EXONEST The Exoplanetary Explorer. Kevin H. Knuth and Ben Placek Department of Physics University at Albany (SUNY) Albany NY

Imprints of Formation on Exoplanets

The Kepler Exoplanet Survey: Instrumentation, Performance and Results

GJ 436. Michaël Gillon (Geneva)

Search for & Characterizing Small Planets with NASA s Kepler Mission

arxiv: v1 [astro-ph.ep] 20 Mar 2011

Asteroseismology & Exoplanets: A Kepler Success Story

The Search for Habitable Worlds Lecture 3: The role of TESS

Multiplanet Systems as Laboratories for Planet Formation

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due

Convection in Cool Stars, as Seen through Kepler's Eyes

Discovery of Planetary Systems With SIM

Revisiting the Radius Gap with Gaia DR2

Searching For Planets Like Earth around stars like the Sun

Architecture and demographics of planetary systems

10/16/ Detecting Planets Around Other Stars. Chapter 10: Other Planetary Systems The New Science of Distant Worlds

The exoplanet eccentricity distribution from Kepler planet candidates

Extrasolar Planets. Properties Pearson Education Inc., publishing as Pearson Addison-Wesley

Kepler Stellar Properties Catalog Update for Q1-Q17 Transit Search

Revealing the Fundamental Properties of Exoplanets and their Host Stars with Alopeke

Transiting Extrasolar Planets

arxiv: v1 [astro-ph.sr] 28 Mar 2016

The Hertzprung-Russell Diagram. The Hertzprung-Russell Diagram. Question

Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us.

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

UNDERSTANDING THE EFFECTS OF STELLAR MULTIPLICITY ON THE DERIVED PLANET RADII FROM TRANSIT SURVEYS: IMPLICATIONS FOR KEPLER, K2, AND TESS

arxiv: v1 [astro-ph.ep] 23 Oct 2018

III The properties of extrasolar planets

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Super-Earths as Failed Cores in Orbital Migration Traps

Exoplanet Host Stars

HARPS-N Contributions to the Mass-Radius

Orbital Obliquities of Small Planets from CHARA Stellar Diameters

What is to expect from the transit method. M. Deleuil, Laboratoire d Astrophysique de Marseille Institut Universitaire de France

Observational constraints from the Solar System and from Extrasolar Planets

Validation of Transiting Planet Candidates with BLENDER

Kepler Planets back to the origin

Project RISARD. - the story so far. Marcin P. Gawroński (Toruń Centre for Astronomy)

RV- method: disturbing oscilla8ons Example: F- star Procyon

Extreme AO Coronagraph Science with GPI. James R. Graham UC, Berkeley

The obliquities of the planetary systems detected with CHEOPS. Guillaume Hébrard Institut d astrophysique de Paris Observatoire de Haute-Provence

arxiv: v1 [astro-ph.ep] 13 Jul 2015

The Fast Spin of β Pic b

Demographic Studies of Extrasolar Planets

Data from: The Extrasolar Planet Encyclopaedia.

Planet Detection. AST 105 Intro Astronomy The Solar System

Science White Paper Submitted to Astro2010 February 15, 2009

Observed Properties of Stars - 2 ASTR 2120 Sarazin

Science Olympiad Astronomy C Division Event National Exam

Kepler s Multiple Planet Systems

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

The Physics of Exoplanets

The SPIRou RV surveys. Étienne Artigau for the SPIRou collaboration

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017

Finding Extra-Solar Earths with Kepler. William Cochran McDonald Observatory

The effect of stellar activity on radial velocities. Raphaëlle D. Haywood Sagan Fellow, Harvard College Observatory

STELLAR MULTIPLICITY AND ITS ROLE IN EXOPLANETARY SYSTEMS

A Long-Period Jupiter-Mass Planet Orbiting the Nearby M Dwarf GJ 849 1

Towards Better Planet Occurrence Rates from Kepler and K2 Andrew Vanderburg

Probabilistic modeling and Inference in Astronomy

Probing the Dynamical History of Exoplanets: Spectroscopic Observa<ons of Transi<ng Systems

Science with Transiting Planets TIARA Winter School on Exoplanets 2008

Chapter 13 Other Planetary Systems. The New Science of Distant Worlds

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Size Difference. Brightness Difference

Habitability in the Upsilon Andromedae System

MINIMUM MASS EXTRASOLAR NEBULA DERIVED FROM THE MASS OF EXTRASOLAR PLANETARY SYSTEMS

arxiv: v1 [astro-ph.ep] 5 Oct 2018

» How vast those Orbs must be, and how inconsiderable this Earth, the Theatre upon which all our mighty Designs, all our Navigations, and all our

Uniform Modeling of KOIs:

Search for Transiting Planets around Nearby M Dwarfs. Norio Narita (NAOJ)

Chapter 13 Lecture. The Cosmic Perspective. Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Credit: NASA/Kepler Mission/Dana Berry. Exoplanets

Observed Properties of Stars - 2 ASTR 2110 Sarazin

Observations of Extrasolar Planets

Probing the Galactic Planetary Census

arxiv: v1 [astro-ph.ep] 4 Jan 2013

Astronomical Observations(?) for Transit Validation

arxiv: v1 [astro-ph.sr] 2 Jan 2010

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Brightness Difference

BENJAMIN T. MONTET. Department of Astronomy and Astrophysics 5640 S. Ellis Ave. Chicago, IL 60637

Kepler Stellar Properties Catalog Update for Q1-Q17 DR25 Transit Search

PLATO-2.0 Follow-up. Questions addressed. PLATO Follow-up activities. Mass distribution Spectroscopy. Small mass planets are numerous => huge work

The Impact of Gaia on Our Knowledge of Stars and Their Planets

Planets and Brown Dwarfs

REDUCED LIGHT CURVES FROM CAMPAIGN 1 OF THE K2 MISSION

Chapter 8: The Family of Stars

The Rossiter- McLaughlin Effect

Characterizing Stars

Bayesian Model Selection & Extrasolar Planet Detection

PROXIMA CENTAURI B: DISCOVERY AND HABITABILITY XIANG ZHANG

2010 Pearson Education, Inc.

Lecture 20: Planet formation II. Clues from Exoplanets

Lines of Hydrogen. Most prominent lines in many astronomical objects: Balmer lines of hydrogen

Exoplanetary transits as seen by Gaia

Keck Key Strategic Mission Support Program for WFIRST

Transcription:

Planet Occurrence Within 0.25 AU Andrew W. Howard UC Berkeley California Planet Search Team: Geoff Marcy, Debra Fischer, John Johnson, Jason Wright, Howard Isaacson, Julien Spronck, Jeff ValenO, Jay Anderson, Nikolai Piskunov, more! Photo credit: Laurie Hatch

Acknowledgements NASA: Kepler PI: Bill Borucki & Deputy PI: David Koch Ball Aerospace The Kepler Team:

Well-Characterized Planets

Well-Characterized Planets HZ

Well-Characterized Planets Close-in Planets HZ

Well-Characterized Planets Close-in Planets Measure planet mass & radius functions Constrain planet densities Probe planet formation and migration Test population synthesis models Guide future searches HZ

Well-Characterized Planets Close-in Planets Measure planet mass & radius functions Constrain planet densities Probe planet formation and migration Test population synthesis models Guide future searches HZ

50 days 2 Earth Radii 95% True planets - Morton and Johnson (2011)

Choose Subset of Planets/Stars for High Detectability Only GK dwarfs (T eff /logg) Only bright stars (Kp < 15) Only high SNR transits (SNR > 10 in 90 days) KOI 223.02 Full sample Restricted sample ~156,000 stars ~58,000 stars 1,230 planets 438 planets P=41.008 d Rp=2.4 Re

Choose Subset of Planets/Stars for High Detectability GK dwarfs Only GK dwarfs (T eff /logg) Only bright stars (Kp < 15) Only high SNR transits (SNR > 10 in 90 days) KOI 223.02 Full sample Restricted sample ~156,000 stars ~58,000 stars 1,230 planets 438 planets P=41.008 d Rp=2.4 Re

Choose Subset of Planets/Stars for High Detectability GK dwarfs Only GK dwarfs (T eff /logg) Only bright stars (Kp < 15) Only high SNR transits (SNR > 10 in 90 days) SNR 10 KOI 223.02 Full sample Restricted sample ~156,000 stars ~58,000 stars 1,230 planets 438 planets P=41.008 d Rp=2.4 Re

Howard et al. (2011c)

Howard et al. (2011c)

Compute Planet Occurrence in Small Domain Howard et al. (2011c)

Compute Planet Occurrence in Small Domain Correct for: Transit probabilities - ptransit = R /a Incompleteness - some stars lack the photometric sensitivity 2R Howard et al. (2011c)

Howard et al. (2011c)

Howard et al. (2011c)

Planet Radius Distribution Number of Planets per Star with P < 50 days 0.12 0.10 0.08 0.06 0.04 0.02 0.00 1.0 1.4 2.0 2.8 4.0 5.7 8.0 11.3 16.0 22.6 Planet Radius (R E ) Power law: dn/dlogr = kr α k = 2.9 ± 0.5 α = -1.92 ± 0.11 Howard et al. (2011c)

Number of Planets per Star with P < 50 days Planet Radius Distribution Kepler Howard et al. 2011c, ApJ submitted, arxiv:1103.2541 0.12 0.10 0.08 0.06 0.04 0.02 0.00 1.0 1.4 2.0 2.8 4.0 5.7 8.0 11.3 16.0 22.6 Planet Radius (R E ) Planet Mass Distribution Eta-Earth Survey (Doppler) Howard et al. 2010, Science, 330, 653 Power Law Radius Function df/dlogr = kr α k = 2.9±0.5, α = -1.92±0.5 Power Law Mass Function df/dlogm = km α k = 0.39 +0.27-0.16, α = -0.48 +0.12-0.14 Extrapolate: η Earth = 23 +16-10% Msini = 0.5-2.0 M E, P < 50 days

Back to Kepler: Planet Period Distribution Howard et al. (2011c)

Power Law Increasing Planet Occurrence per log P bin Power law with Exponential Cutoff: dn/dlogp = kp β (1-exp((P/P0) γ )) Howard et al. (2011c)

Exponential Cutoff Power Law Increasing Planet Occurrence per log P bin Power law with Exponential Cutoff: dn/dlogp = kp β (1-exp((P/P0) γ )) Howard et al. (2011c)

Howard et al. (2011c)

Howard et al. (2011c)

Hot Jupiters: 0.5-0.7% - Kepler 1.2 +/- 0.2% - Doppler Different stellar samples? Howard et al. (2011c)

Planet Occurrence vs. Stellar Temperature Number of Planets per Star with P < 50 days 0.4 0.3 0.2 0.1 1081 stars 1761 stars 6009 stars 18865 stars 31369 stars 11795 stars 2299 stars M0 K5 K2 K0 G8 G5 G2 G0 F8 F5 F2 2 32 R E 2 4 R E 4 8 R E 8 32 R E 0.0 3600 4100 4600 5100 5600 6100 6600 7100 Stellar Effective Temperature, T eff (K) Howard et al. (2011c)

Planet Occurrence vs. M Occurrence within 0.25 AU of small planets decreases with M Occurrence within 2.5 AU of giant planets increases with M Howard et al. (2011c) Johnson et al. (2010)

Take Home Message: Planet Occurrence ï d2f/dlogp/dlogrp 0.001 0.002 0.004 0.0079 0.000035 0.00007 0.00014 0.00028 0.016 0.032 0.063 0.13 0.25 0.50 1.0 0.00056 0.0011 0.0022 0.0044 0.0088 0.018 0.035 Planet Occurrence ï fcell 32 1 (9) 58036 Planet Radius, Rp (RE) 16 8 4 1 (2) 58018 1 (4) 57907 1 (15) 58030 0.0075 0.00026 1 (52) 58020 0.0054 4 (39) 0.00019 58028 0.019 6 (69) 0.00067 58022 0.034 1 (15) 0.0012 58017 0.0071 1 (28) 0.00025 58009 0.0010 1 (6) 0.00004 58009 0.0029 4 (34) 0.00010 58004 0.017 3 (25) 0.00058 57998 0.012 1 (15) 0.00043 57988 0.0076 3 (70) 0.00027 57981 0.034 4 (154) 0.0012 57963 1 (6) 57982 0.0029 1 (9) 0.00010 57967 0.0044 7 (73) 0.00015 57942 0.036 4 (74) 0.0012 57903 0.037 2 (31) 0.0013 57859 0.015 4 (160) 0.00053 57804 0.079 5 (278) 0.0028 57738 0.14 0.0048 4 (45) 57808 0.022 2 (18) 0.00078 57749 0.0087 4 (60) 0.00030 57653 0.030 5 (153) 0.0010 57538 0.076 6 (208) 0.0027 57429 0.10 5 (198) 0.0036 57240 0.099 0.0035 3 (20) 57442 0.010 9 (104) 0.00035 57262 0.0021 0.00007 3 (21) 56665 0.014 1 (25) 0.00049 58004 0.012 3 (168) 0.00043 57997 0.082 0.0029 0.076 0.0026 0.052 21 (353) 0.0018 57001 0.18 23 (607) 0.0062 56605 0.31 16 (591) 0.011 55834 0.30 17 (799) 0.011 54371 0.43 0.015 0.011 7 (64) 0.00037 55966 0.032 21 (269) 0.0011 54585 0.15 31 (521) 0.0051 52260 0.30 36 (893) 0.010 48639 0.53 34 (1101) 0.019 43318 0.79 18 (749) 0.028 36296 0.61 0.021 0.76 0.027 1 (5) 52618 0.0026 3 (17) 0.00009 49170 0.012 11 (85) 0.00042 44059 0.060 19 (262) 0.0021 37278 0.22 11 (159) 0.0079 29498 0.16 16 (375) 0.0056 21606 0.43 12 (410) 0.015 14712 0.83 7 (295) 0.029 9157 3 (10) 0.0075 1 (10) 0.00026 22540 0.011 4 (50) 0.00040 15445 0.067 6 (59) 0.0023 9764 0.22 1 (18) 0.0077 5784 0.062 3 (85) 0.0022 3170 0.81 2 (41) 0.028 1605 0.95 0.033 1 30446 0.68 0.026 0.00090 2 (11) 58031 2 Number of Planets per Star with P < 50 days 0.0042 0.00015 1.2 2.0 3.4 5.9 10 Orbital Period, P (days) 17 29 50 0.12 0.10 0.08 0.06 0.04 0.02 0.00 1.0 1.4 2.0 2.8 4.0 5.7 8.0 Planet Radius (RE) 11.3 16.0 22.6

Take Home Message: Planet Occurrence ï d2f/dlogp/dlogrp 0.001 0.002 0.004 0.0079 0.000035 0.00007 0.00014 0.00028 0.016 0.032 0.063 0.13 0.25 0.50 1.0 0.00056 0.0011 0.0022 0.0044 0.0088 0.018 0.035 Planet Occurrence ï fcell 32 1 (9) 58036 16 Planet Radius, Rp (RE) Small Planets are Common 8 4 1 (2) 58018 1 (4) 57907 1 (15) 58030 0.0075 0.00026 1 (52) 58020 0.0054 4 (39) 0.00019 58028 0.019 6 (69) 0.00067 58022 0.034 1 (15) 0.0012 58017 0.0071 1 (28) 0.00025 58009 0.0010 1 (6) 0.00004 58009 0.0029 4 (34) 0.00010 58004 0.017 3 (25) 0.00058 57998 0.012 1 (15) 0.00043 57988 0.0076 3 (70) 0.00027 57981 0.034 4 (154) 0.0012 57963 1 (6) 57982 0.0029 1 (9) 0.00010 57967 0.0044 7 (73) 0.00015 57942 0.036 4 (74) 0.0012 57903 0.037 2 (31) 0.0013 57859 0.015 4 (160) 0.00053 57804 0.079 5 (278) 0.0028 57738 0.14 0.0048 4 (45) 57808 0.022 2 (18) 0.00078 57749 0.0087 4 (60) 0.00030 57653 0.030 5 (153) 0.0010 57538 0.076 6 (208) 0.0027 57429 0.10 5 (198) 0.0036 57240 0.099 0.0035 3 (20) 57442 0.010 9 (104) 0.00035 57262 0.0021 0.00007 3 (21) 56665 0.014 1 (25) 0.00049 58004 0.012 3 (168) 0.00043 57997 0.082 0.0029 0.076 0.0026 0.052 21 (353) 0.0018 57001 0.18 23 (607) 0.0062 56605 0.31 16 (591) 0.011 55834 0.30 17 (799) 0.011 54371 0.43 0.015 0.011 7 (64) 0.00037 55966 0.032 21 (269) 0.0011 54585 0.15 31 (521) 0.0051 52260 0.30 36 (893) 0.010 48639 0.53 34 (1101) 0.019 43318 0.79 18 (749) 0.028 36296 0.61 0.021 0.76 0.027 1 (5) 52618 0.0026 3 (17) 0.00009 49170 0.012 11 (85) 0.00042 44059 0.060 19 (262) 0.0021 37278 0.22 11 (159) 0.0079 29498 0.16 16 (375) 0.0056 21606 0.43 12 (410) 0.015 14712 0.83 7 (295) 0.029 9157 3 (10) 0.0075 1 (10) 0.00026 22540 0.011 4 (50) 0.00040 15445 0.067 6 (59) 0.0023 9764 0.22 1 (18) 0.0077 5784 0.062 3 (85) 0.0022 3170 0.81 2 (41) 0.028 1605 0.95 0.033 1 30446 0.68 0.026 0.00090 2 (11) 58031 2 Number of Planets per Star with P < 50 days 0.0042 0.00015 1.2 2.0 3.4 5.9 10 Orbital Period, P (days) 17 29 50 0.12 0.10 0.08 0.06 0.04 0.02 0.00 1.0 1.4 2.0 2.8 4.0 5.7 8.0 Planet Radius (RE) 11.3 16.0 22.6

QuesXons?