ANTIFERROELECTRIC LIQUID CRYSTALS WITH 45 TILT - A NEW CLASS OF PROMISING ELECTRO-OPTIC MATERIALS

Similar documents
ELECTROOPTIC AND DIELECTRIC PROPERTIES OF NEW ANTIFERROELECTRIC LIQUID CRYSTAL MIXTURES. Chalmers University of Technology, S Göteborg, Sweden;

ECE185 LIQUID CRYSTAL DISPLAYS

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT

Molecular orientational properties of a high-tilt chiral smectic liquid crystal determined from its infrared dichroism

Fast-Response Infrared Ferroelectric Liquid Crystal Phase Modulators

Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite

High-speed infrared phase modulators using short helical pitch ferroelectric liquid crystals

ON THE COEXISTENCE OF SmC* AND SmC A * PHASES IN BINARY CHIRAL-DOPANT ANTIFERROELECTRIC MIXTURES

POLARISATION. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion.

MP5: Soft Matter: Physics of Liquid Crystals

Chapter 1 Introduction

Lecture 4: Anisotropic Media. Dichroism. Optical Activity. Faraday Effect in Transparent Media. Stress Birefringence. Form Birefringence

A B. What s a Liquid Crystal? G = H - TS K = [B]/[A] K = e - G/RT

SYNCHROTRON X-RAY MICROBEAM CHARACTERIZATION OF SMECTIC A LIQUID CRYSTALS UNDER ELECTRIC FIELD

AN APPARATUS OF INCREASED PRECISION FOR THE MEASUREMENT OF ELECTRO-OPTICAL PARAMETERS OF LIQUID CRYSTALS

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces

Synthesis and properties of high tilted antiferroelectric esters with partially fluorinated alkoxyalkoxy terminal chains

5. Liquid Crystal Display

Strong flexoelectric behavior in bimesogenic liquid crystals

Control of Dispersion in Form Birefringent-Based Holographic Optical Retarders

(-)-ISOPINOCAMPHEOL SUBSTITUTED MESOGENS: AN INVESTIGATION OF THE EFFECT OF BULKY TERMINAL GROUPS IN CHIRAL SMECTIC LIQUID CRYSTALS

X-RAY MICRODIFFRACTION STUDY OF THE HALF-V SHAPED SWITCHING LIQUID CRYSTAL

Optics of Liquid Crystal Displays

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11 13

Orientational Kerr effect in liquid crystal ferroelectrics and modulation of partially polarized light

Lecture 4: Polarisation of light, introduction

Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite

ANALYSIS OF AN UNUSUAL LIQUID CRYSTAL PHASE TRANSITION

Polarity-directed analog electro-optic switching in a low-polarization chiral smectic liquid crystal with positive dielectric anisotropy

Nematic Twist Cell: Strong Chirality Induced at the Surfaces

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich

Chiroptical Spectroscopy

Evidence for Triclinic Symmetry in Smectic Liquid Crystals of Bent-Shape Molecules

Poled Thick-film Polymer Electro-optic Modulation Using Rotational Deformation Configuration

Soft Matter PAPER. Transition between two orthogonal polar phases in symmetric bent-core liquid crystals. Dynamic Article Links C <

4. Circular Dichroism - Spectroscopy

Transient Electro-Optic Properties of Liquid Crystal Gels

Diffraction light modulator based on transverse electro-optic effect in short-pitch ferroelectric liquid crystals

Title. Author(s)Bourny, Valéry; Fajar, Andika; Orihara, Hiroshi. CitationPhysical Review E, 62(5): R5903-R5906. Issue Date Doc URL.

Optical Mineralogy in a Nutshell

Optical Mineralogy. Optical Mineralogy. Use of the petrographic microscope

Chapter 1. Introduction

Introduction to Polarization

Chap. 2. Polarization of Optical Waves

7 Optical modulators. 7.1 Electro-optic modulators Electro-optic media

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline

POLARIZATION OF LIGHT

Introduction to Liquid Crystals

Switching behaviour of ferroelectric liquid crystals probed by optical second-harmonic generation

Ferro-electric SmC* elastomers Mark Warner Cavendish Laboratory, Cambridge.

Physics 313: Laboratory 8 - Polarization of Light Electric Fields

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11-13

[D] indicates a Design Question

Polarization of Light and Birefringence of Materials

Chapter 9 Electro-optic Properties of LCD

ELECTRO-OPTIC RESPONSE OF HOMEOTROPIC, HOLE PATTERNED, NEMATIC LIQUID CRYSTAL CELLS UNDER AC AND DC VOLTAGE. A dissertation submitted

LIQUID CRYSTALS Introduction

Physics I Keystone Institute Technology & Management Unit-II

OPTI 511L Fall A. Demonstrate frequency doubling of a YAG laser (1064 nm -> 532 nm).

POLARIZATION FUNDAMENTAL OPTICS POLARIZATION STATES 1. CARTESIAN REPRESENTATION 2. CIRCULAR REPRESENTATION. Polarization. marketplace.idexop.

Dissertation. Thresholdless electrooptical mode in Ferroelectric Liquid Crystals. Vom Fachbereich Physik der Technischen Universität Darmstadt

GRATING CLASSIFICATION

Polarizers and Retarders

Deviations from Malus Law

Continuous viewing angle-tunable liquid crystal display using temperature-dependent birefringence layer

ALCT Measurement Principles

V-shaped switching ferroelectric liquid crystal structure stabilized by dielectric surface layers

Modeling and Design of an Optimized Liquid- Crystal Optical Phased Array

Simulations of liquid-crystal Fabry Perot etalons by an improved 4Ã4 matrix method

DYE DOPED NEMATIC LIQUID CRYSTAL REORIENTATION IN A LINEAR POLARIZED LASER FIELD: THRESHOLD EFFECT

Fundamentals of Photoelasticity

Surface Sensitivity & Surface Specificity

Temperature Tuning Characteristics of Periodically Poled Lithium Niobate for Second Harmonic Generation at 490 nm

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Programmable agile beam steering based on a liquid crystal prism

Chapter 5. Effects of Photonic Crystal Band Gap on Rotation and Deformation of Hollow Te Rods in Triangular Lattice

Polarized backlight based on selective total internal reflection at microgrooves

Optimizing the Nematic Liquid Crystal Relaxation Speed by Magnetic Field

Dopant-Enhanced Vertical Alignment of Negative Liquid Crystals

Lab #13: Polarization

Field-Dependent Tilt And Birefringence Of Electroclinic Liquid Crystals: Theory And Experiment

Supporting Information

Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method

Alignment of Liquid Crystals by Ion Etched Grooved Glass Surfaces. Yea-Feng Lin, Ming-Chao Tsou, and Ru-Pin Pan

OPSE FINAL EXAM Fall 2015 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

From the theory of liquid crystals to LCD-displays

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich

High-Resolution. Transmission. Electron Microscopy

object objective lens eyepiece lens

Ion Transport and Switching Currents in Smectic Liquid Crystal Devices

Follow this and additional works at: Part of the Chemistry Commons

A MONTE CARLO SIMULATION OF A TWISTED NEMATIC LIQUID CRYSTAL DISPLAY

Switchable Polarization-Independent Liquid- Crystal Fabry-Perot Filter

Light for which the orientation of the electric field is constant although its magnitude and sign vary in time.

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses

Elastic Properties of Liquid Crystal Elastomer Balloons

Summary of Fourier Optics

Widely tunable nonlinear liquid crystal-based photonic crystals

Electro-optic bistability in organosiloxane bimesogenic liquid crystals

Transcription:

ANTIFERROELECTRIC LIQUID CRYSTALS WITH 45 TILT - A NEW CLASS OF PROMISING ELECTRO-OPTIC MATERIALS K. D HAVÉ a *, A. DAHLGREN a, P. RUDQUIST a, J.P.F. LAGERWALL a, G. ANDERSSON a, M. MATUSZCZYK a, S.T. LAGERWALL a, R. DABROWSKI b, W. DRZEWINSKI b a School of Physics and Engineering Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden; b Institute of Chemistry, Military University of Technology, PL-00-908 Warszawa, Poland Antiferroelectric liquid crystals with a tilt angle of 45 degrees have very interesting optical properties, which seem to have been overlooked so far - perhaps because such materials have hardly been available. We have prepared a four-component mixture of partially fluorinated compounds with a SmC a * phase in the interval between 27.4 C and 121.6 C, in which the tilt angle θ saturates at 45 degrees for T 80 C, and we investigate the optical properties, theoretically and experimentally. One of the surprising features of 45 degree materials is that they permit a remarkably high contrast by virtue of an excellent dark-state, in spite of the fact that AFLC materials are notoriously difficult to align. This is because a 45 AFLC turns out to be (negatively) uniaxial instead of biaxial. We describe these properties and propose a number of potentially interesting new applications, including a polarizer-free display mode and a three-level phase-only modulator. Keywords uniaxial antiferroelectric liquid crystal; 45 tilt; Sm C a *; AFLC dielectric tensor; new electro-optic modes. * Permanent address: Ghent University, Department of Electronics and Information Systems, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium

K. D HAVÉ ET AL. INTRODUCTION Antiferroelectric liquid crystals show a tri-state electro-optic switching behavior which is appealing for display applications because of its inherent DC compensation, fast response, easy gray scale and wide viewing angle. However, the initial linear response and problems with high quality alignment have so far resulted in low contrast which has prohibited widespread application of AFLC s. With two exceptions AFLC materials with a tilt angle near 45 do not seem to have been reported earlier. The first similar material is MHTAC, synthesized in 1976 by Keller et al. [1] with a tilt angle approximating 45 degrees (θ 48 ), for which the electro-optic properties have been investigated by Cladis and Brand [2]. A more recent example was found by W. K. Robinson et al. [3][4] who have reported bi-mesogenic organosiloxane liquid crystals with an antiferroelectric phase. These materials show a temperature-independent tilt angle built into the molecule which reaches up to 43.5. For these liquid crystals the antiferroelectricity is a consequence of the molecular conformation. The mixture presented here obtains its antiferroelectricity from the anticlinic order between neighboring layers. THE ANTIFERROELECTRIC MATERIAL It is practically excluded to make 45 AFLC materials with a second order SmA*-SmC* transition, because the tilt typically saturates around 25 in the C* phase and does not increase very much further in the underlying C a * phase. In this mixture, called W107, the A*-C* transition is strongly first order, with an immediate jump in θ to 32. The sharpness of the transition is clearly exhibited in Figure 1, showing the tilt angle as a function of the temperature, and in Figure 2, showing the spontaneous polarization as a function of temperature. It is also clearly born out in the dielectric spectroscopy measurements and well observed in polarizing microscopy. The polarization of W107 was measured by the reversal method using a capacitance bridge. It reaches values as high as 300 nc/cm 2 at the low end temperature range of the antiferroelectric phase. The tilt angle was measured using the turntable of a polarizing microscope and a switching sample.

ANTIFERROELECTRIC LC S WITH 45 TILT Tilt Angle W107 50 40 C a * C* A* θ( ) 30 20 10 0 60 80 100 120 T( C) FIGURE 1 The measured tilt angle of the mixture W107, saturating at about 45 in the antiferroelectric phase. Polarisation W107 300 C a * C* A* P s (nc/cm 2) 200 100 0 40 80 120 T ( ) FIGURE 2 The measured polarization of the mixture W107. The structure of the liquid crystal compounds contained in the mixture W107 can be found in Table 1. A complete description of this series of partially fluorinated compounds is given in the paper by W. Drzewinski et al. [5]. The phase transition temperatures of this mixture were measured with Pyris 1 DSC equipment. The phases were checked by polarizing microscopy. The transitions, upon heating, can

K. D HAVÉ ET AL. TABLE 1 Composition of the mixture W107. %wt 6.31 molecule * F 3 C(CH 2 ) 2 COO(CH 2 ) 3 O COO COOCHC 6 H 13 CH 3 20.77 * F 7 C 3 COO(CH 2 ) 3 O COO COOCHC 6 H 13 CH 3 32.45 * F 15 C 7 COO(CH 2 ) 3 O COO COOCHC 6 H 13 CH 3 40.47 * F 7 C 3 COO(CH 2 ) 4 O COO COOCHC 6 H 13 CH 3 be summarized as following (temperatures in degrees Celsius) K - 27.4 - SmC a * - 119.5- SmC* - 121.6 - SmA* - 132.3 - I which are also displayed in the DSC traces. It is an interesting and intuitively surprising fact that, whereas the A*-C* transition, i.e. the onset of the tilt, is strongly first order, in contrast, the C*-C a * transition takes place practically with no enthalpy change (see inset of Figure 3). The transition from synclinic to anticlinic order at θ=36 seems to involve only a minimal disturbance of the system. This is also underlined by the perfectly continuous functions θ(t) and P s (T) in Figure 1 and Figure 2. Thus from these curves no phase transitions could have been noticed. On this point dielectric spectroscopy is invaluable, in disclosing (Figure 4) that in reality there is a very sharp transition between synclinic and anticlinic order.

ANTIFERROELECTRIC LC S WITH 45 TILT DSC data on heating W107 20.5 K 27.4 C SmC a * 18.9 18.8 119.5 C 121.6 C 132.3 C 20.0 18.7 Heat Flow (mw) 19.5 18.6 SmCa* SmC* SmA* I 120 130 140 19.0 18.5 0 20 40 60 80 100 120 140 Temperature ( C) FIGURE 3 DSC curve for the mixture W107, taken on heating. SmA* SmC* SmC a * log ε log f T ( C) FIGURE 4 A 3D overview of the dielectric behavior of W107. Note the sharp transition, from A* to C*, but in particular also from C* to C a *. Data were taken on a 36 µm sample.

OPTICAL PROPERTIES K. D HAVÉ ET AL. The optical properties of a surface-stabilized AFLC (unwound helix as equilibrium condition) can be analyzed starting from the herring-bone structure of Figure 5(a). The xz plane is parallel to the plane of the cell and contains the alternating tilt director in the assumed bookshelf geometry. If we consider light incident perpendicular to the cell, (thus in the y direction) vibrations along z will be essentially along the molecules, thus encountering a high polarizability and a high refractive index n γ, whereas vibrations along x will be along the molecular axis to a lesser degree and feel a lower value of n β. The difference between these refractive indices depends on the tilt angle θ: for small values of θ it will be large, but in contrast vanish for θ=45, as we will further elaborate on below. For light incident along x, vibrations along z will feel the same high index n γ, while vibrations along y will always be perpendicular to the long molecular axis and therefore encounter the lowest refractive index n α, furthermore independent of the tilt angle θ. This means that the optic axial plane of the biaxial indicatrix will be the yz plane as illustrated in Figure 5(b). In the particular case of θ=45 this means that n γ =n β, so that the medium becomes uniaxial, with the optic axis along y. The AFLC is then, in fact, negative uniaxial and in FIGURE 5 Herringbone order of the antiferroelectric seen in the tilt plane (a) and perpendicular to it (b). The axial plane of the indicatrix (containing the maximum and minimum index values) is perpendicular to the tilt plane.

ANTIFERROELECTRIC LC S WITH 45 TILT bookshelf geometry it is isotropic in the cell plane, i.e. behaves as a homeotropically aligned medium. This means that, regardless how the layer normal points, we have an extinction state between crossed polarizers. THE DIELECTRIC TENSOR The above reasoning is corroborated by simple calculations. Let us first consider the dielectric tensor for a general AFLC material with tilt angle θ in its imagined synclinic state, as to the right in Figure 6(a). (This would correspond to the field-induced ferroelectric state if dielectric effects are neglected.) In the molecular frame x y z in which z is along the director and y along the C 2 axis the tensor is diagonalized with its principal values ε 1, ε 2 and ε 3, cf. Figure 6(b), ε' ε 1 0 0 = 0 ε 2 0. (1) 0 0 ε 3 This tensor is transformed to our lab reference system, where z is along the smectic layer normal, by a similarity transformation, giving [6] ε 1 cos 2 θ ε 3 sin 2 + θ 0 ( ε 3 ε 1 ) sinθcosθ ε= Uε'U 1 = 0 ε 2 0. (2) ( ε 3 ε 1 ) sinθcosθ 0 ε 1 sin 2 θ + ε 3 cos 2 θ If we now go to the anticlinic state, to the left in Figure 6(a), every second layer is described by a tensor which is obtained from (2) by replacing θ with -θ. For propagation of visible light, the relevant tensor will be the average tensor, hence ε 1 cos 2 θ ε 3 sin 2 + θ 0 0 1 1 ε AF = --ε.(3) 2 +θ + --ε 2 θ = 0 ε 2 0 0 0 ε 1 sin 2 θ + ε 3 cos 2 θ This is the general expression for the dielectric tensor in an antiferroelectric liquid crystal, describing its biaxial properties. As the

K. D HAVÉ ET AL. elements ε 13 and ε 31 in the molecular forms canceled out on averaging we see that this tensor is diagonal in the lab frame corresponding to z along the smectic layer normal. In the limit of small θ the principle values in this frame approach the values (1) valid for the molecular frame. We now also see that the material will become uniaxial for θ=45. In this case ε( 45 ) = ε 0 0 0 ε 2 0 0 0 ε where ε is the average of ε 1 and ε 3. At optical frequencies ε 2 is smaller than ε. Hence a 45 AFLC is a negative uniaxial material with the optic axis perpendicular to the plane of tilt. From Figure 5(b) the ordinary and extraordinary indices are given by n e = ε 2 and n o = ε.a thorough analysis of the direction of the optical axis in the general AFLC case can be found in the article by A. De Meyere et al. [7]. (4) FIGURE 6 (a) Anticlinic and synclinic smectic state with the same tilt angle θ; (b) molecular (x y z ) and lab frame (xyz) in the synclinic state. OPTICAL AND ELECTRO-OPTICAL CONSEQUENCES A smectic A* phase is positively uniaxial, with the optic axis along the smectic layer normal z. A conventional smectic C a * phase has a certain biaxiality but behaves in a similar way, shows extinction if

ANTIFERROELECTRIC LC S WITH 45 TILT homeotropically aligned between crossed polarizers. A SmC a * phase with 45 tilt, however, behaves in the same way as a homeotropic SmA*, when the Sm C a * is in planar alignment, i.e. in bookshelf geometry. It will keep the extinction even when the sample is rotated under crossed polarizers. This has the attractive consequence that the field-free extinction will be good even if, due to slight misalignment, the smectic layer normal varies across the sample. As the SmC a * materials are hard to align and as the insufficient zero-field extinction normally is a problem for AFLC displays, 45 materials offer an interesting option, quite in addition to the obvious fact that when switching to the 45 ferroelectric state, the polarization plane of the incident light is rotated by 90, thus allowing maximum transmission in the bright state. It is also likely that the light leakage due to the pretransitional behavior at small applied fields will be smaller for 45 materials, because the indicatrix has to undergo a much more drastic change (from oblate to prolate) in order to give a visible shift in the apparent optic axis. INVESTIGATING THE OPTICAL PROPERTIES We assume a surface-stabilized bookshelf structure, i.e. with the helix permanently unwound by the surface torques. It is further assumed that the tilt plane is parallel to the plane of the cell. With the sample aligned such that the smectic layer normal is along one of the crossed polarizeranalyzer directions we will have extinction in the field-free state (E=0). The transmission (normalized to 1 for passage through parallel polarizers) in the fully switched state will then be given by T on = sin 2 2θ sin2 d π n syn -- (5) λ where θ is the molecular tilt, d is the cell thickness, λ is the wavelength of light in vacuum and n syn is the birefringence at the field-induced synclinic state (the ferroelectric state ). This implies that the liquid crystal must have a tilt angle of 45 if we want to achieve the maximum contrast, in addition to the requirement that the optical thickness should be adjusted to the half wave condition ( n syn d=λ/2).

K. D HAVÉ ET AL. 90 Off state transmission 80 70 Rotation of the sample ( ) 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 LC tilt angle ( ) 90 On state transmission 80 70 Rotation of the sample ( ) 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 LC tilt angle ( ) FIGURE 7 Calculated transmission of an AFLC bookshelf sample between crossed polarizers. For θ=45 the field-off transmission is zero and independent of the angular position of the sample. Under the same conditions an AFLC with θ=30 will show a bright state when turning the sample.

ANTIFERROELECTRIC LC S WITH 45 TILT On the other hand, if we rotate the antiferroelectric structure by the angle α out of the extinction position, under zero applied field, the off-state transmission varies according to T off = sin 2 2α sin2 d π n anti -- (6) λ where α is the angle between the smectic layer normal and the polarizer axis and n anti is the birefringence for the anticlinic order. In Figure 7 we have visualized T off and T on as functions of the molecular tilt and rotation of the sample between crossed polarizers (equations 5 and 6). In order to verify the predictions, sandwich type cells were constructed from glass substrates with patterned ITO giving a pixel dimension of 4 x 4 mm. Both substrates were coated with Pyraline, which gives planar alignment, but only one side was buffed. Polymer spacer balls with a diameter of 1.5µm were mixed in UV curable glue. (a) (b) (c) FIGURE 8 A sequence of micrographs showing (a) the non switched dark state (E=0), (b) switching with propagating fingers (0<E<E syn ) and (c) the switched bright state (E E syn ). As can be seen from the micrographs in Figure 8, we obtained an excellent alignment. Because the dark state is insensitive to small fluctuations in the smectic layer direction, the quality of the alignment can actually only be judged from observing the partially switched state, as shown in Figure 8(b). A further striking example of the optical properties of a 45 AFLC is observed by rotating the sample between crossed polarizers by an angle of 45. The sample should now switch between three dark states. The finger-like domains of antiferroelectric state that appear in the ferroelectric state upon switching should then be indistinguishable from each other. This has been confirmed experimentally, showing only dark states during the entire switching process.

K. D HAVÉ ET AL. APPLICATIONS In addition to increasing the contrast in the conventional AFLC display mode, a 45 material offers some new unique applications. One of the most attractive is a three-level phase-only modulator. Nonmechanical beam steering and dynamic holography devices utilizing liquid crystal spatial light phase-only modulators have great potential within for instance the fast expanding field of fiber telecommunication. The requirements for microsecond switching of such devices has directed the interest towards ferroelectric liquid crystals and today binary phase modulation devices such as optical interconnects based on surface stabilized ferroelectric liquid crystals have successfully been demonstrated. However, the binary feature of SSFLC s (providing a relative phase shift of for instance 0 or 180 ) limits their efficiency as half of the diffracted light is lost in negative diffracted orders. Therefore multilevel phase modulation, making possible approximated blazed gratings, would be desirable. Scalar diffraction theory gives that using three levels of phase modulation instead of only two in a 1D multi-pixel array the maximum intensity of the first order diffraction increases from 40.5% to about 68%. By using a 45 tilt AFLC material we can achieve this in the following way, illustrated in Figure 9. Consider linearly polarized light at normal incidence with its plane of polarization at 45 with respect to the smectic layer normal in the case of a surface stabilized 45 degree AFLC. In the two synclinic fieldinduced ferroelectric states (corresponding to applied positive and negative fields +E F and -E F ) the light wave will vibrate along and perpendicular to the director, respectively. Thus, it will experience the pure n e or n o depending on the sign of the applied voltage. On the other hand, at zero field the light will experience an isotropic medium with an effective refractive index n eff being an average of n e and n o, i.e. n eff (n e +n o )/2. By adjusting the cell thickness d such that d n=2λ/3, where n=n e -n o, a relative retardation of 0 (E=-E F ), 120 (E=0), or 240 (E=+E F ) is achieved. Note that none of these three retardation states will influence the polarization of the light, i.e. the incident light remains linear and no rotation of the plane of polarization occurs.these principles are presently being tested in a device and the results will be presented in a forthcoming paper [8].

ANTIFERROELECTRIC LC S WITH 45 TILT FIGURE 9 The states of a phase only modulator with a 45 tilt antiferroelectric liquid crystal, showing a different effective birefringence and hence three level modulation. Finally we propose a new electro-optic mode for AFLC s. Consider a randomly oriented sample of a 45 degree AFLC where the texture is built up of surface-stabilized micron sized bookshelf domains. Each micro domain has a well defined orientation of the smectic layer normal in the plane of the cell but there is no correlation in this orientation between the domains. Provided that the grain boundaries between the domains do not significantly scatter light the sample will be essentially transparent, since all domains will appear isotropic with the identical refractive index at normal incidence. However, if an electric field is applied and the AFLC is driven into one of the ferroelectric states the domains will appear strongly birefringent and there will be a mismatch of the refractive indices between adjacent domains due to the different orientation of the domain optic axes. This will cause scattering of light and, hence, we have a field-controlled scattering device. Attractive features of such a device would be that it would work without any polarizers and may be actively driven between transparent and scattering states by means of suitable waveforms. The creation of a conveniently randomized AFLC bookshelf structure is now under study. Acknowledgments This work was supported by the TMR-network Orchis, which unites 12 universities on Optical Research on Chiral Systems. We also gratefully acknowledge the support from the Swedish Foundation for Strategic Research.

K. D HAVÉ ET AL. References [1] P. Keller, L. Liebert, L. Strzelecki, J. de Physique,C3-27,37 (1976) [2] P. E. Cladis, H. R. Brand, Liq. Cryst., 14, 1327 (1993) [3] W. K. Robinson, P. S. Kloess, C. Carboni and H. J. Coles, Liq. Cryst., 23, 309 (1997) [4] W. K. Robinson, C. Carboni, P. S. Kloess, S. P. Perkins and H. J. Coles, Liq. Cryst., 25, 301 (1998) [5] W. Drzewinski, K. Czuprynski, R. Dabrowski and M. Neubert, Mol. Cryst. Liq. Cryst., in press (1999) [6] P. Jägemalm, On the Optics and Surface Physics of Liquid Crystals, Phd. thesis, Göteborg 1999. [7] A. De Meyere, B. Maximus, J. Fornier and B. Verweire, Mol.Cryst. Liq. Cryst., 317, 99 (1998) [8] B. Löfving, S. Hård, to be published