ECE 4213/5213 Test 1. SHOW ALL OF YOUR WORK for maximum partial credit! GOOD LUCK!

Similar documents
ECE 4213/5213 Test 2

EEL3135: Homework #4

NAME: ht () 1 2π. Hj0 ( ) dω Find the value of BW for the system having the following impulse response.

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

EE 3054: Signals, Systems, and Transforms Spring A causal discrete-time LTI system is described by the equation. y(n) = 1 4.

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

n

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Fall 2017 Exam #1

Solution 10 July 2015 ECE301 Signals and Systems: Midterm. Cover Sheet

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t

,. *â â > V>V. â ND * 828.

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f


Colby College Catalogue

Colby College Catalogue

Z Transform (Part - II)

Colby College Catalogue

Colby College Catalogue

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

GATE EE Topic wise Questions SIGNALS & SYSTEMS

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s


NAME: 23 February 2017 EE301 Signals and Systems Exam 1 Cover Sheet

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Spring 2018 Exam #1

Quiz. Good luck! Signals & Systems ( ) Number of Problems: 19. Number of Points: 19. Permitted aids:

NAME: 13 February 2013 EE301 Signals and Systems Exam 1 Cover Sheet

Final Exam January 31, Solutions

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

Digital Signal Processing Lecture 4

Problem Value Score No/Wrong Rec 3

Tausend Und Eine Nacht

ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114.

Problem Value Score No/Wrong Rec


DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010

Final Exam ECE301 Signals and Systems Friday, May 3, Cover Sheet

Digital Signal Processing. Midterm 1 Solution

Problem Weight Score Total 100

6.003 (Fall 2011) Quiz #3 November 16, 2011

Grades will be determined by the correctness of your answers (explanations are not required).

ECE 438 Exam 2 Solutions, 11/08/2006.

::::l<r/ L- 1-1>(=-ft\ii--r(~1J~:::: Fo. l. AG -=(0,.2,L}> M - &-c ==- < ) I) ~..-.::.1 ( \ I 0. /:rf!:,-t- f1c =- <I _,, -2...

The Z transform (2) 1

Problem Value

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

Humanistic, and Particularly Classical, Studies as a Preparation for the Law

T h e C S E T I P r o j e c t

ECE 350 Signals and Systems Spring 2011 Final Exam - Solutions. Three 8 ½ x 11 sheets of notes, and a calculator are allowed during the exam.

Digital Signal Processing I Final Exam Fall 2008 ECE Dec Cover Sheet

Grades will be determined by the correctness of your answers (explanations are not required).

I-1. rei. o & A ;l{ o v(l) o t. e 6rf, \o. afl. 6rt {'il l'i. S o S S. l"l. \o a S lrh S \ S s l'l {a ra \o r' tn $ ra S \ S SG{ $ao. \ S l"l. \ (?

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet

EE123 Digital Signal Processing

Mathematics Extension 1

Final Exam of ECE301, Section 1 (Prof. Chih-Chun Wang) 1 3pm, Friday, December 13, 2016, EE 129.

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)

APPH 4200 Physics of Fluids

EE 210. Signals and Systems Solutions of homework 2

is: 3o>« P 6 Jsgg E 2 si O j= o ocq O o & s r 3 O O K O r " CD r cd as c 3 ^th ^ "OU a 5 " c ?.53 drag S.S pqc O r OT3 4J o >> o.- X h 5 c o o C C :_

The Johns Hopkins University Department of Electrical and Computer Engineering Introduction to Linear Systems Fall 2002.

ECE538 Final Exam Fall 2017 Digital Signal Processing I 14 December Cover Sheet

EE123 Digital Signal Processing. M. Lustig, EECS UC Berkeley

ECE 301 Division 1 Exam 1 Solutions, 10/6/2011, 8-9:45pm in ME 1061.

Digital Signal Processing, Homework 1, Spring 2013, Prof. C.D. Chung

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

Solution 7 August 2015 ECE301 Signals and Systems: Final Exam. Cover Sheet


EE538 Final Exam Fall 2007 Mon, Dec 10, 8-10 am RHPH 127 Dec. 10, Cover Sheet

ECE301 Fall, 2006 Exam 1 Soluation October 7, Name: Score: / Consider the system described by the differential equation

NAME: 11 December 2013 Digital Signal Processing I Final Exam Fall Cover Sheet

Module 4. Related web links and videos. 1. FT and ZT

Problem Value

[Name: [ Final Exam ECE301 Signals and Systems Wednesday, May 6, Cover Sheet

x(t) = t[u(t 1) u(t 2)] + 1[u(t 2) u(t 3)]

ECE 301. Division 2, Fall 2006 Instructor: Mimi Boutin Midterm Examination 3

EECE 301 Signals & Systems Prof. Mark Fowler

Stability Condition in Terms of the Pole Locations

R e p u b lic o f th e P h ilip p in e s. R e g io n V II, C e n tra l V isa y a s. C ity o f T a g b ila ran

Vr Vr

Problem Value

I;;"" I _ t. . - I...AJ_ ~I 11 \_-., I. LIfI.l..(!;O '{. ~- --~--- _.L...,.._ J 5" i. I! I \ 1/ \. L, :,_. RAmE ABSTRACT

PHYS 232 QUIZ minutes.

Kr7. wd /J-t- To pick up your graded exam from a box outside 5100A Pacific Hall sign here:

Question Paper Code : AEC11T02

q-..1 c.. 6' .-t i.] ]J rl trn (dl q-..1 Orr --l o(n ._t lr< +J(n tj o CB OQ ._t --l (-) lre "_1 otr o Ctq c,) ..1 .lj '--1 .IJ C] O.u tr_..

Labor and Capital Before the Law

MPM 2D Final Exam Prep 2, June b) Y = 2(x + 1)2-18. ~..: 2. (xl- 1:'}")( t J') -' ( B. vi::: 2 ~ 1-'+ 4 1<. -t-:2 -( 6! '.


Signals and Systems. Problem Set: The z-transform and DT Fourier Transform

ELEN 4810 Midterm Exam

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)

ESE 531: Digital Signal Processing

! z-transform. " Tie up loose ends. " Regions of convergence properties. ! Inverse z-transform. " Inspection. " Partial fraction

ECE503: Digital Signal Processing Lecture 4

2. Typical Discrete-Time Systems All-Pass Systems (5.5) 2.2. Minimum-Phase Systems (5.6) 2.3. Generalized Linear-Phase Systems (5.

Transcription:

ECE 4213/5213 Test 1 Fall 2018 Dr. Havlicek Monday, October 15, 2018 4:30 PM - 5:45 PM Name: S_O_L_U_'T_I Q_t\l Student Num: Directions: This test is open book. You may also use a calculator, a clean copy of the course notes, and a clean copy of the formula sheet from the course web site. Other materials are not allowed. You have 75 minutes to complete the test. All work must be your own. Students enrolled for undergraduate credit: work any four problems. Each problem counts 25 points. Below, circle the numbers of the four problems you wish to have graded. Students enrolled for graduate credit: work all five problems. Each problem counts 20 points. SHOW ALL OF YOUR WORK for maximum partial credit! GOOD LUCK! SCORE: 1. (25/20) 2. (25/20) 3. (25/20) 4. (25/20) 5. (25/20) TOTAL (100): On my honor, I affirm that I have neither given nor received inappropriate.aid in the completion of this test. Signed: Date: 1

1. 25 /20 pts. A discrete-time LTI system H has impulse response h[n] given by h[n] = (1)n u[n-l]. The system input is given by x[n] = (i) n (u[n] - u[n - 6]) = { (¼6,n' 0 ~ n ~ 5, otherwise. ~(k.1 ~)"" ~k \ h Cl<--1'\1-:. hf")~ l c~)ti.jck fbrrrr.~ \-'r\ ----=-=-=-=-==--,,_,_-=--=-~=:::-=~o~,,,,_,,,> ------V\="-l --- 2 t~)~ -l ~) :)} \ ~ W\ ' t., ~ (l)v\ ) 1/\ 71 b 2

0Tl+~vt WA'l ~ More Workspace for Problem 1... 90 ~['A):: r: ~ [\(.J1lC~ --~ J \c: ~ -IX> --'-d I) '-.S- I} 1 b,,, l -x (t<.) lt)~ _Lhfn ~k. () s 0 \ V\<.\ '2-((~)~-t~)l\1 J, ~ ~<.b b-ll)~ 1 "'.,, b '=- --.. ~ ~--_,_, ---=1> 3

2. 25 /20 pts. The input x[n] and output y[n] of a discrete-time system H are related by y[n] = x[2 - n] + 1. (a) 6/5 pts. Is the system H linear? Justify your answer. Le+ '1--t t' ;() -;. 0 -v V\,_,. ~ t t't"1 ~ 1- V V'f L-e, \-- 1t 2 t\-\) := o 'QI/\ _., i1-t)1),-:-, :fl.. YI r-1 Le~ ~= 2 ~~ b ~ '3. Le-\- ~ 3 t,a ')-=:- ~ ~1. ~1/\."1--\- l1 ~z 'C" 1.:::. () J,I V\ ---,. ~~LIA)-=- i \-I II\. 5~\A.(e a.~tl"-jt \o11:cta1 t- ~,; rta1; -rke '5'f~etAA tr t0dt L-f N~L :pt,an- n,eo_ a.. 4

Problem 2, cont... (b) 6/5 pts. Is the system H causal? Justify your answer. LeJ 61t:t'n:) ~~ ~e.. ~"'- \>'~-:t f,jlf\."- \, \J "'-e"' vy ==--0 J we.. ~ut. \J e., :f Co 1 = --x C: -z.1 -r- i.. w"'itvl- J-e,~.e11dt, M +1tt~ -Gv,"h-t\ff - \l/\~l.il~ "'/. C"2-?, (c) 6/5 pts. Is the system H BIBO stable? Justify your answer. Let -x tla) be. tt t~ej., \f\.\>v---\- s,~ Ill~\. T~eV\ 3'5 ~ t\'l 1 B-;, 0 J S\.,d.A ~(d\._..\ \""'t-(v\'1 \ ~ ~ ~ "'E ~.. NDWJ \ ~ tvt~ \ -:::. \ -X C 1.-Y\1 -t<l \ ~ \1<..t1.,II\)\ 4r 1- th~" e.jore., '1 c ~ ~-ti. <.-:-:::,,... >, 1 ~ti-ea by 'B +.i. P,,,..). e" ery 1ovV\kd l"'-\)ia.t sl~m\ 1V'11t\J c0-s a. bo~ c;u,\~t" 5t~V\~\. \ i J: 5 1? \Bb Sf/1..'e Lf l!i- (/' e ~Wl~--) ~ S'f f r ---:::-..:.,.

Problem 2, cont... (d) 7 /5 pts. Is the system H time invariant? Justify your answer. --- 'T~tll\ y, t'i\')-=,( [ '2.--nj ;- 1.. - u (1'2. - V\) -t' 1-. Le.+ ~" =- 1,. T~el/\ ult ~-'nb 1 :: \j ~ rl'\-f) ; U[ 2-eJ l Ti. j j g-;~f Now \e:t ')(, lv\1 = % t t'4\-'ao1 =:.. 1<.t r~-r) = IAX'A-r) u V',):: "'l r 2.-'f\ 1 + 1- -::: U. Le-, 1 l.,..1... Jl- L {:).:. '2-Y\ '::;. \A. ( '2. - \I\.- \ 1 ~ 1- ::; vl'c \-1/\"")-t-1. -= Lt t_-i. - LV\ -1) J + i. ::;;. U'C. 3-~j -t- 1-2 -----""'111 '--.1 ( ~iii 3 I 2 --l ~ -1 ----..!!u"p- ti\ 6

3. 25/20 pts. The input x[n] and output y[n] of a discrete-time LTI system Hare related by 1 1 1 1 y[n] = 4 x[n] + 2 x[n - 1) + x[n - 2] + 2 x[n - 3] + 4 x[n - 4]. Find the system group delay r 9. :lrn===---r : y { d"') ::: X ( t'.,lw) [ ¾- t- "i e.-j""' -1- e.-\ '2.-;,..I- ~ e.,-.i,...,-\- ~ e J -l '1-w H lei"'):: YLe:i") = L-..L +½e_-i~+ e-~i~~½.e..-33~ ~ke-.i~ '1 X(-eS'--') A: ~ ) -\ jt.w l ~~ A \ e-j'~ l. e-j1.wj e-12~ L - 4e 4--i:.e +-1-+2. +4 ~ L 1-1- COS'-> +- ~ Cos '2.w] e- ~ '2.~ ~ arj l-l le jv) SfQr"'1rt'll\ ~"'use.~ ar-i ~lei'-')) == 9 (Lv) ::. - '2 ~ e "r>vt d.e¼y -= l:j :: - JwGltw) ~.i...---- -- ' 7

4. 25/20 pts. The input x[n] and output y[n] of a discrete-time LTI system Hare related by 10 1 y[n] - 3 y[n - 1] + y[n - 2] = x[n] - x[n - l]. 2 (a) 5/4 pts. Find the transfer function H(z) and give a pole zero plot. l - ½=e.-1 ( l - ½ 2-, ) L.1-3 z-~... ierc?'> ~ ~.::. 0, :z -:::. { -rolh ~ t=-\, ~ ~ 3 ff~', ' \.,LG '2..- --- l+lb) = fl= 1e)(t~30) f,-=-,- ~e -t-'38 l0:::i - - - = a 1~56 ~ \ - -=. -, - ~ \ \ J.. - ls> - 1. - ~ B +_ 1-19 _ 1~ \ - - - -\ l:, - -f " 8

Problem 4, cont... (b) 10/8 pts. Assume that the system His causal. Specify the ROC of H(z) and find the impulse response h[n]. For this assumption, is the system H BIBO stable?!-\ ca.u.s(.(_.l Wttv\S '"t1ae R,l'L \~ ev...-kbttlvr -h i~e. \&t~ei..\ ~e,\e, -- - fu>l-:. l't.\ '7 3 S'l'l\{e.. +ke \U)L doe.~ -- ~{ft" Cc,t\'t~ill\ ~e \Ali\l"\7 t':t\j'"'-l e, t...\ g ~,rt ~\~0 S7k~ t,..i;: - ---- I =>--= ~-t lr) ::: ----- \/l 6 l S /i,ja + - l -j l"l l-,rt ~ ~ l'l' \-, \~ \1:\-,3 - g

Problem 4, cont... (c) 10/8 pts. Now assume instead that the system His BIBO stable. Specify the ROC of H(z) and find the impulse response h[n]. For this assumption, is the system H causal? 5',"<e -.+"'-.e. RDL 1s ttf/\v\\j--\~ I/' 1 ~(vl) \s \\,..,p-s, tled ttv\d. ~e s '1 ~keva \s ~ 1. at I.As~ \.,, u t~\ =:: \Jtt~ \--~ :e--\ + \~~b \ - "3 ~\ v-v----) ~ \~\ ') 1 \~\ ~ 3 10

5. 25/20 pts. The continuous-time LTI system Ha(D.) shown in the figure below is implemented using an ideal A/D converter, a discrete-time LTI system Hd(eiw), and an ideal D / A converter. r----------------------------- f=r ~ 44-1 l ~i-\1 ==- 4. 4 1 lot> H ~ xact) Ha(ejro) yact) -fl' -:: '2.. 'Tf F-r - 8~, iuo-rr r.d: ------------------------------' - \ sec. '2."if - T.L -...-- 5""' ::..JlT - F,. - 4~> '" ~c. As in professional compact disc (CD) audio, the sampling frequency of the A/D and D/ A converters is Fr= 44.1 khz. So Or= 88, 2001r rad/sec. All input signals xa(t) are bandlimited to IOI < Or/2 (this simply ensures that the overall structure shown in the figure will be an LTI system). The impulse response of the continuous-time filter Ha is given by ha(t) = sin 70001rt. 1rt (a) 8/6 pts. Find the continuous-time frequency response Ha(O). TtthLe ~ s\~~!. 6-=) \ i :] :1-,.{).. w::; -tooo,c, -1/J C vi - -,()Q()'7l (b) 8/7 pts. Find the discrete-time frequency response Hd(eiw)...n. i ) \w\~ r I ~ l r.,.j\ < 1t \ - 70()01f i ooo 1( 44J \ob 0-1' -- 11 14,t(JP 44-J lfjo 0 l i!!f!!jj I) (..J 1\

Problem 5, cont... (c) 9/7 pts. Find tlie discrete-time impulse response hd[n]. -------- 12