The Natural Logarithmic Function: Integration. ix u = 9-x 2,du =-2xdx. ~dx= --~1(9-x~)- /~(-2x)dx ]..--~-g dx = lnx-5[ +C

Similar documents
90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

Exponential Functions" Differentiation and lintegration

9.1. Click here for answers. Click here for solutions. PARAMETRIC CURVES

dx. Ans: y = tan x + x2 + 5x + C

Unit 3. Integration. 3A. Differentials, indefinite integration. y x. c) Method 1 (slow way) Substitute: u = 8 + 9x, du = 9dx.

CALCULUS II MATH Dr. Hyunju Ban

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2

Name Class. (a) (b) (c) 4 t4 3 C

MA 242 Review Exponential and Log Functions Notes for today s class can be found at

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS

MATH MIDTERM 4 - SOME REVIEW PROBLEMS WITH SOLUTIONS Calculus, Fall 2017 Professor: Jared Speck. Problem 1. Approximate the integral

or - CHAPTER 7 Applications of Integration Section 7.1 Area of a Region Between Two Curves 1. A= ~2[0- (x :2-6x)] dr=-~2(x 2-6x) dr

CHAIN RULE: DAY 2 WITH TRIG FUNCTIONS. Section 2.4A Calculus AP/Dual, Revised /30/2018 1:44 AM 2.4A: Chain Rule Day 2 1

CHAPTER 5 Logarithmic, Exponential, and Other Transcendental Functions

Chapter 4 Integration

Ex. Find the derivative. Do not leave negative exponents or complex fractions in your answers.

Find the indicated derivative. 1) Find y(4) if y = 3 sin x. A) y(4) = 3 cos x B) y(4) = 3 sin x C) y(4) = - 3 cos x D) y(4) = - 3 sin x

CHAPTER 5 Logarithmic, Exponential, and Other Transcendental Functions

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg.

Integration Techniques for the AB exam

T h e C S E T I P r o j e c t

UNIT 3: DERIVATIVES STUDY GUIDE

A MATH 1225 Practice Test 4 NAME: SOLUTIONS CRN:

UNIVERSITY OF HOUSTON HIGH SCHOOL MATHEMATICS CONTEST Spring 2018 Calculus Test

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x)

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that

Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Math 1160 Final Review (Sponsored by The Learning Center) cos xcsc tan. 2 x. . Make the trigonometric substitution into

AP Calc Summer Packet #1 Non-Calculator

AP CALCULUS AB - SUMMER ASSIGNMENT 2018

Methods of Integration

2413 Exam 3 Review. 14t 2 Ë. dt. t 6 1 dt. 3z 2 12z 9 z 4 8 Ë. n 7 4,4. Short Answer. 1. Find the indefinite integral 9t 2 ˆ

5.5. Indefinite Integrals 227

MATH 162. FINAL EXAM ANSWERS December 17, 2006

The Definite Integral. Day 5 The Fundamental Theorem of Calculus (Evaluative Part)

Math RE - Calculus I Trigonometry Limits & Derivatives Page 1 of 8. x = 1 cos x. cos x 1 = lim

Section: I. u 4 du. (9x + 1) + C, 3

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Since the exponential function is a continuous function, it suffices to find the limit: lim sin x ln x. sin x ln x = ln x

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes

MATH1120 Calculus II Solution to Supplementary Exercises on Improper Integrals Alex Fok November 2, 2013

Assignment 13 Assigned Mon Oct 4

EXAM 3 MAT 167 Calculus I Spring is a composite function of two functions y = e u and u = 4 x + x 2. By the. dy dx = dy du = e u x + 2x.

Chapter 2 Overview: Anti-Derivatives. As noted in the introduction, Calculus is essentially comprised of four operations.

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26.

1969 AP Calculus BC: Section I

P a g e 5 1 of R e p o r t P B 4 / 0 9

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)?

Integration Techniques for the AB exam

S(x) Section 1.5 infinite Limits. lim f(x)=-m x --," -3 + Jkx) - x ~

Math 122 Fall Unit Test 1 Review Problems Set A

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS.

EXACT EQUATIONS AND INTEGRATING FACTORS

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find:

Math 170 Calculus I Final Exam Review Solutions

Chapter 2 Section 3. Partial Derivatives

Logarithmic Functions

3.4 The Chain Rule. F (x) = f (g(x))g (x) Alternate way of thinking about it: If y = f(u) and u = g(x) where both are differentiable functions, then

CHAPTER 2 DIFFERENTIATION 2.1 FIRST ORDER DIFFERENTIATION. What is Differentiation?

MATH1013 Calculus I. Derivatives II (Chap. 3) 1

The Chain Rule. This is a generalization of the (general) power rule which we have already met in the form: then f (x) = r [g(x)] r 1 g (x).

Basic Math Formulas. Unit circle. and. Arithmetic operations (ab means a b) Powers and roots. a(b + c)= ab + ac

Find the slope of the curve at the given point P and an equation of the tangent line at P. 1) y = x2 + 11x - 15, P(1, -3)

Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Integration by Substitution

Chapter 6: Messy Integrals

Math3B Exam #02 Solution Fall 2017

Chapter 12 Overview: Review of All Derivative Rules

Because of the special form of an alternating series, there is an simple way to determine that many such series converge:

Questions from Larson Chapter 4 Topics. 5. Evaluate

Handout 1. Research shows that students learn when they MAKE MISTAKES and not when they get it right. SO MAKE MISTAKES, because MISTAKES ARE GOOD!

Calculus 2 - Examination

Chapter 5 Analytic Trigonometry

Prelim 2 Math Please show your reasoning and all your work. This is a 90 minute exam. Calculators are not needed or permitted. Good luck!

MA 114 Worksheet #01: Integration by parts

Preliminaries Lectures. Dr. Abdulla Eid. Department of Mathematics MATHS 101: Calculus I

R3.6 Solving Linear Inequalities. 3) Solve: 2(x 4) - 3 > 3x ) Solve: 3(x 2) > 7-4x. R8.7 Rational Exponents

Applied Calculus I. Lecture 29

Ğ ğ ğ Ğ ğ Öğ ç ğ ö öğ ğ ŞÇ ğ ğ

1. (13%) Find the orthogonal trajectories of the family of curves y = tan 1 (kx), where k is an arbitrary constant. Solution: For the original curves:

Calculus 1 (AP, Honors, Academic) Summer Assignment 2018

1 Exam 1 Spring 2007.

Integration Techniques for the BC exam

Study 5.5, # 1 5, 9, 13 27, 35, 39, 49 59, 63, 69, 71, 81. Class Notes: Prof. G. Battaly, Westchester Community College, NY Homework.

AP Calculus AB Summer Packet (Due the 2nd day of class school year)

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x).

" $ CALCULUS 2 WORKSHEET #21. t, y = t + 1. are A) x = 0, y = 0 B) x = 0 only C) x = 1, y = 0 D) x = 1 only E) x= 0, y = 1

Chapter 13: Integrals

Summary: Primer on Integral Calculus:

1993 AP Calculus AB: Section I

Summer Mathematics Prep

( + ) 3. AP Calculus BC Chapter 6 AP Exam Problems. Antiderivatives. + + x + C. 2. If the second derivative of f is given by f ( x) = 2x cosx

sec x dx = ln sec x + tan x csc x dx = ln csc x cot x

du u C sec( u) tan u du secu C e du e C a u a a Trigonometric Functions: Basic Integration du ln u u Helpful to Know:

CHAPTER 6 Differential Equations

Problems with an # after the number are the only ones that a calculator is required for in the solving process.

Chapter 7 Notes, Stewart 7e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m xcos n (x)dx...

Transcription:

Section 5. The Natural Logarithmic Function: Integration 48 Section 5. The Natural Logarithmic Function: Integration. u = + l, du = d 4. u = - 5, du = d C i - 4 ----4ni +C X hl(4) + C. u = 9-,du =-d ~d= --~(9-~)- /~(-)d ]..--~-g d = ln-5[ +C 5. u = + 5, du = d 6. u = 4 -, du = - d I4@ : () d = _lln[4 - [+ C 7. u = -, du = d =+ln~- +C 8. U = 5 -- X,du = -X d ~ (_) + : -+ 5- l+ c 9. U = X 4 +, du = (4 + )d I 4X +d = IX4 (4X +)d 4 + + : In 4 -[-- ] + C IO.U = X -- Z, du = ( - 6)d = ( - )d i~z_ - d= +I- (~ - 6) d _ X : --Nf~-- X +C. u = + + 9, du = ( + + ) d I"... ~ ++ d = r( ~_ + _+ ) d J + ~ +9 J + ~ +9 In = -- + + 9 + C 4. u = + -4, du =( + 6)d 5. I (+ +~_ ) d = I f ~ +6 d 4 -~J ~-~_-4 fx - + d = -4+ +l 6. [ X + 7 - J d = +ll+ - f - X + 5 7. - In I + 4 + C d - 4 + 6ni + + c d -- X + ll + 9In - + C = --+ 5ni - + c - 6-0 8. I +5 +5) X 5X + 9- ll5nl+ 5 + C I = ~ln -[+C 00 Brooks/Cole, Cengage Learning

484 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions.I -ft,- d= -+-T-~+ d 5. l(_l) - + - + X - +ln./ ~ + + C f_ 7.. + dr=~ (-l) dr = [.(- ) d + l" l(- ) J(_ ) =! dr 7-i _ d +!( ) = ni II (-l) + C. u = ln, du = ld X. u = +l, du = d -- -~ lnl~ll]+ C ~ ~ = l(* + 0- /~ ~ lln( a+)+c = - + ~ + - = (+) / + C = -~/ ~ + + C 4. u = + /, du = ---:-=_._ d ~l~ ) ( - ) d -! dr _ [.(,, = I -~-_--{_ l dl.!... d - ) = ln] - + ( -) + C 7. u = + "~, du = --.~ dx (u ~ ) - du = dr where C = C~ +. I /( +,/) d : + V ~ d 00 Brooks/Cole, Cengage Learning

Section 5. The Natural Logarithmic Function: Integration 485 (u + )du dr 9. u = w/-~-, du = -~ dr ~ = = Iu +6U+9dU=u I(u+6+~du = [~ + 6u + 9n = u + u + 8n ul+ C = (~-)+ (/-~- )+ 8~ ~- + C~ = +6~+8n]~- +C -- where C = C -7. 0. u = ~/ -, du = ~ dr :=> dr (u + )d~t ~/~ f ~ dr= J~tu+ ~~ _,u +. )d~ = _---~.u fu + (+ u + ) du =. + +u+lnu +C - I (l/~ -) + (l/-) +(l/-)+ln l/- = In / - + /---~ + ~/ + + C. l cot(-~) do = I cot(-~)(~l do = nsin~ +C. I tan 50 do = ~ 5 sin 5. ~0 do cos 50 _- _! lc s + c 5 =-~ln csc+cot + C 4, sec = sec & =~see-+tan +C I 0() 5. J{cos0- do : Jcos do- JdO = lsin 0-0 + C 6, - tan do = odo - 4 jtan do 7. u = l+sint, du = costdt i cos t ~dt = lnll + sint + C 8. u = cot t, du = -csc ~ t dt i csc~tdt = -~ cott I+C cot t =0+4nlcos~+C 00 Brooks/Cole, Cengage Learning

486 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 9. u = sec-l, du = sectand sec tan i [ + C ~ -- = i d : ~ls~ - 40. I(sec + tan)d = ½I(sec + tan )() d = ½inlsec + tan - In cos + C 4. y = d = 4n[+C 0,): = 4n}ll+ c ~ c = y = 4inl + ~o 45. s : I tan(0)do : _~ I tan(0)( do) = -± lnicos 0 + c (0, ): = -} Inlcos (O)l+ C => C = s = -½ Inl cos oi + (0, )~4 4. 4. 44. -0 : (-,0):0 =-l-inl- +C=-I+C=> C=I y = - l.ll+ Y= - : 8 - =-n - +C (,0): 0 =-nl- + C ~ C = 0 y -- - ~l - ~ ~o -~0 (0,4): 4 = lnlo-9 + C =~ C : 4-n9 y = ln ~-9+4-n9 -a 46. r = tan ~ sec t = + t dt = ln ltant+l[+c (n, 4): 4 = In 0 + + c ~ c = 4 47. f"()= r = In tan t + + 4 S (~<) = s O) = s () = S() = f() = S() = lo 75= -, >O - ~+C =-+C~ C= - ~+ -n + + C~ = -(0) + + C, :=> C = - -in + - -4 00 Brooks/Cole, Cengage Learning

Section 5. The Natural Logarithmic Function." Integration 487-4 = -4(- ) 4~. f"() - - - (-l) z 4 S () : (_l) ~+c () = 0 = 4-4+c=> c = 0 4 f () - - f() = 4n(-)- +Cl f() = = 4(0)-4+C => Cl = 7 f() = 4n(-)- +7 ~9. dy _ (0, ) d + (a) (o, l) >l 5. (a) -~ ill///tt//tl/l l ~ t/i//tt!/tlf /I l/!lliflil!/ll //t//i/////it// --~, / (b) dy =l+d, (, 4) y=+in+c 4=+0+C~C= y=+ln+ - Ill I-~ (b) y= d = ln + + C 5. (a) ), y(o) = => = ln+c => C= -in So, y:ln++l-in:ln(f-~/+l. 50. dy d (a) - f ln (, -),i -i,, (b) dy = sec, (0, ) y = Insec+tan +C = Inl + oi + c ~ c = y = ln l see + tan I + " (b) Y =!ln-7 y() = - => - - (In ) (In ) So, y -. 4 5. 5._~_ d = In + = - In = 4.75 + o l d = ~[ln + ]l_l 54.!~l X +--- ~ 55. u = l + In, du= -l d X = l[in5iinl]~ = lin5 ~ 0.805 lle ( + in ) i~ d ( ]e= + In ) 7 ----7 00 Brooks/Cole, Cengage Learning

488 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 56. u = ln, du = -d +l [l - ~ 0,69 ~ -.099 ~ I - e d = Ilnlln lq = ln,..t~ - lnl + = -In o = I- ni + ll~; = - ~ ~ -0.86 59. ~ - cos~ do = [ln O - sin 0 ~ 0 - sin 0 I _ 60.!~i (csc 0- cot 0)d0 = I~] (csc 0- csc 0 cot 0+ cot = 0)dO Note: In Eercises 67-70, you can use the Second Fundamental Theorem of Calculus or integrate the function. 67. F() =!i ~ ~ dt F () = -- 68. F() = I~: tan t dt F () = tan 69. F(): a, 7 dt F () = ~()=- (by Second Fundamental Theorem of Calculus) Alternate Solution: F() = o, -fdt = Et.ltl~, = lnl I F () = g( ) - = 70. F()= a, 7 dt F () = _ 7. = [-cot 0 + csc 0-0~:=~ = 0.004 ~. I + ~ dv = -,/~ - In( + /~)+ C ] 6~. J l + ~ ~ = 4w/~ - - 4 ln( + ~) + C A ~.5; Matches (d) 6. [~_~ d = +/7+C a- ~-,J~ + 7. X X ~. I75_± = ~l-~ +-++C 4 65../4 [ ~ /:~ (csc - sin )d = ln(/~ + ) - T ~ ~ 0.74 66. a-~/4 cos A ~ ; Matches (a) 7. A = I~l~d= E6inl[~i =6n ~ -.066 00 Brooks/Cole, Cengage Learning

Section 5. The Natural Logarithmic Function: Integration 489 ~ [4 4 d = a~tdx = In In~ = [ln(in4)-in(ln)~ ln(n = / ~, = In) In 74. A =!~In ~r/4 i"] ~r/4 ~ ln 75. A= I0 tand =-lnlcosll =-ln~ +0 = In~ =~ q~r/4 =-ln(-~)+ln(l+~)in(+-) ( "f~ [,d4 sin~ d = -Inll + cos -,~/4 = ) = In + 76. A = Ja-/4 + cos - 4 [4+4d= Ii~(-~) X-I- 77. A = d= +4n = (8+4n4) 5 = +8n =.045 dl ~ 78. A = I~ ~+6 ~d = IlS(~) s =5+6n5-=4+6n5~"6566 + d= [ + 6 In ]~ X 8 a- (a /a" d = -7-a0 ~I I sec a~ rl 79. l~see 6 \ 6)6 6 T J0 d = In sec-+ tan = h sec--+ tan + = ~ h + ~ 5.004 a 80. - tan(o.))d = + -- (0. = 6 + In cos(. - + In cos(0. ~..7686 ~ 8. f() =, b_a = 5- = 4, n = 4 Trapezoid: @4)[f()+ f()+ f()+ f(4) + f(5)] = -~[ + + 8 + 6 +.4] = 0. Simpson: @4)E f()+ 4f()+ f()+ 4f(4) + f(5)~ = ~[ + 4 + 8 + +.4] a 9.4667 [5 Calculator: al 7 -d = 9. Eact: In 5 00 Brooks/Cole, Cengage Learning

490 Chapter 5 Logarithmic, Eponential, and Other Transcendental Functions 8 8. f() = + 4 b - a = 4-0 = 4, n = 4 Trapezoid: ~Ef(O ) + f() + f() + f() + f(4)~ = 0 +. + 4 +.69 +.6] ~ 6.46 4 Simpson: ~Ef(O ) + 4f() + f() + 4f() + f(4)~ ~ 6.465 Calculator: [4 8~ d ~ 6.48 ~0 +4 Eact: 4 In 5 8. f() = ln, b-a = 6- = 4, n = 4 Trapezoid: -~Ef( 4 ) + f() + f(4) + f(5) + f(6)~ = 0.69 +.97 +.776 +.89 +.798] ~ 5.6 4 Simpson: --~[f( ) + 4f() + f(4) + 4f(5) + f(6)~ ~ 5.6 Calculator: In d ~ 5.64 84 y() = sec, b-a = -- Trapezoid: -~--j-kf~.-~ + f - + f(0)+ f + f ~ -i-~[ +.094 + +.094 + ] ~.780 Simpson: ~(4)[fl--~)+ 4f - + f(o)+ 4f + f ~.6595 Calculator: J-~/ sec d =.69 85. Power Rule 86. Substitution: (u = + 4)and Power Rule 87. Substitution: (u = + 4)and Log Rule 88. Substitution: (u = tan )and Log Rule 89. X dt = /47dr I( n=~- (a) ln=ln5~=5 (b) ln = ~ = e assume > 0) fcos u 9. Icotu du = -sinu du = lnlsinul+ C Alternate solution: ~ulln d~ sinul,+c-]~ =--sinucosu+c = cotu+c ~=-~(~)=ln4 ~ =--ln4 = ln = 9. csc I i Icsc u du u.+ = csc cot u\-d-~scu ~) du = + _i cot ( csc u + cot u -csc u cot u - csc ) u du = -lnlcsc u + cot u[+ C Alternate solution: ~d ~-lnlcsc u + cot u I + C~ = CSC du~-, \ t-osc u cot u - = o~c u(oot u + csc u) csc u + cot u \! csc u + cot u = CSC U 00 Brooks/Cole, Cengage Learning

Section 5. The Natural Logarithmic Function: Integration 49 sec - tan sec tan +C = -ln lsec-tanl+c csc - cot 97. Average value = 4~- -~- d = 4~X- d 00. A _vera=e. value & z 0 Jo 6 6 In m tan z L h = ~[ln( + ~)- ~(+ = ~ l~ + 98. Average value = [44(X + ) 4 - J ~ d = n4-4 + d =n+ =ln4+ 99. Average value = [e In X _ I(ln)]e - ~.886 0. P(t) = I~000 + 0.5t dt = (000)(4)I + 0.5t 0.5 =,000 lnll + 0.5 + C P(O) =,000 lnll + 0.5(0) + c = 000 C = 000 P(,) =,000 lnl! + o.5ti + looo = looo~ ln[ + o.5t + ~ P() = looo~(ln.75)+ ~ ~ 775 0. t = ln~as 0 foo ot_0~ dt ~_~o~ lo = ln(t -00)~ s o = ~-~[ln 00 - ln50] - ~ 0.58 e- 0. _~ f 90,000 d = ~000 m400 + ~]:oo 50 40,/4o 400 + ~ $68.7 O 00 Brooks/Cole, Cengage Learning