Outlines of Quantum Physics

Similar documents
Quantum Mechanics: The Hydrogen Atom

ONE AND MANY ELECTRON ATOMS Chapter 15

Lecture 4 Quantum mechanics in more than one-dimension

The Central Force Problem: Hydrogen Atom

Lecture 8: Radial Distribution Function, Electron Spin, Helium Atom

The Hydrogen atom. Chapter The Schrödinger Equation. 2.2 Angular momentum

Lecture 4 Quantum mechanics in more than one-dimension

The Hydrogen Atom. Chapter 18. P. J. Grandinetti. Nov 6, Chem P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, / 41

1 r 2 sin 2 θ. This must be the case as we can see by the following argument + L2

Schrödinger equation for the nuclear potential

Quantum Theory of Angular Momentum and Atomic Structure

CHEM-UA 127: Advanced General Chemistry I

Schrödinger equation for central potentials

Schrödinger equation for central potentials

The Hydrogen Atom Chapter 20

H atom solution. 1 Introduction 2. 2 Coordinate system 2. 3 Variable separation 4

One-electron Atom. (in spherical coordinates), where Y lm. are spherical harmonics, we arrive at the following Schrödinger equation:

Single Electron Atoms

1 Schroenger s Equation for the Hydrogen Atom

Atoms 2012 update -- start with single electron: H-atom

Lecture #21: Hydrogen Atom II

Electric fields : Stark effect, dipole & quadrupole polarizability.

2m r2 (~r )+V (~r ) (~r )=E (~r )

Chemistry 532 Practice Final Exam Fall 2012 Solutions

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance

Physible: Interactive Physics Collection MA198 Proposal Rough Draft

1.4 Solution of the Hydrogen Atom

Approximation Methods in QM

A Quantum Mechanical Model for the Vibration and Rotation of Molecules. Rigid Rotor

The Stark Effect. a. Evaluate a matrix element. = ee. = ee 200 r cos θ 210. r 2 dr. Angular part use Griffiths page 139 for Yl m (θ, φ)

( ( ; R H = 109,677 cm -1

The Electronic Structure of Atoms

Atoms 09 update-- start with single electron: H-atom

Quantum Mechanics in 3-Dimensions

does not change the dynamics of the system, i.e. that it leaves the Schrödinger equation invariant,

1. We want to solve the time independent Schrödinger Equation for the hydrogen atom.

1 Commutators (10 pts)

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R

Physics 4617/5617: Quantum Physics Course Lecture Notes

Angular Momentum - set 1

Angular Momentum - set 1

We now turn to our first quantum mechanical problems that represent real, as

Before you begin read these instructions carefully.

1.6. Quantum mechanical description of the hydrogen atom

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r

Atoms 2010 update -- start with single electron: H-atom

Particle in a 3 Dimensional Box just extending our model from 1D to 3D

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron):

Topics Covered: Motion in a central potential, spherical harmonic oscillator, hydrogen atom, orbital electric and magnetic dipole moments

Lecture 10. Central potential

Introduction to Quantum Physics and Models of Hydrogen Atom

Physics and Chemistry of the Interstellar Medium

Solving the Schrödinger Equation for the 1 Electron Atom (Hydrogen-Like)

7.1 Variational Principle

Lectures 21 and 22: Hydrogen Atom. 1 The Hydrogen Atom 1. 2 Hydrogen atom spectrum 4

PHYS852 Quantum Mechanics II, Spring 2010 HOMEWORK ASSIGNMENT 8: Solutions. Topics covered: hydrogen fine structure

Diatomic Molecules. 7th May Hydrogen Molecule: Born-Oppenheimer Approximation

Quantum Monte Carlo methods

From Atoms to Solids. Outline. - Atomic and Molecular Wavefunctions - Molecular Hydrogen - Benzene

[L 2, L z ] = 0 It means we can find the common set of eigen function for L 2 and L z. Suppose we have eigen function α, m > such that,

8.1 The hydrogen atom solutions

Lecture 3. Solving the Non-Relativistic Schroedinger Equation for a spherically symmetric potential

Physics 401: Quantum Mechanics I Chapter 4

Applied Statistical Mechanics Lecture Note - 3 Quantum Mechanics Applications and Atomic Structures

Atomic Structure and Atomic Spectra

1 Reduced Mass Coordinates

Ch120 - Study Guide 10

R 3 ψ 2 d 3 x = 1. Observables are constructed by tripling everything we did before. The position operator ˆr is*

5.61 Lecture #17 Rigid Rotor I

PHYS 3313 Section 001 Lecture # 22

Solution Exercise 12

Legendre Polynomials and Angular Momentum

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Torsdag 31. mai 2012 kl

Introduction to Spherical Harmonics

5. Spherically symmetric potentials

What is this? Jerry Gilfoyle The Hydrogen Atom 1 / 18

Physics 2203, Fall 2012 Modern Physics

Problem 1: Spin 1 2. particles (10 points)

5.61 Physical Chemistry Exam III 11/29/12. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry Physical Chemistry.

Lecture 9: Molecular Orbital theory for hydrogen molecule ion

9 Angular Momentum I. Classical analogy, take. 9.1 Orbital Angular Momentum

Physics 115C Homework 2

Problem Set 5: Solutions

QUANTUM MECHANICS AND ATOMIC STRUCTURE

Chemistry 432 Problem Set 4 Spring 2018 Solutions

Phys 622 Problems Chapter 5

QUANTUM MECHANICS I PHYS 516. Solutions to Problem Set # 1

Notes 19 Gradient and Laplacian

First Midterm Examination October 17, There should be 19 pages to this exam, counting this cover sheet. Please check this exam NOW!

Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom

Where have we been? Lectures 1 and 2 Bohr s Model/ Wave Mechanics/ Radial and Angular Wavefunctions/ Radial Distribution Functions/ s and p orbitals

Quantum Mechanics & Atomic Structure (Chapter 11)

Electron States of Diatomic Molecules

Solutions to exam : 1FA352 Quantum Mechanics 10 hp 1

PHY4604 Introduction to Quantum Mechanics Fall 2004 Final Exam SOLUTIONS December 17, 2004, 7:30 a.m.- 9:30 a.m.

Helium and two electron atoms

PDEs in Spherical and Circular Coordinates

5.111 Lecture Summary #6

Transcription:

Duality S. Eq Hydrogen Outlines of 1 Wave-Particle Duality 2 The Schrödinger Equation 3 The Hydrogen Atom Schrödinger Eq. of the Hydrogen Atom Noninteracting Particles and Separation of Variables The One-Particle Central Force Problem Energy levels of the Hydrogenlike atom Hydrogenlike-Atom Wave Functions

Schrödinger Eq. of the Hydrogen Atom f½a fµ N r e H = 2 2 2M N 2 2 N 2m e Ze 2 e r r N r e Ù r = r e r N e 2 = e 2 /4πɛ 0

Noninteracting Particles and Separation of Variables Ĥ = Ĥ1 + Ĥ2, (Ĥ1 + Ĥ2)Ψ(q 1, q 2 ) = EΨ(q 1, q 2 ) Ù Ĥ 1 Úâf1k' Ĥ 2 Úâf2k' lcþ{ bψ(q 1, q 2 ) = G 1 (q 1 )G 2 (q 2 ): Ĥ 1 G 1 (q 1 )G 2 (q 2 ) + Ĥ 2 G 1 (q 1 )G 2 (q 2 ) = EG 1 (q 1 )G 2 (q 2 ) G 2 (q 2 )Ĥ 1 G 1 (q 1 ) + G 1 (q 1 )Ĥ 2 G 2 (q 2 ) = EG 1 (q 1 )G 2 (q 2 ) Ĥ 1 G 1 (q 1 ) G 1 (q 1 ) Left part must be a constant, + Ĥ2G 2 (q 2 ) G 2 (q 2 ) = E Ĥ 1 G 1 (q 1 ) = E 1 G 1 (q 1 ), Ĥ 2 G 2 (q 2 ) = E 2 G 2 (q 2 ) E 1 + E 2 = E

Noninteracting Particles and Separation of Variables Œí2n Õá âf Kµ Ĥ = Ĥ 1 + Ĥ 2 + + Ĥ n Ψ(q 1, q 2,, q n ) = G 1 (q 1 )G 2 (q 2 ) G n (q n ) E = E 1 + E 2 + + E n Ĥ i G i = E i G i, i = 1, 2,, n

Reduction of the Two-Particle Problem to Two One-Particle Problem Ÿ% IX {µ r N N r r e e R(X, Y, Z) = m 1 r 1 + m 2 r 2 m 1 + m 2 r(x, y, z) = r 1 r 2 M = m 1 + m 2 ; µ = m 1m 2 m 1 + m 2 2 R = 2 X 2 + 2 Y 2 + 2 Z 2 2 r = 2 x 2 + 2 y 2 + 2 z 2 = 1 m 1 2 1 + 1 m 2 2 2 = 1 M 2 R + 1 µ 2 r

KS.eqŒz µ lcþ{ [ 2 2M 2 R 2 2µ 2 r + V (r)]ψ = E total Ψ Ψ( R, r) = Ψ c ( R)Ψ e ( r) 2 2M 2 RΨ c ( R) = E c Ψ c ( R) [ 2 2µ 2 + V (r)]ψ e ( r) = EΨ e ( r) E total = E c + E = ) Ÿ%²ÄÚSÜ$Ä" ù { ( Ã{í2õN K"

n %å 2 = 2 r 2 ˆL 2 = 2 1 [ sin θ ˆL z = i 2 = 1 r + 2 r r + 1 1 r [ 2 sin θ φ, [ 2 2µ 2 + V (r)]ψ( r) = EΨ( r) θ (sin θ θ ) + 1 sin 2 θ 2 r 2 r 1 r 2 2 ˆL 2 θ (sin θ θ ) + 1 2 φ 2 ], sin 2 θ 2 φ 2 ], Ĥ = 2 2 2µr r r + 1 ˆL 2 2 2µr + V (r) 2

lcþ{ ) [ 2 2µr Œ± ) µ 2 r 2 r + V (r) + 1 2µr 2 ˆL 2 ]Ψ(r, θ, φ) = EΨ(r, θ, φ) Ψ = R(r)Y (θ, φ) ˆL 2 Y (θ, φ) = β 2 Y (θ, φ)» [ 1 r d 2 dr 2 r + 2 µ 2 (E V ) β r 2 ]R l (r) = 0

¼ê Ù) Y lm (θ, φ) = ( 1) m+ m 2 2π 0 ˆL 2 Y (θ, φ) = β 2 Y (θ, φ) (2l + 1)(l m )! 4π(l + m )! P m l ˆL 2 Y lm (θ, φ) = l(l + 1) 2 Y lm (θ, φ) dφ π 0 dθy lmy l m sin θ = δ ll δ mm 1 (cosθ) e imφ 2π

Radial Function and Energy levels 2 2µ (R l + 2 r R l ) + V (r)r l + l(l+1) 2 2µr 2 R l = ER l (r) %å Ù)µ R = R nl (r), 0 R nl R n lr 2 dr = δ nn E = E nl Uþ 2l + 1 { mþfêã'" éua lfv (r) = Ze 2 /r Ù) R nl (r) = N nl e Zr 2Z na ( na r)l L 2l+1 a 2 /µe 2 n+l (2Z na r) e 2 = e 2 /4πɛ 0

Energy levels of hydrogenlike atom Ψ nlm = R nl (r)y lm (θ, φ) HΨ nlm = E n Ψ nlm E n = Z 2 n 2 µe 4 2 2 L 2 Ψ nlm = l(l + 1) 2 Ψ nlm L z Ψ nlm = m l Ψ nlm l = 0, 1, 2, 3, n 1 m = 0, ±1, ±2,, ±l = hcr Z 2 M n 2 l= 0(sharp), 1(principle), 2(diffuse), 3(fundamental), hcr (e2 /4πɛ 0) 2 m e 2 2 13.6eV, a 0 2 m ee 2 /4πɛ 0 0.529Å R =109 737.315 685 39(55) cm 1, R M = R M m e+m

Hydrogenlike-Atom Wave Functions Ψ nlm = R nl (r)y lm (θ, φ) R nl (r) = ( 2Z (n l 1)! )3 na 2n[(n + l)!] Y lm (θ, φ) = ( 1) m+ m 2 where a 4πɛ 0 2 /µe 2 3 e Zr 2Z na ( na r)l L 2l+1 (2l + 1)(l m )! P m 4π(l + m )! n+l (2Z na r) 1 l (cos θ) e imφ 2π

Radial Hydrogenic Wavefunction R nl R 1s = ( Z a )3/2 2e ρ R 2s = ( Z 2a )3/2 2(1 ρ)e ρ R 2p = ( Z 2a )3/2 2 3 ρe ρ R 3s = ( Z 3a )3/2 2(1 2ρ + 2 3 ρ2 )e ρ R 3p = ( Z 4 2 3a )3/2 ρ(1 ρ/2)e ρ 3 R 3d = ( Z 2 2 3a )3/2 3 5 ρ2 e ρ l = 0ž 3r = 0 :?µ Ψ n,l=0 (0) 2 = 1 π ( Z na )3 a 4πɛ 0 2 /µe 2 ρ = Zr na 1 r = 1 r R2 nlr 2 dr 0 = 1 n 2 (Z a ) 1 r 3 = 1 l(l + 1/2)(l + 1) ( Z na )3

R 1s & R 2s & R 2p Electron in the Nucleus?!

R 3s & R 3p & R 3d

Radial Distribution Function R 2 nl r 2

Real Hydrogenlike Functions combinations of Ψ n,l,m and Ψ n,l, m : 1 Ψ n,l,m = R nl (r)s lm (θ) e imφ 2π 1 Ψ n,l, m = R nl (r)s l, m (θ) { 2π cos m φ sin m φ Ψ 2pz = Ψ 2p0 = 1 π ( Z 2a )5/2 e Zr/2a z Ψ 2px = 1 2 (Ψ 2p1 + Ψ 2p 1 ) = 1 π ( Z 2a )5/2 e Zr/2a x Ψ 2py = Ψ 3dxy = 1 i 2 (Ψ 2p 1 Ψ 2p 1 ) = 1 ( Z π 2a )5/2 e Zr/2a y 1 i 2 (Ψ 2 3d 2 Ψ 3d 2 ) = 81 2π (Z a )7/2 e Zr/3a xy

Graphs of Real Hydrogenlike Orbitals Angular wave function, Y lm (θ, φ) 2s Probability density, Ψ 2, Ψ (@y = 0) 2pz 3pz p z 3d z 2 3d xz 3d x 2 y 2 A Java viewer from: http://www.falstad.com/qmatom/

Graphs of Real Hydrogenlike Orbitals 3p z (m = 0) 3d xz (m = ±1) 3d xy (m = ±2) 3d z 2 (m = 0) 3d yz (m = ±1) 3d x 2 y 2 (m = ±2)

Graphs of Real Hydrogenlike Orbitals 4f xz 2 (m = ±1) 4f xyz (m = ±2) 4f x(x 2 3y 2 ) (m = ±3) 4f z 3 (m = 0) 4f yz 2 (m = ±1) 4f z(x 2 y 2 ) (m = ±2) 4f y(3x 2 y 2 ) (m = ±3) http://en.wikipedia.org/wiki/atomic orbital

õ>f f>f;u? }B APenetrating Effect >fkbls >fùø E(ns) < E(np) < E(nd) < E(nf ); U? " f;u?ã

ësnjj SK SN ëö SK få½ =Lv> 6.1 => 17 õ ÕáâfNX =Lv> 6.2-6.3 üâfn %å =Lv> 6.1 =Q> 6.1 =Lv>6.2 a fu? =Lv> 6.5 => 17 =Lv>6.16 a få¼ê =Lv> 6.6 =Lv>6.17,6.18 => 17 =>3-12