ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Similar documents
! Energy Optimization. ! Design Space Exploration. " Example. ! P tot P static + P dyn + P sc. ! Steady-State: V in =V dd. " PMOS: subthreshold

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Total Power. Energy and Power Optimization. Worksheet Problem 1

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Restore Output. Pass Transistor Logic. How compare.

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: CMOS Inverter: Visual VTC. Review: CMOS Inverter: Visual VTC

! Inverter Power. ! Dynamic Characteristics. " Delay ! P = I V. ! Tricky part: " Understanding I. " (pairing with correct V) ! Dynamic current flow:

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

EE115C Digital Electronic Circuits Homework #4

EE5311- Digital IC Design

Lecture 8-1. Low Power Design

THE INVERTER. Inverter

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

EE241 - Spring 2000 Advanced Digital Integrated Circuits. Announcements

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Dynamic operation 20

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010

Topic 4. The CMOS Inverter

Power Dissipation. Where Does Power Go in CMOS?

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

Name: Answers. Mean: 83, Standard Deviation: 12 Q1 Q2 Q3 Q4 Q5 Q6 Total. ESE370 Fall 2015

EE115C Digital Electronic Circuits Homework #3

EECS 141: FALL 05 MIDTERM 1

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

DC and Transient Responses (i.e. delay) (some comments on power too!)

Digital Integrated Circuits

τ gd =Q/I=(CV)/I I d,sat =(µc OX /2)(W/L)(V gs -V TH ) 2 ESE534 Computer Organization Today At Issue Preclass 1 Energy and Delay Tradeoff

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

Integrated Circuits & Systems

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Objective and Outline. Acknowledgement. Objective: Power Components. Outline: 1) Acknowledgements. Section 4: Power Components

EE5311- Digital IC Design

CMOS Inverter (static view)

EE115C Winter 2017 Digital Electronic Circuits. Lecture 6: Power Consumption

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Name: Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: 1st Order RC Delay Models. Review: Two-Input NOR Gate (NOR2)

EE 434 Lecture 33. Logic Design

Where Does Power Go in CMOS?

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

MOS Transistor Theory

MOSFET and CMOS Gate. Copy Right by Wentai Liu

CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002

EEE 421 VLSI Circuits

University of Toronto. Final Exam

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

The Physical Structure (NMOS)

Lecture 4: CMOS review & Dynamic Logic

Lecture 7 Circuit Delay, Area and Power

CMPEN 411 VLSI Digital Circuits Spring Lecture 14: Designing for Low Power

MODULE III PHYSICAL DESIGN ISSUES

EECS 427 Lecture 11: Power and Energy Reading: EECS 427 F09 Lecture Reminders

Digital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman

EE141Microelettronica. CMOS Logic

Using MOS Models. C.K. Ken Yang UCLA Courtesy of MAH EE 215B

Spiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

Answers. Name: Grade: Q1 Q2 Q3 Q4 Total mean: 83, stdev: 14. ESE370 Fall 2017

The CMOS Inverter: A First Glance

Lecture 2: CMOS technology. Energy-aware computing

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

Lecture 5: DC & Transient Response

Lecture 6: DC & Transient Response

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EE141-Fall 2011 Digital Integrated Circuits

Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Previously. ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Variation Types. Fabrication

Announcements. EE141- Spring 2003 Lecture 8. Power Inverter Chain

C.K. Ken Yang UCLA Courtesy of MAH EE 215B

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

! Charge Leakage/Charge Sharing. " Domino Logic Design Considerations. ! Logic Comparisons. ! Memory. " Classification. " ROM Memories.

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

ECE 546 Lecture 10 MOS Transistors

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Homework Assignment #3 EE 477 Spring 2017 Professor Parker , -.. = 1.8 -, 345 = 0 -

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

CMOS Technology for Computer Architects

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 4: DC & Transient Response

Last Lecture. Power Dissipation CMOS Scaling. EECS 141 S02 Lecture 8

EECS 151/251A Homework 5

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

Lecture 5: DC & Transient Response

EE5780 Advanced VLSI CAD

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

! Crosstalk. ! Repeaters in Wiring. ! Transmission Lines. " Where transmission lines arise? " Lossless Transmission Line.

Transcription:

ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 17: March 26, 2019 Energy Optimization & Design Space Exploration Penn ESE 570 Spring 2019 Khanna

Lecture Outline! Energy Optimization! Design Space Exploration " Example Penn ESE 570 Spring 2019 Khanna 3

Energy and Power Basics Review Penn ESE 570 Spring 2019 Khanna

Total Power! P tot P static + P dyn + P sc Penn ESE 570 Spring 2019 Khanna 5

Static Leakage Power Penn ESE 570 Spring 2019 Khanna 6

Operating Modes! Steady-State: V in =V dd " PMOS: subthreshold " NMOS: resistive $ I DSp = I S #& W % L ' ) e ( $ & % V GS V T nkt / q ' $ $ V DS ) & ( 1 e % & % ' ) kt / q ( ' ) 1 λv DS ( ( ) I DSn = µ n C OX! # " W L $ ( & ( V GS V T )V DS V 2 DS * %) 2 + -, Penn ESE 570 Spring 2019 Khanna 7

Static Power Ratioed Logic! I static?! Input low-output high? " I leak! Input high-output low? " I pmos_on " ~V dd /R p,on Penn ESE 570 Spring 2019 - Khanna 8

Total Static Power! P statit p(v out =low)v 2 /R p,on +p(v out =high)vi s (W/L)e-Vt/(nkT/q) p(v out =low) probability the output is low p(v out =high) probability the output is high p(v out =high)=1-p(v out =low) Penn ESE 570 Spring 2019 - Khanna 9

Switching Dynamic Power Penn ESE 570 Spring 2019 Khanna 10

Switching Currents! I switch (t) = I sc (t) + I dyn (t) I sw I dyn I sc Penn ESE 570 Spring 2019 - Khanna 11

Switching Energy! Do we know what this is? Q = I dyn (t)dt! What is Q? I dyn E = P(t)dt Q = CV = I(t)dt = I(t)V dd dt = V dd I(t)dt E = CV dd 2 Capacitor charging energy Penn ESE 570 Spring 2019 Khanna 12

Switching Power! Every time output switches 0#1 pay: " E = CV 2! P dyn = (# 0#1 trans) CV 2 / time! # 0#1 trans = ½ # of transitions! P dyn = (# trans) ½CV 2 / time Penn ESE 570 Spring 2019 Khanna 13

Switching Short Circuit Power Penn ESE 570 Spring 2019 Khanna 14

Short Circuit Power! Between V TN and V dd - V TP " Both N and P devices conducting Penn ESE 570 Spring 2019 - Khanna 15

Peak Current! I peak around V dd /2 " If V TN = V TP and sized equal rise/fall % I DS ν sat C OX W V GS V T V ( DSAT ' * & 2 ) I(t)dt I t % ' 1( peak sc & 2 * ) # E = V dd I peak t sc % 1& ( $ 2' Vin Vdd-Vthp Vthn Vdd Isc Vdd time Penn ESE 570 Spring 2019 Khanna Vout tsc tsc time 16

Short Circuit Energy! Make it look like a capacitance, C SC " Q=I t " Q=CV " " E = V dd I peak t sc 1 %% $ $ '' # # 2 && E = V dd Q SC E = V dd (C SC V dd ) = C SC V 2 dd Penn ESE 570 Spring 2019 - Khanna 17

Short Circuit Energy! Every time switch " Also dissipate short-circuit energy: E = CV 2 " Different C = C sc " C cs fake capacitance (for accounting) Penn ESE 570 Spring 2019 - Khanna 18

Short Circuit Energy! When transistors switch, both nmos and pmos networks may be nano-tarily ON at once! Leads to a blip of short circuit current! < 10% of dynamic power if rise/fall times are comparable for input and output! We will generally ignore this component in hand analysis, but simulated measured results include it Penn ESE 570 Spring 2019 - Khanna 19

Switching Waveforms Penn ESE 570 Spring 2019 - Khanna 20

Switching Power! Every time output switches 0#1 pay: " E = CV 2! P dyn = (# 0#1 trans) CV 2 / time! # 0#1 trans = ½ # of transitions! P dyn = (# trans) ½CV 2 / time Penn ESE 570 Spring 2019 Khanna 21

Charging Power! P dyn = (# trans) ½CV 2 / time! Often like to think about switching frequency! Useful to consider per clock cycle " Frequency f = 1/clock-period! P dyn = (#trans/clock) ½CV 2 f Penn ESE 570 Spring 2019 Khanna 22

Charging Power! P dyn = (# 0#1 trans) CV 2 / time! Often like to think about switching frequency! Useful to consider per clock cycle " Frequency f = 1/clock-period! P dyn = (# 0#1 trans/clock) CV 2 f Penn ESE 570 Spring 2019 Khanna 23

Switching Power! P dyn = (#0#1 trans/clock) CV 2 f! Let a = activity factor a = average #tran 0#1 /clock! P dyn = acv 2 f Penn ESE 570 Spring 2019 - Khanna 24

Activity Factor! Let a = activity factor " a = average #tran 0#1 /clock a = p(out i = 0) p(out i+1 =1) a = N N 0 1 2 N 2 = N 0 (2N N 0 ) N 2 2N Penn ESE 570 Spring 2019 - Khanna 25

Activity Factor! Let a = activity factor " a = average #tran 0#1 /clock a = p(out i = 0)p(out i+1 =1) a = N 0 N 1 2 N 2 = N (2 N 0 N 0 ) N 2 2 N Penn ESE 570 Spring 2019 - Khanna 26

Reduce Dynamic Power?! P dyn = acv 2 f! How do we reduce dynamic power? Penn ESE 570 Spring 2019 - Khanna 27

Reduce Activity Factor Tree Chain A B O 1 A B O 1 C D O 2 F C D O 2 F a = p(out i = 0)p(out i+1 =1) a = N 0 N 1 2 N 2 = N (2 N 0 N 0 ) N 2 2 N Penn ESE 570 Spring 2019 - Khanna 28

Reduce Activity Factor Tree Chain A B 3/16 O 1 A B O 1 C D O 2 3/16 F a = p(out i = 0)p(out i+1 =1) C D O 2 F a = N 0 N 1 2 N 2 = N (2 N 0 N 0 ) N 2 2 N Penn ESE 570 Spring 2019 - Khanna 29

Reduce Activity Factor Tree Chain A B 3/16 O 1 15/256 A B O 1 C D O 2 3/16 F a = p(out i = 0)p(out i+1 =1) C D O 2 F a = N 0 N 1 2 N 2 = N (2 N 0 N 0 ) N 2 2 N Penn ESE 570 Spring 2019 - Khanna 30

Reduce Activity Factor Tree Chain A B C D O 1 O 2 F A B C 3/16 O 1 D 7/64 O 2 15/256 F a = p(out i = 0)p(out i+1 =1) a = N 0 N 1 2 N 2 = N (2 N 0 N 0 ) N 2 2 N Penn ESE 570 Spring 2019 - Khanna 31

Reduce Activity Factor Tree Chain A B C D 3/16 O 1 O 2 3/16 15/256 F A B C 3/16 O 1 a = p(out i = 0)p(out i+1 =1) D 7/64 O 2 15/256 F a = N 0 N 1 2 N 2 = N (2 N 0 N 0 ) N 2 2 N Penn ESE 570 Spring 2019 - Khanna 32

Total Power Summary! P tot = P static + P sc + P dyn! P sw = P dyn + P sc a(c load V 2 f)! P tot a(c load V 2 f) + VI s (W/L)e-Vt/(nkT/q)! Let a = activity factor a = average #tran 0#1 /clock Penn ESE 570 Spring 2019 Khanna 33

Energy and Power Optimization Penn ESE 570 Spring 2019 Khanna

Power Sources Review: P tot = P static + P dyn + P sc Penn ESE 570 Spring 2019 Khanna

Worksheet Problem 1 V in I static I dynamic I sc 0V 140mV 400mV 500mV 600mV 860mV 1V Penn ESE 570 Spring 2019 Khanna 36

Worksheet Problem 1 V in I static I dynamic I sc 0V 180pA 126uA 140mV 6nA 100uA 400mV 36uA 18uA 500mV 36uA 600mV 36uA 18uA 860mV 6nA 100uA 1V 180pA 126uA Penn ESE 570 Spring 2019 Khanna 37

Reduce V dd (Worksheet #2)! V dd =520mV, V thn = V thp =300mV V in I static I dynamic I sc 0V 140mV 260mV 360mV 500mV Penn ESE 570 Spring 2019 Khanna 38

Reduce V dd (Worksheet #2)! V dd =520mV, V thn = V thp =300mV V in I static I dynamic I sc 0V 180pA 39.6uA 140mV 6nA 14.4uA 260mV 111nA 360mV 6nA 10.8uA 500mV 180pA 36uA Penn ESE 570 Spring 2019 Khanna 39

Design Tradeoffs Penn ESE 570 Spring 2019 Khanna

Reduce V dd! What happens as reduce V dd? " Energy? " Static " Switching " Delay? Penn ESE 570 Spring 2019 Khanna 41

Reduce V dd :! τ gd =Q/I=(CV)/I Penn ESE 570 Spring 2019 Khanna 42

Reduce V dd :! τ gd =Q/I=(CV)/I! I d =(µc OX /2)(W/L)(V gs -V TH ) 2! τ gd impact?! τ gd 1 V Penn ESE 570 Spring 2019 Khanna 43

Reduce V dd :! τ gd =Q/I=(CV)/I! I d =(µc OX /2)(W/L)(V gs -V TH ) 2! τ gd impact?! τ gd 1 V! Ignoring leakage: E V 2 Eτ 2 Const Penn ESE 570 Spring 2019 Khanna 44

Reduce V dd (Worksheet #3)! V thn = V thp =300mV, V in =V dd, estimate Eτ V dd I ds τ/(τ@v dd =1) E switch / (E switch @V dd =1) Eτ 2 1V 700mV 500mV 350mV 260mV Penn ESE 570 Spring 2019 Khanna 45

Reduce V dd (Worksheet #3)! V thn = V thp =300mV, V in =V dd, estimate Eτ V dd I ds τ/(τ@v dd =1) E switch / (E switch @V dd =1) Eτ 2 1V 126uA 1 1 1 700mV 72uA 1.225 0.49.735 500mV 36uA 1.75 0.25.766 350mV 9uA 4.9 0.12 2.88 260mV 111nA 295 0.07 6k Penn ESE 570 Spring 2019 Khanna 46

Increase V th (Worksheet #4)! What is impact of increasing threshold on " Delay? " Leakage?! V dd =1V, V in =V dd V thn = -V thp I ds τ/(τ@v th =300mV) I static (I stat @V th =300mV) I stat / 300mV 460mV 600mV Penn ESE 570 Spring 2019 Khanna 47

Increase V th (Worksheet #4)! What is impact of increasing threshold on " Delay? " Leakage?! V dd =1V, V in =V dd V thn = -V thp I ds τ/(τ@v th =300mV) I static (I stat @V th =300mV) I stat / 300mV 126uA 1 180pA 1 460mV 97uA 1.3 3.6pA 0.02 600mV 72uA 1.75 108fA 0.0006 Penn ESE 570 Spring 2019 Khanna 48

Idea! Tradeoff " Speed " Switching energy " Leakage energy! Energy-Delay tradeoff: Eτ 2 Penn ESE 570 Spring 2019 Khanna 49

Design Space Exploration Penn ESE 370 Fall 2018 - Khanna 50

Design Problem! Function: Identify equivalence of two 32bit inputs! Optimize: Minimize total energy! Assumptions: Match case uncommon " Ie. Most of the time, the inputs won t be matched! Deliberately focus on Energy to complement project " but will still talk about delay Penn ESE 370 Fall 2018 - Khanna 51

Idea: Design Space Explore! Identify options " All the knobs you can turn! Explore space systematically! Formulate continuum where possible " i.e. formulate trends and tradeoffs quantitatively Penn ESE 370 Fall 2018 - Khanna 52

Problem Solvable! Is it feasible? " First, make sure we have a solution so we know our main goal is optimization! How do we decompose the problem? Penn ESE 370 Fall 2018 - Khanna 53

Problem Solvable! Is it feasible? " First, make sure we have a solution so we know our main goal is optimization! How do we decompose the problem?! What look like built out of nand2 gates and inverters? Penn ESE 370 Fall 2018 - Khanna 54

Single Gate Match Condition! Design a single gate for match comparison Penn ESE 370 Fall 2018 - Khanna 55

Total Power! Static CMOS: " P tot a(c load +2C sc )V 2 f+vi s (W/L)e-Vt/(nkT/q)! Ratioed Logic: " P tot a(c load +2C sc )V 2 f +p(v out =low)v 2 /R pon +(1-p(V out =low))vi s (W/L)e-Vt/(nkT/q)! What can we do to reduce power? Penn ESE 370 Fall 2018 - Khanna 56

Knobs! What are the options and knobs we can turn? Penn ESE 370 Fall 2018 - Khanna 57

Design Space Dimensions! Topology " (A) Gate choice, logical optimization " (B) Fanin, fanout, (C) Serial vs. parallel! Gate style / logic family " (D) CMOS, Ratioed (N load, P load)! (E) Transistor Sizing! (F) Vdd! (G) Vth Penn ESE 370 Fall 2018 - Khanna 58

Gate! (A) What gates might we build? Penn ESE 370 Fall 2018 - Khanna 59

Gate! (B) High fanin? Penn ESE 370 Fall 2018 - Khanna 60

Gate! (C) Serial-Parallel? Penn ESE 370 Fall 2018 - Khanna 61

(D) Logic Family! Considerations for each logic family? Penn ESE 370 Fall 2018 - Khanna 62

(D) Logic Family! Considerations for each logic family? " CMOS " Ratioed with PMOS load " Ratioed with NMOS load! Ratioed Logic " Reduced C loads result in lower switching power (P dyn $) " Increased static power Penn ESE 370 Fall 2018 - Khanna 63

(E) Sizing! How do we want to size gates? Penn ESE 370 Fall 2018 - Khanna 64

(E) Sizing! How do we want to size gates? " Sizing transistors up will reduce delay # " Reduces short circuit power # # E = V dd I peak t sc % 1& & % (( $ $ 2' ' " Increases dynamic power Penn ESE 370 Fall 2018 - Khanna 65

(F) Reduce Vdd! What happens as reduce V? " Energy? " Dynamic $ " Static $ " Switching Delay? % & τ gd =Q/I=(CV)/I & I d =(µc OX /2)(W/L)(V gs -V TH ) 2 & τ gd impact? & τ gd α 1/V & Limit on Vdd? Penn ESE 370 Fall 2018 - Khanna 66

(G) Increase V th?! What is impact of increasing threshold on " Dynamic Energy? $ " Leakage Energy? $ " Delay? % & τ gd =Q/I=(CV)/I & I ds =(ν sat C OX )(W)(V gs -V TH -V DSAT /2) Penn ESE 370 Fall 2018 - Khanna 67

Ideas! Three components of power " P tot = P static + P dyn + P sc! We know many things we can do to our circuits! Design space is large! Systematically identify dimensions! Identify continuum (trends) tuning when possible! Watch tradeoffs " don t over-tune Penn ESE 570 Spring 2019 Khanna 68

Admin! HW 7 due 4/5 Penn ESE 570 Spring 2019 Khanna 69