University of Toledo REU Program Summer 2002

Similar documents
Partial Fraction Expansion

Lecture 2: Bayesian inference - Discrete probability models

AQUIFER DRAWDOWN AND VARIABLE-STAGE STREAM DEPLETION INDUCED BY A NEARBY PUMPING WELL

GUIDE FOR SUPERVISORS 1. This event runs most efficiently with two to four extra volunteers to help proctor students and grade the student

Final Exam : Solutions

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Transfer function and the Laplace transformation

Dynamics of Bloch Electrons 1

The Moúõ. ExplÉüers. Fun Facts. WÉüd Proèô. Parts oì Sp. Zoú Animal Roêks

Lecture 17: Kinetics of Phase Growth in a Two-component System:

1 Lecture: pp

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

The angle between L and the z-axis is found from

SHINGLETON FOREST AREA Stand Level Information Compartment: 44 Entry Year: 2009

Investment. Net Present Value. Stream of payments A 0, A 1, Consol: same payment forever Common interest rate r

DSP-First, 2/e. This Lecture: LECTURE #3 Complex Exponentials & Complex Numbers. Introduce more tools for manipulating complex numbers

COMPSCI 230 Discrete Math Trees March 21, / 22

Study of Tyre Damping Ratio and In-Plane Time Domain Simulation with Modal Parameter Tyre Model (MPTM)

Exponential and Logarithmic Equations and Properties of Logarithms. Properties. Properties. log. Exponential. Logarithmic.

Fourier transforms (Chapter 15) Fourier integrals are generalizations of Fourier series. The series representation

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Chapter 5 Transmission Lines

Overview. 1 Recall: continuous-time Markov chains. 2 Transient distribution. 3 Uniformization. 4 Strong and weak bisimulation

Lecture 26: Leapers and Creepers

Physics 160 Lecture 3. R. Johnson April 6, 2015

Ma/CS 6a Class 15: Flows and Bipartite Graphs

By Joonghoe Dho. The irradiance at P is given by

STRIPLINES. A stripline is a planar type transmission line which is well suited for microwave integrated circuitry and photolithographic fabrication.

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Design Example Analysis and Design of Jib Crane Boom

Aakash. For Class XII Studying / Passed Students. Physics, Chemistry & Mathematics

Combinatorial Approach to M/M/1 Queues. Using Hypergeometric Functions

A Simple Method for Determining the Manoeuvring Indices K and T from Zigzag Trial Data

The far field calculation: Approximate and exact solutions. Persa Kyritsi November 10th, 2005 B2-109

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

CSE 245: Computer Aided Circuit Simulation and Verification

Graphs III - Network Flow

Phys Nov. 3, 2017 Today s Topics. Continue Chapter 2: Electromagnetic Theory, Photons, and Light Reading for Next Time

Lecture 5 Emission and Low-NOx Combustors

How to represent a joint, or a marginal distribution?

Randomized Perfect Bipartite Matching

Physics 111. Lecture 38 (Walker: ) Phase Change Latent Heat. May 6, The Three Basic Phases of Matter. Solid Liquid Gas

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

NEWBERRY FOREST MGT UNIT Stand Level Information Compartment: 10 Entry Year: 2001

Consider a Binary antipodal system which produces data of δ (t)

Anouncements. Conjugate Gradients. Steepest Descent. Outline. Steepest Descent. Steepest Descent

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Lecture 20. Transmission Lines: The Basics

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

Network Flow. Data Structures and Algorithms Andrei Bulatov

Chapter 12 Introduction To The Laplace Transform

T h e C S E T I P r o j e c t

CHAPTER CHAPTER14. Expectations: The Basic Tools. Prepared by: Fernando Quijano and Yvonn Quijano

The Production of Well-Being: Conventional Goods, Relational Goods and Status Goods

(ΔM s ) > (Δ M D ) PARITY CONDITIONS IN INTERNATIONAL FINANCE AND CURRENCY FORECASTING INFLATION ARBITRAGE AND THE LAW OF ONE PRICE

Lecture 26: Leapers and Creepers

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

k of the incident wave) will be greater t is too small to satisfy the required kinematics boundary condition, (19)

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.


CS 188: Artificial Intelligence Fall Probabilistic Models

8 - GRAVITATION Page 1

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Elementary Differential Equations and Boundary Value Problems

STATISTICAL MECHANICS OF DIATOMIC GASES

where: u: input y: output x: state vector A, B, C, D are const matrices

Derivation of the differential equation of motion

Physics 240: Worksheet 16 Name

GRAVITATION. (d) If a spring balance having frequency f is taken on moon (having g = g / 6) it will have a frequency of (a) 6f (b) f / 6

Final Exam. Thursday, December hours, 30 minutes

Poisson process Markov process

Today: Max Flow Proofs

Estimation of a Random Variable

4. AC Circuit Analysis

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison

Chapter 4 Circular and Curvilinear Motions

Continous system: differential equations

LINEAR CONTROL SYSTEMS. Ali Karimpour Associate Professor Ferdowsi University of Mashhad

European and American options with a single payment of dividends. (About formula Roll, Geske & Whaley) Mark Ioffe. Abstract

Silv. Criteria Met? Condition

What is an Antenna? Not an antenna + - Now this is an antenna. Time varying charges cause radiation but NOT everything that radiates is an antenna!

Part I- Wave Reflection and Transmission at Normal Incident. Part II- Wave Reflection and Transmission at Oblique Incident

Support Vector Machines

Senior: Jamie Miniard

P a g e 5 1 of R e p o r t P B 4 / 0 9

LaPlace Transform in Circuit Analysis

Introduction to SLE Lecture Notes

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

Microscopic Flow Characteristics Time Headway - Distribution

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

Institute of Actuaries of India

The Black-Scholes Formula

6.8 Laplace Transform: General Formulas

(( ) ( ) ( ) ( ) ( 1 2 ( ) ( ) ( ) ( ) Two Stage Cluster Sampling and Random Effects Ed Stanek

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

Transcription:

Univiy of Toldo REU Pogam Summ 2002 Th Effc of Shadowing in 2-D Polycyallin Gowh Jff Du Advio: D. Jacqu Ama Dpamn of Phyic, Univiy of Toldo, Toldo, Ohio Abac Th ffc of hadowing in 2-D hin film gowh w udid uing a pu dpoiion modl. Boh coin and unifom angula diibuion w udid. Alo udid w h ffc of an infac diffuion bai. W find n = /3 and b =, wh n i h mound coaning xponn and b i h gowh xponn, in h ca of a coin diibuion wih diffuion bai, and n = b = in all oh ca. W find h fac lngh coaning xponn d = 0.8 fo unifom angula diibuion. In h ca of coin diibuion wihou diffuion bai d = 0.8. Moov, w find a pow law diibuion of id lngh of mound in boh coin and unifom angula diibuion whn a diffuion bai i abn. Ploing a cald gaph of (N)(S av )/N T v. /S av wh N i h numb of id, S av i h avag id lngh, N T i h oal numb of id, and i id lngh. Fo a unifom diibuion, h xponn = 0.7. Fo a coin diibuion, = 0.44. Fo a unifom diibuion boh wih and wihou a diffuion bai a wll a a coin diibuion wihou bai w find h ufac oughning xponn a =.0. In h ca of coin diibuion wih diffuion bai, anomalou caling of id lngh wa found yilding a = 0.88. Mo complx modl in h dimnion, pcially h coin-bai ca, could povid a vy phyical modl of xpimnal pu dpoiion hin film gowh.

I. Inoducion Thin film gowh ha bcom a vy popula fild of ach in h la fw ya, pimaily du o h numou applicaion hof. Thin film gowh fnc a numb of chniqu in which film a gown by adding on aom a a im of a cain lmn o a uba, ofn caing uful im uch a miconduco. Many modl of hin film gowh hav bn udid, and all ag ha, a im pa, h film will dvlop mound ha coan wih im. Fig how xpimnal ul of mound fomaion in Cu. Th mound a ofn an unwand fau, howv. If gowing a miconduco, o caing a hin film wih infac bwn diffn lay of diffn ubanc, a unifom ufac i did. Thi nd fo a mooh ufac ha givn i o h udy of h mchanic of mound gowh in hin film. Mound coaning ha bn udid quaniaivly uing Kinic Mon Calo imulaion. Fom h imulaion, i wa found ha h coaning of a ym could b udid by mauing h m widh W 2 (L,) = <(h- <h>) 2 > () wh L i ym iz, i im, and h i high. Widh ypically vai accoding o im a W(L,) ~ b (2) wh b i h ufac gowh xponn. A wll a mauing b, h imulaion ofn alo mau n, h mound coaning xponn, and d, h id lngh coaning xponn. Almo all pviou Kinic Mon Calo imulaion hav hown h xponn o b bwn /4 and /3.

Howv, n and b hav bn maud xpimnally, uing a pu dpoiion gowh poc, o b 0.7 o 0.8. Th ul w conidd o b du o an ffc calld hadowing. Shadowing occu whn aom a bough o h hin film a lag angl, uling in lag mound ha domina h ym. Fig 2 how an xampl of hadowing. W hav cad a imulaion ha incopoa hadowing o y and ca h xpimnal ul. Fig. Expimnal gowh of Cu film gowh howing mound fomaion. Fig 2. Th lag mound domina h ym, hadowing h mall mound.

II. Mhod Wha balliic and andom dpoiion modl andomly lc a column o i o augmn, ou pogam imula pu dpoiion by gnaing a andom angl hough which h aom avl. Ou pogam u a qua laic o cod h pah of h aom. In od o duc complxiy, h pogam aum h aom occupi h cn of a qua if i ouch any pa of ha qua. Sinc ou modl i a ingl p modl, w aum ha an aom in fligh occupi wo qua: h on i i in and h on dicly blow i. Thi wa ncay o allow h minima of h ym o gow. To duc fini iz ffc, ou imulaion u piodic bounday condiion. In od o all ca, ou modl conain boh unifom angula diibuion, wh all angl a qually pobabl, and coin angula diibuion, wh lag angl a l likly. Moov, ou pogam alo incopoa an infac diffuion bai, which can b und on o off. Fig 3 dmona hi diffuion bai. Figu 3a how dpoiion in h abnc of hi bai whil Figu 3b how dpoiion wih h bai und on. P L = D R /(D R + D L ) D L D R Fig 3a. Wih infac diffuion bai und off, h dpoid paicl go igh o lf wih pobabiliy dmind by i dianc fom ih minima. Fig 3b. Wih h bai und on, h dpoid paicl can only mov down h id o h na minima.

III. Rul A ym of 3,000 igh wa gown o 0,000 lay in ach of h fou ca. Daa wa akn fo id lngh, widh, and high vy 0 lay and id-idcolaion, id lngh diibuion, and h G2 colaion funcion vy 2000 lay. IIIA. No Bai Fig 4 how h daa akn fom h unifom diibuion ca wihou diffuion bai. Fig4a how ha af only a fw lay a gown, h film ach ciical inabiliy. Fi fo ufac widh and fac iz af 000 lay how boh n = and b =, ha i W ~ and x~. Fuhmo, hi gaph how ha h avag lngh of on fac id i gowing wih im accoding o h xponn d = 0.84. A pow law diibuion of id lngh wa fac dicovd a hown in Fig4b. Th ul cal accoding o of (N)(S av )/N T v. /S av wh N i h numb of id, S av i h avag id lngh, N T i h oal numb of id, and i id lngh, a can b n in Fig4c. I yild an xponn = 0.7. Fig4d i h gaph of h G 2 [] colaion funcion. A xpcd, w find ha h ufac oughn wih im and ha h ufac oughning xponn a =. Fig5 how h daa fo h coin diibuion wihou a bai. Fig5a how ha, whil h coin diibuion ak long o bcom ciically unabl, i ill do o. Af 000 lay a gown, a fi how n and b again qual o on. Alo h avag lngh of a fac id i gowing wih im again accoding o d = 0.78. Again, hi lad o a pow law in id lngh diibuion, a in how in Fig5b and Fig5c. In h coin ca w find = 0.44. Thi valu i low han h unifom ca, which i o

b xpcd du o h lighly low d valu fo hi angula diibuion. Fig5d how ha a again qual. Fig6 how picu akn of boh coin and unifom diibuion ym wihou bai. Boh ym conain 2000 i, bu h picu a akn a diffn im. Fig6a how a coin diibuion akn a = 600 lay. Th picu how ha h film i bcoming vy ough, wih a fw vy wll dfind mound. Alo vy appan in hi picu i ha h avag id lngh i gowing, lnding fuh vidnc o a pow law diibuion of id lngh. Fig6b i a picu of a unifom diibuion akn a = 600 lay. Th ym i bcoming vy ough, wih on lag mound hadowing val mall on. Th gowh in avag id lngh i appan. Alo appan i h fac ha h avag id lngh i lighly low in h unifom ca han in h coin diibuion. Fig6a. Coin diibuion, no infac diffuion bai, L = 2000, = 600 lay Fig6b. Unifom diibuion, no infac diffuion bai, L = 2000, = 600 lay

IIIB. Bai W now com o h ca of an infac diffuion bai. Fi w will look a h unifom angula diibuion ca. Fig7a how ha h film bcom ju a unabl a h no bai ca fo unifom diibuion. Fi fo n and b af 000 lay how hm o b. W find ha in h ca of an infac diffuion bai, h avag lngh of a fac id gow mo lowly, in hi ca d = 0.24. Du o h wak id lngh gowh, a pow law diibuion wa no lookd fo. Fig7b how ha a ill qual. Finally, Fig8 how h ul fom h coin-bai imulaion. Thi ca i h mo lik xpimnal hin film gowh. I ha h mo ining ul. Fig 8a how ha, unlik all of h pviou ca, n = /3. Moov, in aly im b = /3. Howv, af 3000 lay, a fi fo b val ha i wa achd. W d ym of val diffn iz o inu ha hi wa no a fini iz ffc and in fac a al popy of h film. Whn w xamin h ufac of h film, w find gion of lag lop and gion of low lop. Thi man ha h mound gowh angl i no long fixd, and hfo n no long mu qual b. Thi alo xplain why h avag widh i gowing bu h mound coan i no. Again w find ha, in h pnc of an infac diffuion bai, h avag lngh of on id do no gow; in hi ca, d = 0. Howv, w do find anomalou caling in hi ca, a hown in Fig8b. Th gaph of G 2 [] do cal accoding o G 2 []/ v., wh i qual o im, in lay, a hown in Fig8c. An ining ul fom hi gaph i ha a = 0.8, no. Fig 4d, a gaph of G 2 [] v., how G 2 [] ha a pow law going G 2 [] ~ D. Thi fuh pov h anomalou caling.

Fig9 how picu akn of boh coin and unifom diibuion ym wih bai. Again, boh ym conain 2000 i wih picu akn a h am im a in Fig6. Fig9a how h coin diibuion. Th picu how l hap, dfind mound. Alo vidn in h picu i ha h avag id lngh in gowing lik in h no bai ca. Fig9a illua h ffc of boh low and lag lop gion on h ufac of h film. Fig9b i a picu of a unifom diibuion. I alo how ha h mound a l hap han h no bai ca. On lag mound i alo no a dominan a in h no bai ca. Th avag mound gowh i alo claly no gowing a fa. Howv, h mall, hadowd mound ough, which may xplain why n and b a lag han in h unifom-no bai ca. Fig 9a. Coin diibuion, L = 2000, = 600 lay, infac diffuion bai Fig9b. Unifom diibuion, L = 2000, = 600 lay, infac diffuion bai

IV. Concluion Ou imulaion m o how ha, in h pnc of hadowing du o pu dpoiion, hin film bcom ciically unabl, wih oughning and gowh xponn qual o. Moov, in h ca of coin diibuion wihou an infac diffuion bai, w find many ining, unxpcd ul. Fuh wok on hi ca, paiculaly looking a h id lngh diibuion, h anomalou caling of id lngh, and h aly im gim in which b co ov fom /3 o, could pov uful. Thi wok wa uppod by an NSF gan fo h Univiy of Toldo Summ 2002 REU pogam. Th auho would lik o hank all of ho a UT who aidd hi wok, paiculaly D. Jacqu Ama.

Fig8c. Scald gaph of G 2 [] / ), ( 2 G 0. 0.0 0.00 Coin diibuion Bai L = 3k a = 0.80 0.000 0-5 G2/-cov2k G2/-cov4k G2/-cov6k G2/-cov8k G2/-cov0k 0 00 Fig8d. Gaph of D ), ( 2 G 0 4 000 00 =5 =50 =99 Coin Diibuion Baio L = 3k D =.35 0 000 0 4 Thickn(lay)

Fig8a. Gaph of n, b, and d z i 000 u a F 00 0 0. w x w/x id Coin diibuion Baio n = /3 L = 3k b =.0 d = 0.0 0.0 0 00 000 0 4 Thickn(lay) Fig8b. Gaph of G 2 [] 000 ), ( 2 G 00 0 G2-cov0 G2-cov2k G2-cov4k G2-cov6k G2-cov8k G2-cov0k a = 0.88 Coin diibuion Baio L = 3k 0. 0 00

Fig5b. Gaph of id lngh diibuion d i f o b m u n 00 0 cov2k cov4k cov6k cov8k cov0k Coin diibuion No baio L = 32k = 0.44 0 00 000 id lngh Fig5c. Scald gaph of id lngh diibuion 0.3 Coin diibuion No bai L = 3k N / v 0.2 S a N =.44 cov2k cov4k cov6k 0. cov8k 0.09 cov0k 0.08 0.4 0.5 0.6 0.7 0.8 0.9 /S av

Fig4b. Gaph of id lngh diibuion d i f o b m u n 0 Unifom diibuion No baio L = 32k cov2k cov4k cov6k cov8k, cov0k = 0.65 0 00 000 id lngh Fig4c. Scald gaph of id lngh diibuion N / S a v 0. Unifom diibuion No bai L = 32k = 0.7 N cov2k cov4k cov6k cov8k cov0k 0.0 0. /S av

Fig5a. Gaph of n, b, and d z i S 000 u a F 00 0 w x w/x id Coin diibuion No bai L = 3k b =.0 n =.0 d = 0.78 0. 0 00 000 0 4 Thickn(lay) Fig5d. Gaph of G 2 [] ), ( 2 G 0 4 000 00 0 Coin diibuion No baio L = 3k a =.0 0. G2-cov0 G2-cov2k G2-cov4k G2-cov6k G2-cov8k G2-cov0k 0.0 0 00

Fig7a. Gaph of n, b, and d z i 0 4 000 u a F 00 0 w Unifom diibuion x Bai w/x L = 3k n =.2 id b =. d = 0.23 0. 0 00 000 Thickn(lay) Fig7b. Gaph of G 2 [] ), ( 2 G 0 4 000 00 0 Unifom diibuion Baio L = 32k a =.0 0. G2-cov00 G2-cov2k G2-cov4k G2-cov6k G2-cov8k G2-cov0k 0.0 0 00

Fig4a. Gaph of n, b, and d z i u a F 0 4 000 00 0 w x w/x id Unifom diibuion No Bai n = 0.97 L = 3k b =.0 d = 0.84 0. 0 00 000 Thickn(lay) Fig4d. Gaph of G 2 [] ), ( 2 G 0 4 000 00 0 Unifom diibuion No baio L = 32k a =.0 G2-cov00 G2-cov2k G2-cov4k G2-cov6k G2-cov8k G2-ov0k 0 00