Supporting information. Cooperatively Enhanced Ion Pair Binding with a Hybrid Receptor

Similar documents
An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

Supporting Information for: Tuning the Binding Properties of a New Heteroditopic Salt Receptor Through Embedding in a Polymeric System

Supporting Information for

Supporting Information

Supporting Information. Rhodium, iridium and nickel complexes with a. 1,3,5-triphenylbenzene tris-mic ligand. Study of

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure

Supplementary Information

Supporting Information for

Supporting Text Synthesis of (2 S ,3 S )-2,3-bis(3-bromophenoxy)butane (3). Synthesis of (2 S ,3 S

How to build and race a fast nanocar Synthesis Information

Anion recognition in water by a rotaxane containing a secondary rim functionalised cyclodextrin stoppered axle

Controlling microenvironments and modifying anion binding. selectivities using core functionalised hyperbranched polymers

Influence of photo-isomerisation on host-guest interaction in poly(azocalix[4]arene)s

Effect of Conjugation and Aromaticity of 3,6 Di-substituted Carbazole On Triplet Energy

Anion binding vs. sulfonamide deprotonation in functionalised ureas

Supporting Information

SUPPLEMENTARY INFORMATION

Light-Controlled Switching of a Non- Photoresponsive Molecular Shuttle

Electronic Supplementary Information

Electronic Supplementary Material

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A

Supporting Information

Electronic Supporting Information for

Electronic Supplementary Information

Supporting Information. for A Water-Soluble Switching on Fluorescent Chemosensor of. Selectivity to Cd 2+

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe

Photooxidations of 2-(γ,ε-dihydroxyalkyl) furans in Water: Synthesis of DE-Bicycles of the Pectenotoxins

An unexpected highly selective mononuclear zinc complex for adenosine diphosphate (ADP)

Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3

Fluorescent Chemosensor for Selective Detection of Ag + in an. Aqueous Medium

Supporting Information

Supporting Information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Halogen halogen interactions in diiodo-xylenes

Electronic Supporting Information

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

Supporting Information for. an Equatorial Diadduct: Evidence for an Electrophilic Carbanion

Electronic Supplementary Information

Supporting Information

Supporting Information

Supplementary Information (Manuscript C005066K)

Electronic Supplementary Information

Synthesis of Secondary and Tertiary Amine- Containing MOFs: C-N Bond Cleavage during MOF Synthesis

Electronic Supplementary Information

Electronic Supplementary Information for. A Redox-Nucleophilic Dual-Reactable Probe for Highly Selective

Significant improvement of dye-sensitized solar cell. performance by a slim phenothiazine based dyes

Supplementary Information. chemical-shift change upon binding of calcium ion

Supplementary Material. Ionic liquid iodinating reagent for mild and efficient iodination of. aromatic and heteroaromatic amines and terminal alkynes

Supporting Information

SUPPLEMENTARY INFORMATION

Reduction-free synthesis of stable acetylide cobalamins. Table of Contents. General information. Preparation of compound 1

Facile Multistep Synthesis of Isotruxene and Isotruxenone

Highly Luminescent -Conjugated Dithienometalloles: Photophysical Properties and Application to Organic Light-Emitting Diodes

Supporting Information For:

Supplemental Information. Nano-sized I 12 L 6 Molecular Capsules. Based on the [N,,,I +,,,N] Halogen Bond

Electronic Supporting Information

Supporting Information

Supplementary Materials

Simplified platensimycin analogues as antibacterial agents

Biasing hydrogen bond donating host systems towards chemical

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

1G (bottom) with the phase-transition temperatures in C and associated enthalpy changes (in

Supporting Information

Disubstituted Imidazolium-2-Carboxylates as Efficient Precursors to N-Heterocylic Carbene Complexes of Rh, Ir and Pd

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide

Electronic Supplementary Information. Jiani Wang, Lei Zhang, Qiong Qi, Shunhua Li* and Yunbao Jiang

Supporting Information

Supporting Information For:

Structure-activity effects in peptide self-assembly and gelation Dendritic versus linear architectures

Kinetics experiments were carried out at ambient temperature (24 o -26 o C) on a 250 MHz Bruker

4023 Synthesis of cyclopentanone-2-carboxylic acid ethyl ester from adipic acid diethyl ester

A dual-model and on off fluorescent Al 3+ /Cu 2+ - chemosensor and the detection of F /Al 3+ with in situ prepared Al 3+ /Cu 2+ complex

Supporting Information

Electronic Supplementary Information

SYNTHESIS OF A 3-THIOMANNOSIDE

One polymer for all: Benzotriazole Containing Donor-Acceptor Type Polymer as a Multi-Purpose Material

Supporting Information

Supporting Information

A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one

A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones. Jin-Quan Yu, a and E. J.

A Visible Near-Infrared Chemosensor for Mercury Ion

A non-symmetric pillar[5]arene-based selective anion receptor for fluoride. Electronic Supplementary Information

SUPPORTING INFORMATION

Supporting Information

Supplementary Information

Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes to Borinic Esters Lauren E. Longobardi, Connie Tang, and Douglas W.

Block: Synthesis, Aggregation-Induced Emission, Two-Photon. Absorption, Light Refraction, and Explosive Detection

Supporting Information. Sandmeyer Cyanation of Arenediazonium Tetrafluoroborate Using Acetonitrile as Cyanide Source

Total Synthesis of (±)-Vibsanin E. Brett D. Schwartz, Justin R. Denton, Huw M. L. Davies and Craig. M. Williams. Supporting Information

Selective total encapsulation of the sulfate anion by neutral nano-jars

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4)

Supporting Information

Supporting Information

Supporting Information for

Maksim A. Kolosov*, Olesia G. Kulyk, Elena G. Shvets, Valeriy D. Orlov

Supporting Material. 2-Oxo-tetrahydro-1,8-naphthyridine-Based Protein Farnesyltransferase Inhibitors as Antimalarials

Figure S1 - Enzymatic titration of HNE and GS-HNE.

Experimental Section

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011

Supporting Information:

Transcription:

Supporting information Cooperatively Enhanced Ion Pair Binding with a Hybrid Receptor Toni Mäkelä, a Elina Kalenius a and Kari Rissanen a* a University of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, FI 40014 University of Jyvaskyla, Finland. Contents 1. General information... 2 2. Synthesis and characterization... 2 3. Solution studies... 7 3.1 Job Plots... 7 3.2 1 H NMR titrations... 10 3.3 1 H NMR experiment of R 1 + TBABPh 4... 57 4. Single crystal structures... 58 5. MS measurements... 69 6. References... 71

1. General information All the reagents and solvents were purchased from Aldrich, Fluka and Altia and used as received. All the yields refer to spectroscopically homogenous materials. 1 H NMR spectra were measured with Bruker Avance 300 and Bruker Avance 500 instruments at 303 K. 13 C spectra were measured with Bruker Avance 500 instrument at 303 K. All the spectra are calibrated using the solvent signals of CDCl 3 ( 1 H = 7.26 ppm, 13 C = 77.16 ppm) or DMSO ( 1 H = 2.50 ppm, 13 C = 39.52 ppm) as internal standards. All high resolution (HR) mass measurements were performed with Micromass LCT ESI TOF MS instrument by using lockmass method. 2. Synthesis and characterization Synthesis of 2 Dinitrobenzo 18 crown 6 (2) was synthesized according to the literature procedure [1] with small modifications. Commercial benzo 18 crown 6 (1) (2.03 g, 6.50 mmol) was dissolved in chloroform (50 ml) and the solution was cooled to 2 O C in ice bath. Concentrated nitric acid was added dropwise during 15 minutes keeping the temperature under 5 O C and 5 ml of concentrated sulfuric acid was added dropwise during 20 minutes keeping the temperature under 10 O C. The ice bath was removed and the mixture was stirred at room temperature for 2 days. Reaction mixture was diluted with chloroform (30 ml) and poured to ice water (100 ml). The organic phase was separated and washed with water (100 ml + 2 * 50 ml). Water phases were combined and washed with chloroform (60 ml). Organic phases were combined and dried with Na 2 SO 4. Evaporation of the dried chloroform solution resulted in a gel like residue which was mixed with diethyl ether and kept in freezer for 1 hour. The formed solid was filtered and washed with diethyl ether and a second batch of product started to precipitate from the filtrate. The solids were combined and washed with diethyl ether and dried in air; yield 84 %. 1 H NMR (500 MHz, CDCl 3, 303 K): δ = 3.64 (4H, s, CH 2 ), 3.67 3.75 (8H, m, CH 2 ), 3.94 (4H, t, CH 2 ), 4.28 (4H, t, CH 2 ), 7.34 (2H, s, ArH) ppm. 13 C NMR (126 MHz, CDCl 3, 303K): δ = 68.90, 69.84, 70.49, 70.68, 71.02, 108.64, 136.87, 152.01 ppm. HRMS (ESI+): calcd. for C 16 H 22 N 2 O 10 Na, [M + Na] + : m/z 425.1172; found: m/z 425.1178 (Δ = 0.6 mda). 2

Fig. S1 500 MHz 1 H NMR spectrum of 2 in CDCl 3. Fig. S2 126 MHz 13 C NMR spectrum of 2 in CDCl 3. 3

Synthesis of 3 Diaminebenzo 18 crown 6 (3) was synthesized according to the literature procedure [1] with small modifications. Ethanol and hydrazine monohydrate were degassed prior of use by sonication and simultaneous argon bubbling through the solution. Dinitrobenzo 18 crown 6 (2) (0.175 g, 0.43 mmol) and 10 % Pd/C (50 mg) were mixed in 20 ml of degassed ethanol under argon atmosphere and degassed hydrazine monohydrate (0.20 ml) was added to the mixture which was heated at 80 O C in the dark for 1 hour. The mixture was filtered quickly through Celite while hot to avoid exposure to air and the filtrate was evaporated close to dryness under reduced pressure. Resulting residue was dried under vacuum overnight resulting in a brown solid which was used without purification in the next step. Due to the instability of the amine compound only 1 H NMR was recorded; quant. 1 H NMR (300 MHz, CDCl 3, 303 K): δ = 3.19 (4H, bs, NH 2 ), 3.67 (4H, s, CH 2 ) 3.70 3.77 (8H, m, CH 2 ), 3.88 (4H, t, CH 2 ), 4.07 (4H, t, CH 2 ), 6.37 (2H, s, ArH) ppm. Fig. S3 300 MHz 1 H NMR spectrum of 3 in CDCl 3. Synthesis of R 1 3 (0.107 g, 0.312 mmol) was dissolved in degassed dichloromethane (10 ml) under argon. 4 nitrophenylisocyanate (4) (0.128 g, 0,780 mmol) was dissolved in degassed dichloromethane (10 ml) and added slowly to 3 through septum. Solution was stirred overnight under argon 4

and the precipitated solid was filtered, washed with dichloromethane, methanol and diethyl ether and dried in air. The product was recrystallized by slow diffusion of methanol into DMF solution; yield 52 %. 1 H NMR (500 MHz, DMSO, 303 K): δ = 3.54 (4H, s, CH 2 ), 3.56 3.63 (8H, m, CH 2 ), 3.77 (4H, m, CH 2 ), 4.06 (4H, t, CH 2 ), 7.23 (2H, s, ArH), 7.71 (4H, d, ArH), 8.11 (2H, s, NH), 8.17 (4H, d, ArH), 9.74 (2H, s, NH) ppm. 13 C NMR (126 MHz, DMSO, 303 K): δ = 68.52, 68.68, 69.78 69.83, 110.33, 117.36, 124.10, 125.05, 140.88, 145.17, 146.50, 152.75 ppm. HRMS (+ESI): calcd. for C 30 H 34 N 6 O 12 Na, [M + Na] + : m/z 693.21269; found: m/z 693.2109 (Δ = 1.8 mda). Fig. S4 500 MHz 1 H NMR spectrum of R 1 in DMSO. 5

Fig. S5. 126 MHz 13 C NMR spectrum of R 1 in DMSO. 6

3. Solution studies 3.1 Job Plots 3.1.1 General Job plot measurements were performed in 4:1 CDCl 3 /DMSO (anion and ion pair binding) solvent mixture and in DMSO (cation binding). 2.5 mm stock solutions of R 1 and the guest were prepared. For ion pair investigations 2.5 mm stock solution of R 1 with 1 equivalent of the desired BPh 4 salt was prepared. The samples with mole fractions according to the guest X = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 were prepared in NMR tubes with a total volume of 500 µl. The 1 H NMR spectra were measured with Bruker Avance 300 at 303 K with 16 scans. The spectra were calibrated using the CHCl 3 signal (δ = 7.26 ppm, anion and ion pair binding) or DMSO (δ = 2.50 ppm, cation binding) as internal standard. The Job plots were obtained by plotting against the mole fraction of the guest (H = R1, G = guest). The chemical shifts of the receptors urea protons H a, H b, aromatic proton H c and aliphatic proton H d were followed. 7

3.1.2 Results of Job Plot analysis Fig. S6 Job plot for R 1 + KBPh 4. (a) (b) Fig. S7 (a) Job plot for R 1 + TBACl. (b) Job plot for R 1 + TBABr. 8

(a) (b) (c) Fig. S8 (a) Job plot for R 1 + KBPh 4 + TBACl. (b) Job plot for R 1 + KBPh 4 + TBABr. (c) Job plot for R 1 + KBPh 4 + TBAI. (a) (b) Fig. S9. (a) Job plot for R 1 + NaBPh 4 + TBACl. (b) Job plot for R 1 + RbBPh 4 + TBACl. 9

3.2. 1 H NMR titrations 3.2.1 General Cation titrations were performed in DMSO because of the limited solubility of some of the BPh 4 salts used in the study. A 0.05 M stock solution of R 1 was prepared in DMSO and the sample was diluted with DMSO to give a final sample concentration of 2.5 mm and a total volume of 500 ul. The sample was titrated with 0.25 M stock solution of the desired BPh 4 salt in DMSO. Titration was performed with 16 measurements with following amounts of the guest added: 0, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 15.0, 20.0, 30.0, 50.0 equivalents. The spectra were measured with Bruker Avance 500 at 303 K with 16 scans. The spectra were calibrated using the DMSO signal (δ = 2.50 ppm) as internal standard. Anion and ion pair titrations were performed in 4:1 CDCl 3 /DMSO. For anion titrations 0.05 M stock solution of R 1 was prepared in DMSO and the sample was diluted with DMSO and CDCl 3 to give a final sample concentration of 2.5 mm and a total volume 500 µl. For ion pair titrations 0.05 M R 1 and BPh 4 salt stocks were prepared in DMSO. Sample was prepared by measuring equal amounts of R 1 and BPh 4 salt and diluting as before. The sample was titrated with 0.125 M stock solution of corresponding TBA salt in 4:1 CDCl 3 /DMSO. Titrations were performed with 18 measurements with following amounts of the guest added: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 2.0, 2.5, 3.0, 4.0, 6.0, 10.0 equivalents. The spectra were measured with Bruker Avance 500 at 303 K with 16 scans. The spectra were calibrated using the CHCl 3 signal (δ = 7.26 ppm) as internal standard. Titration data was fitted into suitable binding model with HypNMR2008 program [2]. The chemical shifts of the receptor R 1 urea protons H a, H b, aromatic proton H c and aliphatic proton H d were followed. In the case of R 2 only urea protons H a and H b were followed. 10

3.2.2 1 H NMR titration of R 1 + NaBPh 4 Log beta value for species 2 was kept as constant because of large error value obtained by its free refinement. TCY 037 + NaBPh4_2 Species Log beta TCY037 Na 1 1,5154 1 1 refine 2 1,5378 1 2 constant Species concentrations/mol dm 3 Point T(TCY037) T(Na) F(TCY037) F(Na) species 1 species 2 1 2,4977e 03 0,0000e00 2,4977e 03 3,9974e 90 3,2713e 91 1,3768e 180 2 2,4976e 03 1,2449e 03 2,4065e 03 1,1537e 03 9,0971e 05 1,1051e 07 3 2,4853e 03 2,4775e 03 2,3105e 03 2,3024e 03 1,7430e 04 4,2252e 07 4 2,4730e 03 3,6980e 03 2,2213e 03 3,4454e 03 2,5076e 04 9,0966e 07 5 2,4609e 03 4,9065e 03 2,1383e 03 4,5823e 03 3,2104e 04 1,5489e 06 6 2,4370e 03 7,2882e 03 1,9884e 03 6,8364e 03 4,4539e 04 3,2059e 06 7 2,4136e 03 9,6242e 03 1,8569e 03 9,0623e 03 5,5137e 04 5,2609e 06 8 2,3906e 03 1,1916e 02 1,7408e 03 1,1258e 02 6,4215e 04 7,6118e 06 9 2,3680e 03 1,4164e 02 1,6376e 03 1,3423e 02 7,2024e 04 1,0179e 05 10 2,3242e 03 1,8535e 02 1,4624e 03 1,7658e 02 8,4607e 04 1,5730e 05 11 2,2819e 03 2,2748e 02 1,3195e 03 2,1764e 02 9,4090e 04 2,1561e 05 12 2,2412e 03 2,6810e 02 1,2009e 03 2,5742e 02 1,0129e 03 2,7452e 05 13 2,1827e 03 3,2639e 02 1,0567e 03 3,1476e 02 1,0898e 03 3,6119e 05 14 2,0918e 03 4,1705e 02 8,7834e 04 4,0442e 02 1,1639e 03 4,9558e 05 15 1,9309e 03 5,7745e 02 6,5287e 04 5,6396e 02 1,2064e 03 7,1631e 05 16 1,6734e 03 8,3410e 02 4,2677e 04 8,2064e 02 1,1475e 03 9,9148e 05 Measured chemical shifts Point H c H d 1 7,2252e00 3,5430e00 2 7,2261e00 3,5432e00 3 7,2282e00 3,5437e00 4 7,2299e00 3,5440e00 5 7,2316e00 3,5446e00 6 7,2335e00 3,5450e00 7 7,2360e00 3,5456e00 8 7,2380e00 3,5461e00 9 7,2400e00 3,5463e00 10 7,2433e00 3,5470e00 11 7,2457e00 3,5473e00 12 7,2482e00 3,5476e00 13 7,2516e00 3,5478e00 14 7,2555e00 3,5480e00 15 7,2613e00 3,5477e00 16 7,2685e00 3,5466e00 Calculated chemical shifts Point H c H d 1 7,2250e00 3,5428e00 2 7,2267e00 3,5433e00 3 7,2283e00 3,5437e00 4 7,2297e00 3,5441e00 5 7,2311e00 3,5445e00 6 7,2337e00 3,5451e00 7 7,2360e00 3,5456e00 8 7,2381e00 3,5460e00 9 7,2399e00 3,5464e00 10 7,2432e00 3,5469e00 11 7,2460e00 3,5473e00 12 7,2484e00 3,5476e00 13 7,2514e00 3,5478e00 14 7,2555e00 3,5480e00 15 7,2613e00 3,5477e00 16 7,2685e00 3,5466e00 Chemical shifts for each nucleus species H c H d TCY037 7,2250e00 3,5428e00 (TCY037)Na 7,2714e00 3,5557e00 (TCY037)Na2 7,4230e00 3,4576e00 11

Converged in 4 iterations with sigma = 0,189523 standard value deviation Comments 1 log beta((tcy037)na) 1.5154 0.0348 1.52(3) log beta((tcy037)na2) 1.5378 fixed logk = 0.0224 ± 0.0800 (a) (b) (c) Fig. S10 R 1 + NaBPh 4 titration. Observed and calculated chemical shifts for (a) H c and (b) H d using 1:1 and 1:2 binding models. (c) Species distribution as function of guest concentration. 12

3.2.3 1 H NMR titration of R 1 + KBPh 4 TCY 037 + KBPh4_1 Species Log beta TCY037 K 1 2,5058 1 1 refine 2 3,1586 1 2 refine Species concentrations/mol dm 3 Point T(TCY037) T(K) F(TCY037) F(K) species 1 species 2 1 2,5350e 03 0,0000e00 2,5350e 03 2,9044e 90 2,3593e 90 3,0808e 179 2 2,5224e 03 1,2459e 03 2,0308e 03 7,5274e 04 4,8986e 04 1,6578e 06 3 2,5099e 03 2,4795e 03 1,6503e 03 1,6137e 03 8,5338e 04 6,1914e 06 4 2,4975e 03 3,7009e 03 1,3658e 03 2,5564e 03 1,1188e 03 1,2859e 05 5 2,4853e 03 4,9104e 03 1,1518e 03 3,5559e 03 1,3125e 03 2,0982e 05 6 2,4611e 03 7,2940e 03 8,6115e 04 5,6544e 03 1,5603e 03 3,9665e 05 7 2,4375e 03 9,6318e 03 6,7864e 04 7,8133e 03 1,6991e 03 5,9687e 05 8 2,4143e 03 1,1925e 02 5,5578e 04 9,9868e 03 1,7786e 03 7,9859e 05 9 2,3915e 03 1,4175e 02 4,6828e 04 1,2152e 02 1,8236e 03 9,9631e 05 10 2,3472e 03 1,8550e 02 3,5298e 04 1,6419e 02 1,8571e 03 1,3709e 04 11 2,3045e 03 2,2766e 02 2,8098e 04 2,0571e 02 1,8522e 03 1,7131e 04 12 2,2634e 03 2,6832e 02 2,3205e 04 2,4598e 02 1,8290e 03 2,0227e 04 13 2,2043e 03 3,2665e 02 1,8259e 04 3,0400e 02 1,7786e 03 2,4309e 04 14 2,1125e 03 4,1738e 02 1,3296e 04 3,9460e 02 1,6812e 03 2,9827e 04 15 1,9500e 03 5,7791e 02 8,3880e 05 5,5552e 02 1,4932e 03 3,7293e 04 16 1,6900e 03 8,3476e 02 4,6142e 05 8,1392e 02 1,2035e 03 4,4038e 04 Measured chemical shifts Point H c H d 1 7,2252e00 3,5430e00 2 7,2424e00 3,5524e00 3 7,2560e00 3,5599e00 4 7,2665e00 3,5656e00 5 7,2739e00 3,5695e00 6 7,2849e00 3,5751e00 7 7,2922e00 3,5786e00 8 7,2966e00 3,5804e00 9 7,3003e00 3,5817e00 10 7,3044e00 3,5830e00 11 7,3074e00 3,5837e00 12 7,3097e00 3,5837e00 13 7,3121e00 3,5838e00 14 7,3146e00 3,5834e00 15 7,3185e00 3,5821e00 16 7,3223e00 3,5795e00 Calculated chemical shifts Point H c H d 1 7,2248e00 3,5428e00 2 7,2427e00 3,5527e00 3 7,2563e00 3,5601e00 4 7,2665e00 3,5655e00 5 7,2742e00 3,5696e00 6 7,2849e00 3,5750e00 7 7,2917e00 3,5782e00 8 7,2964e00 3,5803e00 9 7,2998e00 3,5816e00 10 7,3045e00 3,5831e00 11 7,3076e00 3,5837e00 12 7,3098e00 3,5840e00 13 7,3123e00 3,5840e00 14 7,3151e00 3,5835e00 15 7,3184e00 3,5820e00 16 7,3220e00 3,5794e00 Chemical shifts for each nucleus species H c H d TCY037 7,2248e00 3,5428e00 (TCY037)K 7,3164e00 3,5936e00 (TCY037)K2 7,3476e00 3,5446e00 13

Converged in 6 iterations with sigma = 0,273233 standard value deviation Comments 1 log beta((tcy037)k) 2.5058 0.008 2.506(8) 2 log beta((tcy037)k2) 3.1586 0.1332 3.2(1) Correlation coefficients between stability constants. Numbering as above 2 0.4909 1 logk = 0.6528 ± 0.2982 (a) (b) (c) Fig. S11 R 1 + KBPh 4 titration. Observed and calculated chemical shifts for (a) H c and (b) H d using 1:1 and 1:2 binding models. (c) Species distribution as function of guest concentration. 14

3.2.4 1 H NMR titration of R 1 + RbBPh 4 TCY 037 + RbBPh4_1 Species Log beta TCY037 Rb 1 2,1815 1 1 refine 2 3,1556 1 2 refine Species concentrations/mol dm 3 Point T(TCY037) T(Rb) F(TCY037) F(Rb) species 1 species 2 1 2,5101e 03 0,0000e00 2,5101e 03 3,4500e 90 1,3153e 90 4,2752e 179 2 2,4976e 03 1,2470e 03 2,1855e 03 9,3214e 04 3,0941e 04 2,7173e 06 3 2,4853e 03 2,4816e 03 1,9196e 03 1,9060e 03 5,5569e 04 9,9786e 06 4 2,4730e 03 3,7041e 03 1,7005e 03 2,9110e 03 7,5186e 04 2,0620e 05 5 2,4609e 03 4,9146e 03 1,5187e 03 3,9387e 03 9,0850e 04 3,3713e 05 6 2,4370e 03 7,3003e 03 1,2377e 03 6,0365e 03 1,1348e 03 6,4537e 05 7 2,4136e 03 9,6402e 03 1,0337e 03 8,1618e 03 1,2814e 03 9,8532e 05 8 2,3906e 03 1,1935e 02 8,8060e 04 1,0292e 02 1,3765e 03 1,3348e 04 9 2,3680e 03 1,4187e 02 7,6243e 04 1,2414e 02 1,4375e 03 1,6812e 04 10 2,3242e 03 1,8566e 02 5,9353e 04 1,6602e 02 1,4966e 03 2,3408e 04 11 2,2819e 03 2,2786e 02 4,7990e 04 2,0690e 02 1,5081e 03 2,9396e 04 12 2,2412e 03 2,6855e 02 3,9902e 04 2,4665e 02 1,4948e 03 3,4736e 04 13 2,1827e 03 3,2693e 02 3,1444e 04 3,0409e 02 1,4522e 03 4,1605e 04 14 2,0918e 03 4,1774e 02 2,2720e 04 3,9405e 02 1,3598e 03 5,0481e 04 15 1,9309e 03 5,7841e 02 1,3974e 04 5,5436e 02 1,1766e 03 6,1452e 04 16 1,6734e 03 8,3548e 02 7,3432e 05 8,1255e 02 9,0623e 04 6,9375e 04 Measured chemical shifts Point H c H d 1 7,2251e00 3,5431e00 2 7,2358e00 3,5482e00 3 7,2458e00 3,5531e00 4 7,2539e00 3,5574e00 5 7,2627e00 3,5611e00 6 7,2741e00 3,5661e00 7 7,2812e00 3,5695e00 8 7,2879e00 3,5719e00 9 7,2925e00 3,5738e00 10 7,2993e00 3,5761e00 11 7,3040e00 3,5776e00 12 7,3076e00 3,5785e00 13 7,3116e00 3,5790e00 14 7,3159e00 3,5794e00 15 7,3213e00 3,5794e00 16 7,3257e00 3,5781e00 Calculated chemical shifts Point H c H d 1 7,2241e00 3,5426e00 2 7,2364e00 3,5486e00 3 7,2466e00 3,5536e00 4 7,2551e00 3,5576e00 5 7,2621e00 3,5609e00 6 7,2731e00 3,5658e00 7 7,2812e00 3,5693e00 8 7,2874e00 3,5719e00 9 7,2922e00 3,5737e00 10 7,2993e00 3,5762e00 11 7,3042e00 3,5776e00 12 7,3079e00 3,5785e00 13 7,3118e00 3,5792e00 14 7,3162e00 3,5795e00 15 7,3211e00 3,5793e00 16 7,3255e00 3,5781e00 Chemical shifts for each nucleus species H c H d TCY037 7,2241e00 3,5426e00 (TCY037)Rb 7,3228e00 3,5913e00 (TCY037)Rb2 7,3399e00 3,5646e00 15

Converged in 6 iterations with sigma = 0,519041 standard value deviation Comments 1 log beta((tcy037)rb) 2.1815 0.0245 2.18(2) 2 log beta((tcy037)rb2) 3.1556 excessive relative error on beta = 50% Correlation coefficients between stability constants. Numbering as above 2 0.7851 1 logk = 0.9741 ± 0.4662 (a) (b) (c) Fig. S12 R 1 + RbBPh 4 titration. Observed and calculated chemical shifts for (a) H c and (b) H d using 1:1 and 1:2 binding models. (c) Species distribution as function of guest concentration. 16

3.2.5 1 H NMR titration of R 1 + CsBPh 4 TCY 037 + CsBPh4_1 Species Log beta TCY037 Cs 1 1,9819 1 1 refine 2 2,7795 1 2 refine Species concentrations/mol dm 3 Point T(TCY037) T(Cs) F(TCY037) F(Cs) species 1 species 2 1 2,4853e 03 0,0000e00 2,4853e 03 3,6542e 90 8,7114e 91 1,9971e 179 2 2,4729e 03 1,2409e 03 2,2516e 03 1,0181e 03 2,1990e 04 1,4046e 06 3 2,4607e 03 2,4694e 03 2,0512e 03 2,0547e 03 4,0428e 04 5,2115e 06 4 2,4485e 03 3,6859e 03 1,8783e 03 3,1047e 03 5,5938e 04 1,0896e 05 5 2,4365e 03 4,8904e 03 1,7282e 03 4,1641e 03 6,9030e 04 1,8034e 05 6 2,4129e 03 7,2644e 03 1,4821e 03 6,2983e 03 8,9541e 04 3,5381e 05 7 2,3897e 03 9,5928e 03 1,2901e 03 8,4380e 03 1,0442e 03 5,5280e 05 8 2,3669e 03 1,1877e 02 1,1373e 03 1,0571e 02 1,1532e 03 7,6476e 05 9 2,3446e 03 1,4118e 02 1,0132e 03 1,2688e 02 1,2332e 03 9,8166e 05 10 2,3012e 03 1,8475e 02 8,2535e 04 1,6858e 02 1,3347e 03 1,4116e 04 11 2,2593e 03 2,2674e 02 6,9082e 04 2,0923e 02 1,3865e 03 1,8200e 04 12 2,2190e 03 2,6723e 02 5,9041e 04 2,4874e 02 1,4087e 03 2,1984e 04 13 2,1611e 03 3,2532e 02 4,8064e 04 3,0581e 02 1,4099e 03 2,7051e 04 14 2,0711e 03 4,1569e 02 3,6139e 04 3,9519e 02 1,3700e 03 3,3967e 04 15 1,9117e 03 5,7557e 02 2,3403e 04 5,5446e 02 1,2447e 03 4,3298e 04 16 1,6568e 03 8,3137e 02 1,3008e 04 8,1096e 02 1,0119e 03 5,1484e 04 Measured chemical shifts Point H c H d 1 7,2249e00 3,5431e00 2 7,2317e00 3,5454e00 3 7,2384e00 3,5477e00 4 7,2435e00 3,5494e00 5 7,2497e00 3,5513e00 6 7,2574e00 3,5536e00 7 7,2649e00 3,5559e00 8 7,2701e00 3,5573e00 9 7,2744e00 3,5583e00 10 7,2817e00 3,5601e00 11 7,2865e00 3,5612e00 12 7,2908e00 3,5620e00 13 7,2957e00 3,5625e00 14 7,3008e00 3,5631e00 15 7,3087e00 3,5632e00 16 7,3157e00 3,5630e00 Calculated chemical shifts Point H c H d 1 7,2243e00 3,5430e00 2 7,2320e00 3,5455e00 3 7,2386e00 3,5477e00 4 7,2443e00 3,5496e00 5 7,2494e00 3,5512e00 6 7,2577e00 3,5537e00 7 7,2644e00 3,5557e00 8 7,2698e00 3,5572e00 9 7,2743e00 3,5584e00 10 7,2814e00 3,5601e00 11 7,2867e00 3,5612e00 12 7,2909e00 3,5619e00 13 7,2957e00 3,5626e00 14 7,3014e00 3,5632e00 15 7,3084e00 3,5634e00 16 7,3157e00 3,5629e00 Chemical shifts for each nucleus species H c H d TCY037 7,2243e00 3,5430e00 (TCY037)Cs 7,3093e00 3,5717e00 (TCY037)Cs2 7,3513e00 3,5506e00 17

Converged in 7 iterations with sigma = 0,315477 standard value deviation Comments 1 log beta((tcy037)cs) 1.9819 0.0332 1.98(3) 2 log beta((tcy037)cs2) 2.7795 excessive relative error on beta = 53% Correlation coefficients between stability constants. Numbering as above 2 0.9199 1 logk = 0.7975 ± 0.4681 (a) (b) (c) Fig. S13 R 1 + CsBPh 4 titration. Observed and calculated chemical shifts for (a) H c and (b) H d using 1:1 and 1:2 binding models. (c) Species distribution as function of guest concentration. 18

3.2.6 1 H NMR titration of R 1 + TBACl TCY 037 + TBACl_6 Species Log beta TCY037 TBACl 1 2,8703 1 1 refine Species concentrations/mol dm 3 Point T(TCY037) T(TBACl) F(TCY037) F(TBACl) species 1 1 2,5474e 03 0,0000e00 2,5474e 03 2,0609e 90 3,8947e 90 2 2,5423e 03 2,5185e 04 2,3815e 03 9,1028e 05 1,6082e 04 3 2,5372e 03 5,0269e 04 2,2242e 03 1,8969e 04 3,1300e 04 4 2,5322e 03 7,5254e 04 2,0759e 03 2,9627e 04 4,5626e 04 5 2,5272e 03 1,0014e 03 1,9367e 03 4,1095e 04 5,9044e 04 6 2,5222e 03 1,2493e 03 1,8067e 03 5,3380e 04 7,1546e 04 7 2,5172e 03 1,4961e 03 1,6858e 03 6,6477e 04 8,3137e 04 8 2,5073e 03 1,9870e 03 1,4706e 03 9,5030e 04 1,0367e 03 9 2,4974e 03 2,4740e 03 1,2884e 03 1,2650e 03 1,2090e 03 10 2,4877e 03 2,9572e 03 1,1356e 03 1,6051e 03 1,3521e 03 11 2,4780e 03 3,4367e 03 1,0078e 03 1,9665e 03 1,4702e 03 12 2,4684e 03 3,9124e 03 9,0100e 04 2,3450e 03 1,5674e 03 13 2,4494e 03 4,8529e 03 7,3581e 04 3,1393e 03 1,7136e 03 14 2,4261e 03 6,0083e 03 5,9219e 04 4,1744e 03 1,8339e 03 15 2,4032e 03 7,1420e 03 4,9239e 04 5,2312e 03 1,9108e 03 16 2,3587e 03 9,3463e 03 3,6542e 04 7,3530e 03 1,9933e 03 17 2,2745e 03 1,3519e 02 2,3894e 04 1,1483e 02 2,0355e 03 18 2,1228e 03 2,1029e 02 1,4031e 04 1,9047e 02 1,9825e 03 Measured chemical shifts Point H a H b H c 1 9,0494e00 7,9173e00 7,1649e00 2 9,0815e00 7,9467e00 7,1833e00 3 9,1159e00 7,9768e00 7,2030e00 4 9,1527e00 8,0097e00 7,2237e00 5 9,1861e00 8,0372e00 7,2425e00 6 9,2164e00 8,0667e00 7,2595e00 7 9,2467e00 8,0932e00 7,2763e00 8 9,3003e00 8,1405e00 7,3061e00 9 9,3469e00 8,1818e00 7,3316e00 10 9,3825e00 8,2140e00 7,3517e00 11 9,4164e00 8,2431e00 7,3693e00 12 9,4417e00 8,2658e00 7,3830e00 13 9,4812e00 8,3009e00 7,4040e00 14 9,5164e00 8,3328e00 7,4229e00 15 9,5410e00 8,3536e00 7,4349e00 16 9,5727e00 8,3830e00 7,4511e00 17 9,6028e00 8,4120e00 7,4658e00 18 9,6276e00 8,4365e00 7,4767e00 Calculated chemical shifts Point H a H b H c 1 9,0416e00 7,9100e00 7,1638e00 2 9,0813e00 7,9454e00 7,1854e00 3 9,1190e00 7,9790e00 7,2058e00 4 9,1547e00 8,0109e00 7,2252e00 5 9,1883e00 8,0408e00 7,2434e00 6 9,2197e00 8,0688e00 7,2605e00 7 9,2489e00 8,0949e00 7,2764e00 19

8 9,3012e00 8,1415e00 7,3047e00 9 9,3455e00 8,1810e00 7,3288e00 10 9,3828e00 8,2143e00 7,3490e00 11 9,4140e00 8,2422e00 7,3660e00 12 9,4402e00 8,2655e00 7,3802e00 13 9,4808e00 8,3017e00 7,4022e00 14 9,5161e00 8,3332e00 7,4214e00 15 9,5407e00 8,3552e00 7,4348e00 16 9,5721e00 8,3832e00 7,4518e00 17 9,6034e00 8,4111e00 7,4688e00 18 9,6279e00 8,4329e00 7,4821e00 Chemical shifts for each nucleus species H a H b H c TCY037 9,0416e00 7,9100e00 7,1638e00 (TCY037)TBACl 9,6694e00 8,4699e00 7,5046e00 Converged in 4 iterations with sigma = 2,550214 standard value deviation Comments 1 log beta((tcy037)tbacl) 2.8703 0.0061 2.87(6) (a) (b) (c) Fig. S14 R 1 + TBACl titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 20

3.2.7 1 H NMR titration of R 1 + TBABr TCY 037 + TBABr_3 Species Log beta TCY037 TBABr 1 2,2129 1 1 refine Species concentrations/mol dm 3 Point T(TCY037) T(TBABr) F(TCY037) F(TBABr) species 1 1 2,4826e 03 0,0000e00 2,4826e 03 3,3603e 90 1,3621e 90 2 2,4803e 03 2,5014e 04 2,4097e 03 1,7951e 04 7,0630e 05 3 2,4754e 03 4,9929e 04 2,3374e 03 3,6137e 04 1,3792e 04 4 2,4704e 03 7,4745e 04 2,2684e 03 5,4543e 04 2,0202e 04 5 2,4655e 03 9,9462e 04 2,2025e 03 7,3154e 04 2,6307e 04 6 2,4607e 03 1,2408e 03 2,1394e 03 9,1958e 04 3,2123e 04 7 2,4558e 03 1,4860e 03 2,0792e 03 1,1094e 03 3,7663e 04 8 2,4461e 03 1,9736e 03 1,9665e 03 1,4939e 03 4,7967e 04 9 2,4365e 03 2,4573e 03 1,8633e 03 1,8841e 03 5,7321e 04 10 2,4270e 03 2,9372e 03 1,7688e 03 2,2790e 03 6,5821e 04 11 2,4176e 03 3,4134e 03 1,6821e 03 2,6779e 03 7,3549e 04 12 2,4082e 03 3,8860e 03 1,6024e 03 3,0801e 03 8,0585e 04 13 2,3897e 03 4,8201e 03 1,4612e 03 3,8916e 03 9,2847e 04 14 2,3669e 03 5,9677e 03 1,3132e 03 4,9140e 03 1,0537e 03 15 2,3446e 03 7,0937e 03 1,1903e 03 5,9394e 03 1,1543e 03 16 2,3012e 03 9,2831e 03 9,9914e 04 7,9811e 03 1,3020e 03 17 2,2190e 03 1,3427e 02 7,5149e 04 1,1960e 02 1,4675e 03 18 2,0711e 03 2,0887e 02 4,9861e 04 1,9315e 02 1,5724e 03 Measured chemical shifts Point H a H b H c 1 9,0143e00 7,5799e00 6,8291e00 2 9,0275e00 7,5885e00 6,8364e00 3 9,0414e00 7,5975e00 6,8438e00 4 9,0537e00 7,6057e00 6,8505e00 5 9,0648e00 7,6132e00 6,8566e00 6 9,0762e00 7,6209e00 6,8630e00 7 9,0875e00 7,6285e00 6,8691e00 8 9,1086e00 7,6424e00 6,8803e00 9 9,1263e00 7,6545e00 6,8901e00 10 9,1423e00 7,6654e00 6,8988e00 11 9,1588e00 7,6766e00 6,9076e00 12 9,1718e00 7,6856e00 6,9146e00 13 9,1970e00 7,7028e00 6,9279e00 14 9,2221e00 7,7190e00 6,9415e00 15 9,2433e00 7,7348e00 6,9521e00 16 9,2786e00 7,7596e00 6,9702e00 17 9,3246e00 7,7920e00 6,9935e00 18 9,3711e00 7,8248e00 7,0149e00 Calculated chemical shifts Point H a H b H c 1 9,0153e00 7,5791e00 6,8310e00 2 9,0286e00 7,5882e00 6,8380e00 3 9,0413e00 7,5969e00 6,8447e00 4 9,0535e00 7,6053e00 6,8511e00 5 9,0651e00 7,6132e00 6,8572e00 6 9,0763e00 7,6209e00 6,8631e00 7 9,0869e00 7,6282e00 6,8687e00 21

8 9,1069e00 7,6419e00 6,8792e00 9 9,1252e00 7,6544e00 6,8889e00 10 9,1420e00 7,6659e00 6,8977e00 11 9,1574e00 7,6765e00 6,9059e00 12 9,1717e00 7,6862e00 6,9133e00 13 9,1968e00 7,7035e00 6,9266e00 14 9,2233e00 7,7216e00 6,9406e00 15 9,2453e00 7,7367e00 6,9522e00 16 9,2797e00 7,7602e00 6,9703e00 17 9,3243e00 7,7908e00 6,9938e00 18 9,3701e00 7,8222e00 7,0179e00 Chemical shifts for each nucleus species H a H b H c TCY037 9,0153e00 7,5791e00 6,8310e00 (TCY037)TBABr 9,4826e00 7,8992e00 7,0771e00 Converged in 4 iterations with sigma = 1,185210 standard value deviation Comments 1 log beta((tcy037)tbabr) 2.2129 0.0053 2.213(5) (a) (b) (c) Fig. S15 R 1 + TBABr titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 22

3.2.8 1 H NMR titration of R 1 + TBAI TCY 037 + TBAI_3 Species Log beta TCY037 TBAI 1 1,528 1 1 refine Species concentrations/mol dm 3 Point T(TCY037) T(TBAI) F(TCY037) F(TBAI) species 1 1 2,4853e 03 0,0000e00 2,4853e 03 3,9689e 90 3,3269e 91 2 2,4803e 03 2,4822e 04 2,4613e 03 2,2919e 04 1,9026e 05 3 2,4754e 03 4,9544e 04 2,4377e 03 4,5780e 04 3,7641e 05 4 2,4704e 03 7,4169e 04 2,4146e 03 6,8583e 04 5,5855e 05 5 2,4655e 03 9,8695e 04 2,3919e 03 9,1327e 04 7,3678e 05 6 2,4607e 03 1,2312e 03 2,3695e 03 1,1401e 03 9,1120e 05 7 2,4558e 03 1,4746e 03 2,3476e 03 1,3664e 03 1,0819e 04 8 2,4461e 03 1,9584e 03 2,3049e 03 1,8171e 03 1,4126e 04 9 2,4365e 03 2,4384e 03 2,2636e 03 2,2654e 03 1,7296e 04 10 2,4270e 03 2,9146e 03 2,2237e 03 2,7112e 03 2,0335e 04 11 2,4176e 03 3,3871e 03 2,1851e 03 3,1546e 03 2,3250e 04 12 2,4082e 03 3,8560e 03 2,1477e 03 3,5955e 03 2,6046e 04 13 2,3897e 03 4,7829e 03 2,0766e 03 4,4698e 03 3,1307e 04 14 2,3669e 03 5,9217e 03 1,9938e 03 5,5486e 03 3,7313e 04 15 2,3446e 03 7,0390e 03 1,9171e 03 6,6115e 03 4,2750e 04 16 2,3012e 03 9,2116e 03 1,7796e 03 8,6900e 03 5,2160e 04 17 2,2190e 03 1,3324e 02 1,5550e 03 1,2660e 02 6,6399e 04 18 2,0711e 03 2,0726e 02 1,2394e 03 1,9894e 02 8,3165e 04 Measured chemical shifts Point H a H b H c 1 9,0162e00 7,5817e00 6,8307e00 2 9,0192e00 7,5843e00 6,8334e00 3 9,0207e00 7,5849e00 6,8337e00 4 9,0222e00 7,5854e00 6,8342e00 5 9,0239e00 7,5861e00 6,8348e00 6 9,0251e00 7,5868e00 6,8351e00 7 9,0265e00 7,5874e00 6,8358e00 8 9,0292e00 7,5885e00 6,8366e00 9 9,0311e00 7,5894e00 6,8379e00 10 9,0334e00 7,5905e00 6,8385e00 11 9,0359e00 7,5920e00 6,8396e00 12 9,0378e00 7,5925e00 6,8398e00 13 9,0418e00 7,5949e00 6,8420e00 14 9,0458e00 7,5972e00 6,8442e00 15 9,0500e00 7,5995e00 6,8462e00 16 9,0578e00 7,6041e00 6,8503e00 17 9,0696e00 7,6114e00 6,8567e00 18 9,0872e00 7,6222e00 6,8665e00 Calculated chemical shifts Point H a H b H c 1 9,0185e00 7,5828e00 6,8317e00 2 9,0198e00 7,5835e00 6,8324e00 3 9,0211e00 7,5842e00 6,8330e00 4 9,0224e00 7,5850e00 6,8336e00 5 9,0237e00 7,5856e00 6,8342e00 6 9,0249e00 7,5863e00 6,8348e00 7 9,0261e00 7,5870e00 6,8354e00 23

8 9,0285e00 7,5883e00 6,8366e00 9 9,0308e00 7,5896e00 6,8377e00 10 9,0330e00 7,5908e00 6,8387e00 11 9,0351e00 7,5920e00 6,8398e00 12 9,0372e00 7,5931e00 6,8408e00 13 9,0411e00 7,5953e00 6,8427e00 14 9,0457e00 7,5979e00 6,8449e00 15 9,0500e00 7,6002e00 6,8470e00 16 9,0576e00 7,6045e00 6,8507e00 17 9,0702e00 7,6114e00 6,8567e00 18 9,0878e00 7,6212e00 6,8653e00 Chemical shifts for each nucleus species H a H b H c TCY037 9,0185e00 7,5828e00 6,8317e00 (TCY037)TBAI 9,1911e00 7,6784e00 6,9153e00 Converged in 4 iterations with sigma = 0,696870 standard value deviation Comments 1 log beta((tcy037)tbai) 1.528 0.0296 1.53(3) (a) (b) (c) Fig. S16 R 1 + TBAI titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 24

3.2.9 1 H NMR titration of R 2 + TBACl TGA 001 + TBACl_4 Species Log beta TGA001 TBACl 1 2,9069 1 1 refine Species concentrations/mol dm 3 Point T(TGA001) T(TBACl) F(TGA001) F(TBACl) species 1 1 2,5351e 03 0,0000e00 2,5351e 03 1,9611e 90 4,0118e 90 2 2,5300e 03 2,4897e 04 2,3666e 03 8,5565e 05 1,6341e 04 3 2,5250e 03 4,9696e 04 2,2067e 03 1,7871e 04 3,1824e 04 4 2,5174e 03 8,6708e 04 1,9837e 03 3,3339e 04 5,3369e 04 5 2,5100e 03 1,2350e 03 1,7816e 03 5,0664e 04 7,2837e 04 6 2,5045e 03 1,5034e 03 1,6467e 03 6,4559e 04 8,5785e 04 7 2,4986e 03 1,7949e 03 1,5121e 03 8,0846e 04 9,8648e 04 8 2,4888e 03 2,2777e 03 1,3158e 03 1,1047e 03 1,1730e 03 9 2,4781e 03 2,8044e 03 1,1365e 03 1,4628e 03 1,3416e 03 10 2,4660e 03 3,3975e 03 9,7230e 04 1,9038e 03 1,4937e 03 11 2,4565e 03 3,8678e 03 8,6572e 04 2,2770e 03 1,5907e 03 12 2,4470e 03 4,3345e 03 7,7682e 04 2,6643e 03 1,6702e 03 13 2,4282e 03 5,2571e 03 6,3924e 04 3,4681e 03 1,7890e 03 14 2,4006e 03 6,6148e 03 4,9972e 04 4,7139e 03 1,9009e 03 15 2,3737e 03 7,9420e 03 4,0768e 04 5,9760e 03 1,9660e 03 16 2,3300e 03 1,0089e 02 3,1020e 04 8,0691e 03 2,0198e 03 17 2,2474e 03 1,4154e 02 2,0854e 04 1,2116e 02 2,0389e 03 18 2,0986e 03 2,1478e 02 1,2537e 04 1,9505e 02 1,9732e 03 Measured chemical shifts Point H a H b 1 9,0878e00 7,7553e00 2 9,1203e00 7,7831e00 3 9,1559e00 7,8138e00 4 9,2070e00 7,8580e00 5 9,2538e00 7,8986e00 6 9,2846e00 7,9251e00 7 9,3226e00 7,9581e00 8 9,3734e00 8,0021e00 9 9,4173e00 8,0402e00 10 9,4646e00 8,0814e00 11 9,4926e00 8,1057e00 12 9,5124e00 8,1225e00 13 9,5477e00 8,1531e00 14 9,5812e00 8,1823e00 15 9,6039e00 8,2017e00 16 9,6254e00 8,2204e00 17 9,6497e00 8,2411e00 18 9,6690e00 8,2569e00 Calculated chemical shifts Point H a H b 1 9,0768e00 7,7455e00 2 9,1177e00 7,7809e00 3 9,1566e00 7,8146e00 4 9,2111e00 7,8617e00 5 9,2606e00 7,9046e00 6 9,2938e00 7,9333e00 7 9,3269e00 7,9619e00 8 9,3754e00 8,0039e00 9 9,4198e00 8,0423e00 10 9,4605e00 8,0775e00 11 9,4871e00 8,1005e00 12 9,5092e00 8,1197e00 13 9,5436e00 8,1494e00 14 9,5785e00 8,1796e00 15 9,6015e00 8,1995e00 16 9,6260e00 8,2207e00 17 9,6516e00 8,2428e00 18 9,6725e00 8,2609e00 Chemical shifts for each nucleus species H a H b TGA001 9,0768e00 7,7455e00 (TGA001)TBACl 9,7103e00 8,2937e00 25

Converged in 4 iterations with sigma = 4,900089 standard value deviation Comments 1 log beta((tga001)tbacl) 2.9069 0.0124 2.91(1) (a) (b) Fig. S17 R 2 + TBACl titration. Observed and calculated chemical shifts for (a) H a, (b) H b using 1:1 binding model. 26

3.2.10 1 H NMR titration of R 2 + TBABr TGA 001 + TBABr_2 Species Log beta TGA001 TBABr 1 2,2423 1 1 refine Species concentrations/mol dm 3 Point T(TGA001) T(TBABr) F(TGA001) F(TBABr) species 1 1 2,5351e 03 0,0000e00 2,5351e 03 3,3967e 90 1,5044e 90 2 2,5300e 03 2,5097e 04 2,4547e 03 1,7564e 04 7,5326e 05 3 2,5250e 03 5,0094e 04 2,3779e 03 3,5390e 04 1,4703e 04 4 2,5199e 03 7,4991e 04 2,3047e 03 5,3464e 04 2,1527e 04 5 2,5139e 03 1,0474e 03 2,2211e 03 7,5456e 04 2,9282e 04 6 2,5080e 03 1,3434e 03 2,1421e 03 9,7757e 04 3,6586e 04 7 2,5020e 03 1,6381e 03 2,0674e 03 1,2034e 03 4,3467e 04 8 2,4922e 03 2,1261e 03 1,9516e 03 1,5855e 03 5,4060e 04 9 2,4824e 03 2,6102e 03 1,8459e 03 1,9737e 03 6,3653e 04 10 2,4718e 03 3,1385e 03 1,7401e 03 2,4068e 03 7,3170e 04 11 2,4622e 03 3,6148e 03 1,6524e 03 2,8050e 03 8,0978e 04 12 2,4527e 03 4,0874e 03 1,5720e 03 3,2067e 03 8,8069e 04 13 2,4338e 03 5,0217e 03 1,4300e 03 4,0179e 03 1,0038e 03 14 2,4107e 03 6,1696e 03 1,2818e 03 5,0407e 03 1,1289e 03 15 2,3880e 03 7,2959e 03 1,1592e 03 6,0671e 03 1,2288e 03 16 2,3438e 03 9,4859e 03 9,6962e 04 8,1117e 03 1,3742e 03 17 2,2602e 03 1,3632e 02 7,2592e 04 1,2097e 02 1,5343e 03 18 2,1097e 03 2,1095e 02 4,7940e 04 1,9465e 02 1,6303e 03 Measured chemical shifts Point H a H b 1 9,0908e00 7,7613e00 2 9,1045e00 7,7695e00 3 9,1164e00 7,7774e00 4 9,1297e00 7,7862e00 5 9,1438e00 7,7954e00 6 9,1573e00 7,8043e00 7 9,1677e00 7,8112e00 8 9,1875e00 7,8247e00 9 9,2048e00 7,8362e00 10 9,2224e00 7,8481e00 11 9,2366e00 7,8576e00 12 9,2505e00 7,8672e00 13 9,2731e00 7,8828e00 14 9,2971e00 7,8994e00 15 9,3168e00 7,9131e00 16 9,3487e00 7,9356e00 17 9,3892e00 7,9644e00 18 9,4294e00 7,9930e00 Calculated chemical shifts Point H a H b 1 9,0922e00 7,7600e00 2 9,1052e00 7,7689e00 3 9,1176e00 7,7775e00 4 9,1295e00 7,7856e00 5 9,1431e00 7,7949e00 6 9,1560e00 7,8037e00 7 9,1682e00 7,8120e00 8 9,1871e00 7,8250e00 9 9,2044e00 7,8368e00 10 9,2217e00 7,8487e00 11 9,2361e00 7,8585e00 12 9,2493e00 7,8675e00 13 9,2727e00 7,8835e00 14 9,2971e00 7,9002e00 15 9,3174e00 7,9141e00 16 9,3488e00 7,9356e00 17 9,3893e00 7,9633e00 18 9,4304e00 7,9914e00 Chemical shifts for each nucleus species H a H b TGA001 9,0922e00 7,7600e00 (TGA001)TBABr 9,5299e00 8,0595e00 27

Converged in 5 iterations with sigma = 0,831744 standard value deviation Comments 1 log beta((tga001)tbabr) 2.2423 0.0042 2.242(4) (a) (b) Fig. S18 R 2 + TBABr titration. Observed and calculated chemical shifts for (a) H a, (b) H b using 1:1 binding model. 28

3.2.11 1 H NMR titration of R 2 + TBAI The binding constant was calculated by using only H a because of H b proton had large deviations in chemical shifts upon titration. TGA 001 + TBAI_2 Species Log beta TGA001 TBAI 1 1,428 1 1 refine Species concentrations/mol dm 3 Point T(TGA001) T(TBAI) F(TGA001) F(TBAI) species 1 1 2,5351e 03 0,0000e00 2,5351e 03 4,0997e 90 2,7846e 91 2 2,5300e 03 2,5038e 04 2,5142e 03 2,3458e 04 1,5802e 05 3 2,5250e 03 4,9976e 04 2,4937e 03 4,6846e 04 3,1299e 05 4 2,5189e 03 7,9770e 04 2,4694e 03 7,4820e 04 4,9504e 05 5 2,5129e 03 1,0942e 03 2,4457e 03 1,0269e 03 6,7292e 05 6 2,5070e 03 1,3894e 03 2,4223e 03 1,3047e 03 8,4675e 05 7 2,5020e 03 1,6342e 03 2,4032e 03 1,5354e 03 9,8860e 05 8 2,4922e 03 2,1211e 03 2,3658e 03 1,9946e 03 1,2643e 04 9 2,4824e 03 2,6041e 03 2,3295e 03 2,4511e 03 1,5298e 04 10 2,4727e 03 3,0834e 03 2,2942e 03 2,9048e 03 1,7855e 04 11 2,4622e 03 3,6062e 03 2,2566e 03 3,4006e 03 2,0560e 04 12 2,4503e 03 4,1950e 03 2,2152e 03 3,9600e 03 2,3504e 04 13 2,4315e 03 5,1254e 03 2,1521e 03 4,8459e 03 2,7942e 04 14 2,4084e 03 6,2684e 03 2,0778e 03 5,9378e 03 3,3056e 04 15 2,3812e 03 7,6116e 03 1,9950e 03 7,2254e 03 3,8622e 04 16 2,3373e 03 9,7844e 03 1,8704e 03 9,3175e 03 4,6693e 04 17 2,2542e 03 1,3898e 02 1,6618e 03 1,3306e 02 5,9242e 04 18 2,1045e 03 2,1306e 02 1,3570e 03 2,0558e 02 7,4747e 04 Measured chemical shifts Point H a 1 9,0926e00 2 9,0927e00 3 9,0939e00 4 9,0959e00 5 9,0974e00 6 9,0988e00 7 9,0999e00 8 9,1016e00 9 9,1041e00 10 9,1056e00 11 9,1076e00 12 9,1099e00 13 9,1134e00 14 9,1169e00 15 9,1219e00 16 9,1292e00 17 9,1407e00 18 9,1576e00 Calculated chemical shifts Point H a 1 9,0923e00 2 9,0934e00 3 9,0945e00 4 9,0959e00 5 9,0972e00 6 9,0985e00 7 9,0995e00 8 9,1016e00 9 9,1036e00 10 9,1055e00 11 9,1076e00 12 9,1099e00 13 9,1134e00 14 9,1175e00 15 9,1221e00 16 9,1290e00 17 9,1406e00 18 9,1576e00 29

Chemical shifts for each nucleus species H a TGA001 9,0923e00 (TGA001)TBAI 9,2762e00 Converged in 4 iterations with sigma = 0,367996 standard value deviation Comments 1 log beta((tga001)tbai) 1.428 0.023 1.43(2) Fig. S19 R 2 + TBAI titration. Observed and calculated chemical shifts for H a using 1:1 binding model. 30

3.2.12 1 H NMR titration of R 1 + NaBPh 4 + TBACl TCY 037 + NaBPh4 + TBACl_1 Species Log beta TCY037 + Na TBACl 1 3,7309 1 1 refine Species concentrations/mol dm 3 Point T(TCY037 + Na) T(TBACl) F(TCY037 + Na) F(TBACl) species 1 1 2,4790e 03 0,0000e00 2,4790e 03 7,7837e 91 1,0383e 89 2 2,4741e 03 2,4897e 04 2,2442e 03 1,9041e 05 2,2993e 04 3 2,4682e 03 5,4643e 04 1,9689e 03 4,7129e 05 4,9931e 04 4 2,4623e 03 8,4248e 04 1,7027e 03 8,2902e 05 7,5957e 04 5 2,4565e 03 1,1371e 03 1,4486e 03 1,2929e 04 1,0078e 03 6 2,4506e 03 1,4303e 03 1,2106e 03 1,9035e 04 1,2400e 03 7 2,4453e 03 1,6979e 03 1,0110e 03 2,6364e 04 1,4343e 03 8 2,4357e 03 2,1815e 03 7,0785e 04 4,5363e 04 1,7278e 03 9 2,4262e 03 2,6612e 03 4,9323e 04 7,2830e 04 1,9329e 03 10 2,4167e 03 3,1372e 03 3,5582e 04 1,0764e 03 2,0609e 03 11 2,4073e 03 3,6096e 03 2,6984e 04 1,4721e 03 2,1375e 03 12 2,3980e 03 4,0782e 03 2,1422e 04 1,8945e 03 2,1838e 03 13 2,3796e 03 5,0048e 03 1,4938e 04 2,7746e 03 2,2302e 03 14 2,3570e 03 6,1431e 03 1,0737e 04 3,8935e 03 2,2496e 03 15 2,3348e 03 7,2600e 03 8,3528e 05 5,0088e 03 2,2512e 03 16 2,2916e 03 9,4319e 03 5,7677e 05 7,1980e 03 2,2339e 03 17 2,2099e 03 1,3543e 02 3,5543e 05 1,1369e 02 2,1743e 03 18 2,0628e 03 2,0945e 02 2,0083e 05 1,8902e 02 2,0427e 03 Measured chemical shifts Point H a H b H c 1 9,0446e00 7,6018e00 6,8747e00 2 9,0946e00 7,6533e00 6,9036e00 3 9,1502e00 7,7103e00 6,9353e00 4 9,2144e00 7,7758e00 6,9716e00 5 9,2769e00 7,8402e00 7,0075e00 6 9,3347e00 7,8992e00 7,0417e00 7 9,3951e00 7,9605e00 7,0748e00 8 9,4807e00 8,0480e00 7,1241e00 9 9,5414e00 8,1090e00 7,1583e00 10 9,5798e00 8,1476e00 7,1801e00 11 9,6073e00 8,1742e00 7,1945e00 12 9,6212e00 8,1871e00 7,2011e00 13 9,6388e00 8,2032e00 7,2096e00 14 9,6491e00 8,2117e00 7,2138e00 15 9,6544e00 8,2158e00 7,2156e00 16 9,6613e00 8,2195e00 7,2168e00 17 9,6663e00 8,2205e00 7,2157e00 18 9,6696e00 8,2170e00 7,2103e00 Calculated chemical shifts Point H a H b H c 1 9,0231e00 7,5845e00 6,8661e00 2 9,0837e00 7,6451e00 6,8997e00 3 9,1550e00 7,7165e00 6,9392e00 4 9,2241e00 7,7858e00 6,9775e00 5 9,2905e00 7,8522e00 7,0143e00 6 9,3528e00 7,9146e00 7,0489e00 7 9,4053e00 7,9672e00 7,0780e00 31

8 9,4854e00 8,0473e00 7,1223e00 9 9,5423e00 8,1043e00 7,1539e00 10 9,5788e00 8,1408e00 7,1741e00 11 9,6017e00 8,1638e00 7,1868e00 12 9,6165e00 8,1786e00 7,1950e00 13 9,6338e00 8,1959e00 7,2046e00 14 9,6450e00 8,2072e00 7,2108e00 15 9,6514e00 8,2135e00 7,2144e00 16 9,6583e00 8,2205e00 7,2182e00 17 9,6642e00 8,2264e00 7,2215e00 18 9,6684e00 8,2305e00 7,2238e00 Chemical shifts for each nucleus species H a H b H c TCY037 + Na 9,0231e00 7,5845e00 6,8661e00 (TCY037 + Na)TBACl 9,6747e00 8,2369e00 7,2273e00 Converged in 6 iterations with sigma = 8,733332 standard value deviation Comments 1 log beta((tcy037 + Na)TBACl) 3.7309 0.0294 3.73(3) (a) (b) (c) Fig. S20 R 1 + NaBPh 4 + TBACl titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 32

3.2.13 1 H NMR titration of R 1 + NaBPh 4 + TBABr TCY 037 + NaBPh4 + TBABr_2 Species Log beta TCY037 + Na TBABr 1 3,2503 1 1 refine Species concentrations/mol dm 3 Point T(TCY037 + Na) T(TBABr) F(TCY037 + Na) F(TBABr) species 1 1 2,4790e 03 0,0000e00 2,4790e 03 1,4423e 90 6,3627e 90 2 2,4741e 03 2,4973e 04 2,2739e 03 4,9488e 05 2,0024e 04 3 2,4692e 03 4,9847e 04 2,0769e 03 1,0615e 04 3,9231e 04 4 2,4643e 03 7,4621e 04 1,8891e 03 1,7108e 04 5,7513e 04 5 2,4594e 03 9,9298e 04 1,7118e 03 2,4541e 04 7,4756e 04 6 2,4545e 03 1,2388e 03 1,5460e 03 3,3024e 04 9,0852e 04 7 2,4497e 03 1,4836e 03 1,3926e 03 4,2654e 04 1,0570e 03 8 2,4400e 03 1,9703e 03 1,1258e 03 6,5606e 04 1,3143e 03 9 2,4304e 03 2,4532e 03 9,1232e 04 9,3512e 04 1,5181e 03 10 2,4209e 03 2,9324e 03 7,4725e 04 1,2587e 03 1,6737e 03 11 2,4115e 03 3,4078e 03 6,2167e 04 1,6179e 03 1,7899e 03 12 2,4022e 03 3,8795e 03 5,2619e 04 2,0035e 03 1,8760e 03 13 2,3837e 03 4,8121e 03 3,9562e 04 2,8240e 03 1,9881e 03 14 2,3610e 03 5,9579e 03 2,9772e 04 3,8946e 03 2,0633e 03 15 2,3387e 03 7,0820e 03 2,3713e 04 4,9804e 03 2,1016e 03 16 2,2954e 03 9,2678e 03 1,6748e 04 7,1398e 03 2,1279e 03 17 2,2134e 03 1,3405e 02 1,0489e 04 1,1297e 02 2,1085e 03 18 2,0659e 03 2,0853e 02 5,9816e 05 1,8846e 02 2,0061e 03 Measured chemical shifts Point H a H b H c 1 9,0477e00 7,6053e00 6,8774e00 2 9,0832e00 7,6363e00 6,8982e00 3 9,1180e00 7,6666e00 6,9189e00 4 9,1525e00 7,6966e00 6,9396e00 5 9,1836e00 7,7235e00 6,9577e00 6 9,2120e00 7,7481e00 6,9747e00 7 9,2393e00 7,7716e00 6,9907e00 8 9,2834e00 7,8096e00 7,0169e00 9 9,3168e00 7,8381e00 7,0366e00 10 9,3427e00 7,8603e00 7,0519e00 11 9,3624e00 7,8768e00 7,0631e00 12 9,3777e00 7,8896e00 7,0717e00 13 9,4003e00 7,9083e00 7,0843e00 14 9,4191e00 7,9236e00 7,0947e00 15 9,4313e00 7,9330e00 7,1009e00 16 9,4476e00 7,9456e00 7,1092e00 17 9,4615e00 7,9540e00 7,1131e00 18 9,4728e00 7,9600e00 7,1160e00 Calculated chemical shifts Point H a H b H c 1 9,0509e00 7,6109e00 6,8814e00 2 9,0854e00 7,6400e00 6,9012e00 3 9,1186e00 7,6681e00 6,9203e00 4 9,1503e00 7,6949e00 6,9386e00 5 9,1804e00 7,7204e00 6,9558e00 6 9,2086e00 7,7442e00 6,9720e00 7 9,2347e00 7,7663e00 6,9871e00 33

8 9,2803e00 7,8049e00 7,0133e00 9 9,3170e00 7,8359e00 7,0344e00 10 9,3454e00 7,8599e00 7,0507e00 11 9,3670e00 7,8782e00 7,0632e00 12 9,3835e00 7,8922e00 7,0727e00 13 9,4062e00 7,9113e00 7,0857e00 14 9,4231e00 7,9257e00 7,0954e00 15 9,4337e00 7,9346e00 7,1015e00 16 9,4458e00 7,9448e00 7,1084e00 17 9,4567e00 7,9540e00 7,1147e00 18 9,4645e00 7,9607e00 7,1192e00 Chemical shifts for each nucleus species H a H b H c TCY037 + Na 9,0509e00 7,6109e00 6,8814e00 (TCY037 + Na)TBABr 9,4769e00 7,9711e00 7,1263e00 Converged in 5 iterations with sigma = 3,362101 standard value deviation Comments 1 log beta((tcy037 + Na)TBABr) 3.2503 0.0133 3.25(1) (a) (b) (c) Fig. S21 R 1 + NaBPh 4 + TBABr titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 34

TCY 037 + NaBPh4 + TBABr_2 Species Log beta TCY037 + Na TBABr 1 3,3259 1 1 refine 2 5,7059 2 1 refine Species concentrations/mol dm 3 Point T(TCY037 + Na) T(TBABr) F(TCY037 + Na) F(TBABr) species 1 species 2 1 2,4790e 03 0,0000e00 2,4790e 03 1,2424e 90 6,5237e 90 3,8793e 90 2 2,4741e 03 2,4973e 04 2,1804e 03 3,1086e 05 1,4356e 04 7,5083e 05 3 2,4692e 03 4,9847e 04 1,9091e 03 7,2290e 05 2,9231e 04 1,3386e 04 4 2,4643e 03 7,4621e 04 1,6664e 03 1,2562e 04 4,4337e 04 1,7723e 04 5 2,4594e 03 9,9298e 04 1,4525e 03 1,9287e 04 5,9337e 04 2,0674e 04 6 2,4545e 03 1,2388e 03 1,2667e 03 2,7540e 04 7,3887e 04 2,2449e 04 7 2,4497e 03 1,4836e 03 1,1071e 03 3,7391e 04 8,7681e 04 2,3285e 04 8 2,4400e 03 1,9703e 03 8,5704e 04 6,1796e 04 1,1218e 03 2,3061e 04 9 2,4304e 03 2,4532e 03 6,7950e 04 9,1752e 04 1,3205e 03 2,1522e 04 10 2,4209e 03 2,9324e 03 5,5303e 04 1,2603e 03 1,4763e 03 1,9583e 04 11 2,4115e 03 3,4078e 03 4,6131e 04 1,6343e 03 1,5968e 03 1,7669e 04 12 2,4022e 03 3,8795e 03 3,9314e 04 2,0299e 03 1,6903e 03 1,5939e 04 13 2,3837e 03 4,8121e 03 3,0054e 04 2,8602e 03 1,8207e 03 1,3125e 04 14 2,3610e 03 5,9579e 03 2,3032e 04 3,9332e 03 1,9187e 03 1,0600e 04 15 2,3387e 03 7,0820e 03 1,8598e 04 5,0174e 03 1,9764e 03 8,8167e 05 16 2,2954e 03 9,2678e 03 1,3374e 04 7,1713e 03 2,0314e 03 6,5164e 05 17 2,2134e 03 1,3405e 02 8,5281e 05 1,1319e 02 2,0445e 03 4,1822e 05 18 2,0659e 03 2,0853e 02 4,9317e 05 1,8859e 02 1,9700e 03 2,3303e 05 Measured chemical shifts Point U1 U2 C1 1 9,0477e00 7,6053e00 6,8774e00 2 9,0832e00 7,6363e00 6,8982e00 3 9,1180e00 7,6666e00 6,9189e00 4 9,1525e00 7,6966e00 6,9396e00 5 9,1836e00 7,7235e00 6,9577e00 6 9,2120e00 7,7481e00 6,9747e00 7 9,2393e00 7,7716e00 6,9907e00 8 9,2834e00 7,8096e00 7,0169e00 9 9,3168e00 7,8381e00 7,0366e00 10 9,3427e00 7,8603e00 7,0519e00 11 9,3624e00 7,8768e00 7,0631e00 12 9,3777e00 7,8896e00 7,0717e00 13 9,4003e00 7,9083e00 7,0843e00 14 9,4191e00 7,9236e00 7,0947e00 15 9,4313e00 7,9330e00 7,1009e00 16 9,4476e00 7,9456e00 7,1092e00 17 9,4615e00 7,9540e00 7,1131e00 18 9,4728e00 7,9600e00 7,1160e00 Calculated chemical shifts Point U1 U2 C1 1 9,0481e00 7,6040e00 6,8757e00 2 9,0839e00 7,6365e00 6,8983e00 3 9,1186e00 7,6676e00 6,9198e00 4 9,1516e00 7,6968e00 6,9400e00 5 9,1827e00 7,7240e00 6,9587e00 6 9,2115e00 7,7489e00 6,9758e00 7 9,2377e00 7,7714e00 6,9911e00 8 9,2822e00 7,8091e00 7,0168e00 9 9,3169e00 7,8380e00 7,0364e00 10 9,3434e00 7,8600e00 7,0512e00 11 9,3638e00 7,8768e00 7,0625e00 12 9,3797e00 7,8897e00 7,0712e00 13 9,4023e00 7,9081e00 7,0835e00 14 9,4203e00 7,9226e00 7,0932e00 35

15 9,4320e00 7,9321e00 7,0995e00 16 9,4464e00 7,9436e00 7,1072e00 17 9,4602e00 7,9546e00 7,1145e00 18 9,4707e00 7,9630e00 7,1201e00 Chemical shifts for each nucleus species U1 U2 C1 TCY037 + Na 9,0481e00 7,6040e00 6,8757e00 (TCY037 + Na)Br 9,4872e00 7,9762e00 7,1289e00 (TCY037 + Na)2Br 9,2183e00 7,7835e00 7,0062e00 Converged in 6 iterations with sigma = 1,377172 standard value deviation Comments 1 log beta((tcy037 + Na)Br) 3.3259 0.0374 3.33(4) 2 log beta((tcy037 + Na)2Br) 5.7059 0.1408 5.7(1) Correlation coefficients between stability constants. Numbering as above 2 0.9778 1 logk = 2.3800 ± 0.2407 (a) (b) (c) (d) Fig. S22 R 1 + NaBPh 4 + TBABr titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using simultaneous 1:1 and 2:1 binding models. (d) Species distribution as function of guest concentration. 36

3.2.14 1 H NMR titration of R 1 + NaBPh 4 + TBAI TCY 037 + NaBPh4 + TBAI_3 Species Log beta TCY037 + Na TBAI 1 2,6065 1 1 refine Species concentrations/mol dm 3 Point T(TCY037 + Na) T(TBAI) F(TCY037 + Na) F(TBAI) species 1 1 2,4790e 03 0,0000e00 2,4790e 03 2,6129e 90 2,6179e 90 2 2,4741e 03 2,4966e 04 2,3524e 03 1,2798e 04 1,2168e 04 3 2,4692e 03 4,9832e 04 2,2328e 03 2,6194e 04 2,3637e 04 4 2,4643e 03 7,4599e 04 2,1200e 03 4,0176e 04 3,4423e 04 5 2,4594e 03 9,9268e 04 2,0139e 03 5,4725e 04 4,4543e 04 6 2,4545e 03 1,2384e 03 1,9143e 03 6,9821e 04 5,4019e 04 7 2,4497e 03 1,4831e 03 1,8209e 03 8,5438e 04 6,2876e 04 8 2,4400e 03 1,9697e 03 1,6515e 03 1,1813e 03 7,8846e 04 9 2,4304e 03 2,4525e 03 1,5035e 03 1,5255e 03 9,2697e 04 10 2,4209e 03 2,9315e 03 1,3742e 03 1,8848e 03 1,0468e 03 11 2,4115e 03 3,4068e 03 1,2613e 03 2,2565e 03 1,1503e 03 12 2,4022e 03 3,8784e 03 1,1625e 03 2,6387e 03 1,2397e 03 13 2,3837e 03 4,8107e 03 9,9953e 04 3,4265e 03 1,3842e 03 14 2,3610e 03 5,9561e 03 8,4490e 04 4,4400e 03 1,5161e 03 15 2,3387e 03 7,0799e 03 7,2845e 04 5,4696e 03 1,6103e 03 16 2,2954e 03 9,2650e 03 5,6732e 04 7,5369e 03 1,7281e 03 17 2,2134e 03 1,3401e 02 3,8975e 04 1,1578e 02 1,8237e 03 18 2,0659e 03 2,0846e 02 2,3783e 04 1,9018e 02 1,8280e 03 Measured chemical shifts Point H a H b H c 1 9,0557e00 7,6148e00 6,8808e00 2 9,0643e00 7,6223e00 6,8869e00 3 9,0725e00 7,6301e00 6,8923e00 4 9,0792e00 7,6363e00 6,8967e00 5 9,0859e00 7,6418e00 6,9005e00 6 9,0914e00 7,6472e00 6,9041e00 7 9,0968e00 7,6519e00 6,9074e00 8 9,1054e00 7,6598e00 6,9134e00 9 9,1137e00 7,6672e00 6,9190e00 10 9,1203e00 7,6732e00 6,9244e00 11 9,1260e00 7,6785e00 6,9278e00 12 9,1308e00 7,6829e00 6,9307e00 13 9,1395e00 7,6898e00 6,9361e00 14 9,1481e00 7,6977e00 6,9411e00 15 9,1546e00 7,7033e00 6,9454e00 16 9,1649e00 7,7122e00 6,9519e00 17 9,1777e00 7,7237e00 6,9602e00 18 9,1898e00 7,7244e00 6,9669e00 Calculated chemical shifts Point H a H b H c 1 9,0581e00 7,6183e00 6,8829e00 2 9,0652e00 7,6244e00 6,8875e00 3 9,0719e00 7,6302e00 6,8918e00 4 9,0782e00 7,6357e00 6,8959e00 5 9,0842e00 7,6409e00 6,8998e00 6 9,0898e00 7,6457e00 6,9034e00 7 9,0950e00 7,6503e00 6,9068e00 37

8 9,1046e00 7,6586e00 6,9130e00 9 9,1130e00 7,6658e00 6,9184e00 10 9,1203e00 7,6722e00 6,9232e00 11 9,1267e00 7,6777e00 6,9273e00 12 9,1323e00 7,6826e00 6,9310e00 13 9,1416e00 7,6907e00 6,9370e00 14 9,1505e00 7,6983e00 6,9427e00 15 9,1571e00 7,7041e00 6,9470e00 16 9,1664e00 7,7121e00 6,9530e00 17 9,1766e00 7,7210e00 6,9596e00 18 9,1854e00 7,7285e00 6,9653e00 Chemical shifts for each nucleus species H a H b H c TCY037 + Na 9,0581e00 7,6183e00 6,8829e00 (TCY037 + Na)TBAI 9,2019e00 7,7429e00 6,9760e00 Converged in 6 iterations with sigma = 1,690369 standard value deviation Comments 1 log beta((tcy037 + Na)TBAI) 2.6065 0.0175 2.61(2) (a) (b) (c) Fig. S23 R 1 + NaBPh 4 + TBAI titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 38

3.2.15 1 H NMR titration of R 1 + KBPh 4 + TBACl TCY 037 + KBPh4 + TBACl_4 Species Log beta TCY037 + K TBACl 1 3,9498 1 1 refine Species concentrations/mol dm 3 Point T(TCY037 + K) T(TBACl) F(TCY037 + K) F(TBACl) species 1 1 2,5101e 03 0,0000e00 2,5101e 03 5,6462e 91 1,2625e 89 2 2,5051e 03 2,5137e 04 2,2656e 03 1,1867e 05 2,3950e 04 3 2,5001e 03 5,0174e 04 2,0247e 03 2,6357e 05 4,7538e 04 4 2,4951e 03 7,5111e 04 1,7884e 03 4,4364e 05 7,0675e 04 5 2,4902e 03 9,9949e 04 1,5579e 03 6,7182e 05 9,3231e 04 6 2,4853e 03 1,2469e 03 1,3351e 03 9,6713e 05 1,1502e 03 7 2,4804e 03 1,4933e 03 1,1228e 03 1,3574e 04 1,3576e 03 8 2,4706e 03 1,9832e 03 7,4658e 04 2,5924e 04 1,7240e 03 9 2,4599e 03 2,5177e 03 4,4731e 04 5,0511e 04 2,0126e 03 10 2,4503e 03 2,9996e 03 2,8929e 04 8,3861e 04 2,1610e 03 11 2,4408e 03 3,4778e 03 2,0267e 04 1,2397e 03 2,2381e 03 12 2,4313e 03 3,9523e 03 1,5282e 04 1,6738e 03 2,2785e 03 13 2,4126e 03 4,8902e 03 1,0067e 04 2,5783e 03 2,3120e 03 14 2,3897e 03 6,0426e 03 6,9949e 05 3,7229e 03 2,3197e 03 15 2,3671e 03 7,1733e 03 5,3449e 05 4,8596e 03 2,3137e 03 16 2,3233e 03 9,3718e 03 3,6240e 05 7,0847e 03 2,2871e 03 17 2,2404e 03 1,3533e 02 2,2009e 05 1,1315e 02 2,2184e 03 18 2,0911e 03 2,1024e 02 1,2318e 05 1,8946e 02 2,0787e 03 Measured chemical shifts Point H a H b H c 1 9,0559e00 7,6414e00 6,9281e00 2 9,1132e00 7,7008e00 6,9608e00 3 9,1724e00 7,7624e00 6,9948e00 4 9,2283e00 7,8194e00 7,0256e00 5 9,2834e00 7,8771e00 7,0577e00 6 9,3391e00 7,9345e00 7,0891e00 7 9,3870e00 7,9842e00 7,1164e00 8 9,4796e00 8,0808e00 7,1701e00 9 9,5548e00 8,1593e00 7,2136e00 10 9,5951e00 8,2008e00 7,2363e00 11 9,6182e00 8,2242e00 7,2489e00 12 9,6316e00 8,2373e00 7,2561e00 13 9,6454e00 8,2507e00 7,2621e00 14 9,6546e00 8,2588e00 7,2656e00 15 9,6593e00 8,2620e00 7,2666e00 16 9,6644e00 8,2651e00 7,2673e00 17 9,6683e00 8,2649e00 7,2653e00 18 9,6701e00 8,2595e00 7,2600e00 Calculated chemical shifts Point H a H b H c 1 9,0532e00 7,6406e00 6,9287e00 2 9,1123e00 7,7012e00 6,9617e00 3 9,1707e00 7,7611e00 6,9943e00 4 9,2282e00 7,8200e00 7,0264e00 5 9,2845e00 7,8778e00 7,0579e00 6 9,3391e00 7,9338e00 7,0884e00 7 9,3913e00 7,9873e00 7,1175e00 39

8 9,4843e00 8,0826e00 7,1694e00 9 9,5586e00 8,1589e00 7,2110e00 10 9,5980e00 8,1993e00 7,2330e00 11 9,6197e00 8,2214e00 7,2451e00 12 9,6321e00 8,2342e00 7,2520e00 13 9,6452e00 8,2476e00 7,2593e00 14 9,6529e00 8,2555e00 7,2636e00 15 9,6570e00 8,2597e00 7,2659e00 16 9,6613e00 8,2642e00 7,2683e00 17 9,6649e00 8,2678e00 7,2703e00 18 9,6673e00 8,2703e00 7,2717e00 Chemical shifts for each nucleus species H a H b H c TCY037 + K 9,0532e00 7,6406e00 6,9287e00 (TCY037 + K)TBACl 9,6710e00 8,2740e00 7,2737e00 Converged in 5 iterations with sigma = 3,365774 standard value deviation Comments 1 log beta((tcy037 + K)TBACl) 3.9498 0.0149 3.95(1) (a) (b) (c) Fig. S24 R 1 + KBPh 4 + TBACl titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 40

3.2.16 1 H NMR titration of R 1 + KBPh 4 + TBABr TCY 037 + KBPh4 + TBABr_6 Species Log beta TCY037 + K TBABr 1 3,1901 1 1 refine Species concentrations/mol dm 3 Point T(TCY037 + K) T(TBABr) F(TCY037 + K) F(TBABr) species 1 1 2,5101e 03 0,0000e00 2,5101e 03 1,5384e 90 5,9826e 90 2 2,5051e 03 2,4890e 04 2,3106e 03 5,4351e 05 1,9455e 04 3 2,5001e 03 4,9682e 04 2,1193e 03 1,1599e 04 3,8083e 04 4 2,4951e 03 7,4374e 04 1,9373e 03 1,8588e 04 5,5787e 04 5 2,4877e 03 1,1123e 03 1,6837e 03 3,0825e 04 8,0405e 04 6 2,4828e 03 1,3568e 03 1,5288e 03 4,0279e 04 9,5400e 04 7 2,4779e 03 1,6003e 03 1,3861e 03 5,0847e 04 1,0918e 03 8 2,4682e 03 2,0845e 03 1,1381e 03 7,5439e 04 1,3301e 03 9 2,4585e 03 2,5649e 03 9,3870e 04 1,0451e 03 1,5198e 03 10 2,4489e 03 3,0415e 03 7,8236e 04 1,3750e 03 1,6665e 03 11 2,4394e 03 3,5144e 03 6,6113e 04 1,7362e 03 1,7782e 03 12 2,4299e 03 3,9837e 03 5,6701e 04 2,1208e 03 1,8629e 03 13 2,4113e 03 4,9114e 03 4,3472e 04 2,9348e 03 1,9765e 03 14 2,3883e 03 6,0511e 03 3,3221e 04 3,9950e 03 2,0561e 03 15 2,3658e 03 7,1694e 03 2,6715e 04 5,0708e 03 2,0987e 03 16 2,3220e 03 9,3439e 03 1,9074e 04 7,2126e 03 2,1313e 03 17 2,2392e 03 1,3460e 02 1,2058e 04 1,1342e 02 2,1186e 03 18 2,0900e 03 2,0870e 02 6,9202e 05 1,8849e 02 2,0208e 03 Measured chemical shifts Point H a H b H c 1 9,0580e00 7,6431e00 6,9296e00 2 9,0919e00 7,6727e00 6,9491e00 3 9,1235e00 7,7005e00 6,9683e00 4 9,1534e00 7,7265e00 6,9859e00 5 9,1945e00 7,7622e00 7,0106e00 6 9,2278e00 7,7919e00 7,0304e00 7 9,2510e00 7,8121e00 7,0440e00 8 9,2945e00 7,8502e00 7,0701e00 9 9,3276e00 7,8792e00 7,0895e00 10 9,3492e00 7,8981e00 7,1023e00 11 9,3734e00 7,9189e00 7,1161e00 12 9,3910e00 7,9340e00 7,1262e00 13 9,4118e00 7,9518e00 7,1380e00 14 9,4307e00 7,9678e00 7,1487e00 15 9,4429e00 7,9779e00 7,1553e00 16 9,4584e00 7,9904e00 7,1631e00 17 9,4730e00 8,0013e00 7,1696e00 18 9,4835e00 8,0072e00 7,1719e00 Calculated chemical shifts Point H a H b H c 1 9,0570e00 7,6436e00 6,9305e00 2 9,0909e00 7,6729e00 6,9502e00 3 9,1235e00 7,7011e00 6,9691e00 4 9,1546e00 7,7280e00 6,9872e00 5 9,1981e00 7,7656e00 7,0124e00 6 9,2247e00 7,7886e00 7,0279e00 7 9,2493e00 7,8099e00 7,0422e00 41

8 9,2922e00 7,8470e00 7,0671e00 9 9,3268e00 7,8770e00 7,0872e00 10 9,3540e00 7,9005e00 7,1030e00 11 9,3752e00 7,9188e00 7,1153e00 12 9,3916e00 7,9330e00 7,1249e00 13 9,4148e00 7,9531e00 7,1383e00 14 9,4327e00 7,9686e00 7,1488e00 15 9,4442e00 7,9785e00 7,1554e00 16 9,4576e00 7,9901e00 7,1632e00 17 9,4699e00 8,0008e00 7,1704e00 18 9,4790e00 8,0086e00 7,1756e00 Chemical shifts for each nucleus species H a H b H c TCY037 + K 9,0570e00 7,6436e00 6,9305e00 (TCY037 + K)TBABr 9,4934e00 8,0211e00 7,1840e00 Converged in 4 iterations with sigma = 2,118269 standard value deviation Comments 1 log beta((tcy037 + K)TBABr) 3.1901 0.0078 3.19(8) (a) (b) (c) Fig. S25 R 1 + KBPh 4 + TBABr titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 42

TCY 037 + KBPh4 + TBABr_6 Species Log beta TCY037 + K TBABr 1 3,333 1 1 refine 2 5,6047 2 1 refine Species concentrations/mol dm 3 Point T(TCY037 + K) T(TBABr) F(TCY037 + K) F(TBABr) species 1 species 2 1 2,5101e 03 0,0000e00 2,5101e 03 1,2540e 90 6,7756e 90 3,1798e 90 2 2,5051e 03 2,4890e 04 2,2245e 03 3,1993e 05 1,5320e 04 6,3714e 05 3 2,5001e 03 4,9682e 04 1,9629e 03 7,3319e 05 3,0980e 04 1,1370e 04 4 2,4951e 03 7,4374e 04 1,7263e 03 1,2573e 04 4,6722e 04 1,5080e 04 5 2,4877e 03 1,1123e 03 1,4188e 03 2,2866e 04 6,9838e 04 1,8526e 04 6 2,4828e 03 1,3568e 03 1,2447e 03 3,1532e 04 8,4486e 04 1,9661e 04 7 2,4779e 03 1,6003e 03 1,0939e 03 4,1716e 04 9,8226e 04 2,0089e 04 8 2,4682e 03 2,0845e 03 8,5394e 04 6,6561e 04 1,2235e 03 1,9534e 04 9 2,4585e 03 2,5649e 03 6,8061e 04 9,6732e 04 1,4172e 03 1,8034e 04 10 2,4489e 03 3,0415e 03 5,5553e 04 1,3110e 03 1,5677e 03 1,6283e 04 11 2,4394e 03 3,5144e 03 4,6404e 04 1,6851e 03 1,6833e 03 1,4604e 04 12 2,4299e 03 3,9837e 03 3,9568e 04 2,0805e 03 1,7721e 03 1,3109e 04 13 2,4113e 03 4,9114e 03 3,0247e 04 2,9097e 03 1,8945e 03 1,0714e 04 14 2,3883e 03 6,0511e 03 2,3164e 04 3,9804e 03 1,9848e 03 8,5957e 05 15 2,3658e 03 7,1694e 03 1,8691e 04 5,0617e 03 2,0366e 03 7,1169e 05 16 2,3220e 03 9,3439e 03 1,3425e 04 7,2084e 03 2,0832e 03 5,2290e 05 17 2,2392e 03 1,3460e 02 8,5496e 05 1,1340e 02 2,0870e 03 3,3359e 05 18 2,0900e 03 2,0870e 02 4,9385e 05 1,8848e 02 2,0036e 03 1,8500e 05 Measured chemical shifts Point U1 U2 C1 1 9,0580e00 7,6431e00 6,9296e00 2 9,0919e00 7,6727e00 6,9491e00 3 9,1235e00 7,7005e00 6,9683e00 4 9,1534e00 7,7265e00 6,9859e00 5 9,1945e00 7,7622e00 7,0106e00 6 9,2278e00 7,7919e00 7,0304e00 7 9,2510e00 7,8121e00 7,0440e00 8 9,2945e00 7,8502e00 7,0701e00 9 9,3276e00 7,8792e00 7,0895e00 10 9,3492e00 7,8981e00 7,1023e00 11 9,3734e00 7,9189e00 7,1161e00 12 9,3910e00 7,9340e00 7,1262e00 13 9,4118e00 7,9518e00 7,1380e00 14 9,4307e00 7,9678e00 7,1487e00 15 9,4429e00 7,9779e00 7,1553e00 16 9,4584e00 7,9904e00 7,1631e00 17 9,4730e00 8,0013e00 7,1696e00 18 9,4835e00 8,0072e00 7,1719e00 Calculated chemical shifts Point U1 U2 C1 1 9,0592e00 7,6430e00 6,9287e00 2 9,0912e00 7,6718e00 6,9487e00 3 9,1227e00 7,7001e00 6,9682e00 4 9,1535e00 7,7275e00 6,9870e00 5 9,1974e00 7,7661e00 7,0134e00 6 9,2245e00 7,7898e00 7,0294e00 7 9,2495e00 7,8116e00 7,0441e00 8 9,2928e00 7,8490e00 7,0692e00 9 9,3271e00 7,8784e00 7,0889e00 10 9,3537e00 7,9012e00 7,1040e00 11 9,3743e00 7,9187e00 7,1156e00 12 9,3904e00 7,9324e00 7,1246e00 13 9,4132e00 7,9518e00 7,1374e00 14 9,4315e00 7,9672e00 7,1476e00 43

15 9,4434e00 7,9772e00 7,1542e00 16 9,4578e00 7,9894e00 7,1622e00 17 9,4716e00 8,0010e00 7,1698e00 18 9,4821e00 8,0098e00 7,1755e00 Chemical shifts for each nucleus species U1 U2 C1 TCY037 + K 9,0592e00 7,6430e00 6,9287e00 (TCY037 + K)Br 9,4985e00 8,0236e00 7,1846e00 (TCY037 + K)2Br 9,1589e00 7,7522e00 7,0151e00 Converged in 5 iterations with sigma = 1,776229 standard value deviation Comments 1 log beta((tcy037 + K)Br) 3.333 0.0438 3.33(4) 2 log beta((tcy037 + K)2Br) 5.6047 0.1929 5.6(2) Correlation coefficients between stability constants. Numbering as above 2 0.9763 1 logk = 2.2718 ± 0.3464 (a) (b) (c) (d) Fig. S26 R 1 + KBPh 4 + TBABr titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using simultaneous 1:1 and 2:1 binding models. (d) Species distribution as function of guest concentration. 44

3.2.17 1 H NMR titration of R 1 + KBPh 4 + TBAI TCY 037 + KBPh4 + TBAI_2 Species Log beta TCY037 + K TBAI 1 2,5726 1 1 refine Species concentrations/mol dm 3 Point T(TCY037 + K) T(TBAI) F(TCY037 + K) F(TBAI) species 1 1 2,5101e 03 0,0000e00 2,5101e 03 2,7273e 90 2,5589e 90 2 2,5051e 03 2,4786e 04 2,3882e 03 1,3095e 04 1,1690e 04 3 2,5001e 03 4,9472e 04 2,2729e 03 2,6748e 04 2,2725e 04 4 2,4951e 03 7,4061e 04 2,1640e 03 4,0943e 04 3,3118e 04 5 2,4902e 03 9,8552e 04 2,0613e 03 5,5663e 04 4,2889e 04 6 2,4853e 03 1,2295e 03 1,9647e 03 7,0887e 04 5,2059e 04 7 2,4799e 03 1,4967e 03 1,8651e 03 8,8188e 04 6,1480e 04 8 2,4701e 03 1,9796e 03 1,7007e 03 1,2102e 03 7,6936e 04 9 2,4604e 03 2,4587e 03 1,5562e 03 1,5545e 03 9,0422e 04 10 2,4508e 03 2,9340e 03 1,4292e 03 1,9124e 03 1,0216e 03 11 2,4413e 03 3,4057e 03 1,3175e 03 2,2819e 03 1,1238e 03 12 2,4295e 03 3,9902e 03 1,1964e 03 2,7571e 03 1,2330e 03 13 2,4108e 03 4,9136e 03 1,0376e 03 3,5404e 03 1,3732e 03 14 2,3879e 03 6,0481e 03 8,8475e 04 4,5450e 03 1,5031e 03 15 2,3654e 03 7,1613e 03 7,6803e 04 5,5639e 03 1,5973e 03 16 2,3216e 03 9,3258e 03 6,0397e 04 7,6082e 03 1,7176e 03 17 2,2388e 03 1,3423e 02 4,1945e 04 1,1604e 02 1,8193e 03 18 2,0897e 03 2,0799e 02 2,5830e 04 1,8968e 02 1,8314e 03 Measured chemical shifts Point H a H b H c 1 9,0578e00 7,6431e00 6,9300e00 2 9,0666e00 7,6510e00 6,9351e00 3 9,0736e00 7,6575e00 6,9396e00 4 9,0809e00 7,6642e00 6,9443e00 5 9,0875e00 7,6701e00 6,9481e00 6 9,0941e00 7,6761e00 6,9526e00 7 9,1000e00 7,6817e00 6,9567e00 8 9,1096e00 7,6904e00 6,9630e00 9 9,1171e00 7,6973e00 6,9683e00 10 9,1246e00 7,7040e00 6,9728e00 11 9,1304e00 7,7093e00 6,9766e00 12 9,1369e00 7,7153e00 6,9810e00 13 9,1450e00 7,7224e00 6,9860e00 14 9,1536e00 7,7302e00 6,9917e00 15 9,1605e00 7,7395e00 6,9966e00 16 9,1711e00 7,7454e00 7,0018e00 17 9,1836e00 7,7563e00 7,0103e00 18 9,1976e00 7,7681e00 7,0177e00 Calculated chemical shifts Point H a H b H c 1 9,0604e00 7,6457e00 6,9314e00 2 9,0674e00 7,6522e00 6,9359e00 3 9,0742e00 7,6582e00 6,9402e00 4 9,0805e00 7,6640e00 6,9443e00 5 9,0865e00 7,6694e00 6,9481e00 6 9,0922e00 7,6745e00 6,9518e00 7 9,0980e00 7,6798e00 6,9555e00 45

8 9,1077e00 7,6885e00 6,9617e00 9 9,1162e00 7,6962e00 6,9672e00 10 9,1237e00 7,7030e00 6,9720e00 11 9,1303e00 7,7090e00 6,9762e00 12 9,1375e00 7,7155e00 6,9808e00 13 9,1469e00 7,7240e00 6,9868e00 14 9,1560e00 7,7322e00 6,9927e00 15 9,1630e00 7,7385e00 6,9971e00 16 9,1728e00 7,7474e00 7,0034e00 17 9,1838e00 7,7574e00 7,0105e00 18 9,1935e00 7,7662e00 7,0167e00 Chemical shifts for each nucleus species H a H b H c TCY037 + K 9,0604e00 7,6457e00 6,9314e00 (TCY037 + K)TBAI 9,2123e00 7,7832e00 7,0287e00 Converged in 6 iterations with sigma = 1,523414 standard value deviation Comments 1 log beta((tcy037 + K)TBAI) 2.5726 0.015 2.57(1) (a) (b) (c) Fig. S27 R 1 + KBPh 4 + TBAI titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 46

TCY 037 + KBPh4 + TBAI_2 Species Log beta TCY037 + K TBAI 1 2,668 1 1 refine 2 5,2725 2 1 refine Species concentrations/mol dm 3 Point T(TCY037 + K) T(TBAI) F(TCY037 + K) F(TBAI) species 1 species 2 1 2,5101e 03 0,0000e00 2,5101e 03 2,1244e 90 2,4827e 90 2,5066e 90 2 2,5051e 03 2,4786e 04 2,2608e 03 8,2351e 05 8,6681e 05 7,8823e 05 3 2,5001e 03 4,9472e 04 2,0447e 03 1,8089e 04 1,7220e 04 1,4162e 04 4 2,4951e 03 7,4061e 04 1,8586e 03 2,9480e 04 2,5510e 04 1,9071e 04 5 2,4902e 03 9,8552e 04 1,6989e 03 4,2270e 04 3,3435e 04 2,2847e 04 6 2,4853e 03 1,2295e 03 1,5617e 03 5,6299e 04 4,0934e 04 2,5713e 04 7 2,4799e 03 1,4967e 03 1,4325e 03 7,2966e 04 4,8663e 04 2,8038e 04 8 2,4701e 03 1,9796e 03 1,2433e 03 1,0595e 03 6,1333e 04 3,0672e 04 9 2,4604e 03 2,4587e 03 1,0978e 03 1,4156e 03 7,2356e 04 3,1951e 04 10 2,4508e 03 2,9340e 03 9,8313e 04 1,7904e 03 8,1953e 04 3,2407e 04 11 2,4413e 03 3,4057e 03 8,9062e 04 2,1787e 03 9,0340e 04 3,2363e 04 12 2,4295e 03 3,9902e 03 7,9755e 04 2,6771e 03 9,9410e 04 3,1890e 04 13 2,4108e 03 4,9136e 03 6,8444e 04 3,4937e 03 1,1133e 03 3,0650e 04 14 2,3879e 03 6,0481e 03 5,8265e 04 4,5310e 03 1,2291e 03 2,8805e 04 15 2,3654e 03 7,1613e 03 5,0808e 04 5,5734e 03 1,3184e 03 2,6943e 04 16 2,3216e 03 9,3258e 03 4,0576e 04 7,6457e 03 1,4444e 03 2,3573e 04 17 2,2388e 03 1,3423e 02 2,9080e 04 1,1660e 02 1,5787e 03 1,8465e 04 18 2,0897e 03 2,0799e 02 1,8680e 04 1,9021e 02 1,6543e 03 1,2430e 04 Measured chemical shifts Point U1 U2 C1 1 9,0578e00 7,6431e00 6,9300e00 2 9,0666e00 7,6510e00 6,9351e00 3 9,0736e00 7,6575e00 6,9396e00 4 9,0809e00 7,6642e00 6,9443e00 5 9,0875e00 7,6701e00 6,9481e00 6 9,0941e00 7,6761e00 6,9526e00 7 9,1000e00 7,6817e00 6,9567e00 8 9,1096e00 7,6904e00 6,9630e00 9 9,1171e00 7,6973e00 6,9683e00 10 9,1246e00 7,7040e00 6,9728e00 11 9,1304e00 7,7093e00 6,9766e00 12 9,1369e00 7,7153e00 6,9810e00 13 9,1450e00 7,7224e00 6,9860e00 14 9,1536e00 7,7302e00 6,9917e00 15 9,1605e00 7,7395e00 6,9966e00 16 9,1711e00 7,7454e00 7,0018e00 17 9,1836e00 7,7563e00 7,0103e00 18 9,1976e00 7,7681e00 7,0177e00 Calculated chemical shifts Point U1 U2 C1 1 9,0582e00 7,6430e00 6,9294e00 2 9,0663e00 7,6506e00 6,9349e00 3 9,0739e00 7,6578e00 6,9399e00 4 9,0810e00 7,6644e00 6,9446e00 5 9,0875e00 7,6704e00 6,9489e00 6 9,0935e00 7,6759e00 6,9528e00 7 9,0995e00 7,6815e00 6,9567e00 8 9,1091e00 7,6903e00 6,9629e00 9 9,1173e00 7,6977e00 6,9682e00 10 9,1243e00 7,7040e00 6,9727e00 11 9,1304e00 7,7095e00 6,9765e00 12 9,1370e00 7,7154e00 6,9807e00 13 9,1456e00 7,7231e00 6,9862e00 14 9,1541e00 7,7307e00 6,9916e00 47

15 9,1609e00 7,7367e00 6,9958e00 16 9,1710e00 7,7457e00 7,0021e00 17 9,1838e00 7,7569e00 7,0101e00 18 9,1968e00 7,7684e00 7,0182e00 Chemical shifts for each nucleus species U1 U2 C1 TCY037 + K 9,0582e00 7,6430e00 6,9294e00 (TCY037 + K)I 9,2280e00 7,7957e00 7,0376e00 (TCY037 + K)2I 9,0935e00 7,6807e00 6,9562e00 standard value deviation Comments 1 log beta((tcy037 + K)I) 2.668 0.071 2.67(7) 2 log beta((tcy037 + K)2I) 5.2725 excessive relative error on beta = 43% Correlation coefficients between stability constants. Numbering as above 2 0.9821 1 logk = 2.6045 ± 0.2731 (a) (b) (c) (d) Fig. S28 R 1 + KBPh 4 + TBAI titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using simultaneous 1:1 and 2:1 binding models. (d) Species distribution as function of guest concentration. 48

3.2.18 1 H NMR titration of R 1 + RbBPh 4 + TBACl TCY 037 + RbBPh4 + TBACl_1 Species Log beta TCY037 + Rb TBACl 1 3,8292 1 1 refine Species concentrations/mol dm 3 Point T(TCY037 + Rb) T(TBACl) F(TCY037 + Rb) F(TBACl) species 1 1 2,4977e 03 0,0000e00 2,4977e 03 6,7483e 91 1,1374e 89 2 2,4927e 03 2,4897e 04 2,2591e 03 1,5327e 05 2,3365e 04 3 2,4877e 03 4,9696e 04 2,0247e 03 3,3892e 05 4,6306e 04 4 2,4818e 03 7,9323e 04 1,7505e 03 6,1910e 05 7,3132e 04 5 2,4769e 03 1,0391e 03 1,5296e 03 9,1772e 05 9,4728e 04 6 2,4720e 03 1,2839e 03 1,3179e 03 1,2978e 04 1,1541e 03 7 2,4671e 03 1,5278e 03 1,1181e 03 1,7879e 04 1,3490e 03 8 2,4574e 03 2,0127e 03 7,6967e 04 3,2494e 04 1,6877e 03 9 2,4478e 03 2,4937e 03 5,1296e 04 5,5894e 04 1,9348e 03 10 2,4382e 03 2,9711e 03 3,5032e 04 8,8319e 04 2,0879e 03 11 2,4287e 03 3,4447e 03 2,5382e 04 1,2698e 03 2,1749e 03 12 2,4193e 03 3,9146e 03 1,9500e 04 1,6903e 03 2,2243e 03 13 2,4007e 03 4,8437e 03 1,3070e 04 2,5737e 03 2,2700e 03 14 2,3778e 03 5,9850e 03 9,1595e 05 3,6988e 03 2,2863e 03 15 2,3554e 03 7,1049e 03 7,0259e 05 4,8198e 03 2,2852e 03 16 2,3118e 03 9,2825e 03 4,7802e 05 7,0184e 03 2,2640e 03 17 2,2293e 03 1,3404e 02 2,9100e 05 1,1204e 02 2,2002e 03 18 2,0807e 03 2,0824e 02 1,6307e 05 1,8760e 02 2,0644e 03 Measured chemical shifts Point H a H b H c 1 9,0503e00 7,6324e00 6,9120e00 2 9,1002e00 7,6846e00 6,9425e00 3 9,1512e00 7,7367e00 6,9708e00 4 9,2131e00 7,7999e00 7,0050e00 5 9,2692e00 7,8575e00 7,0363e00 6 9,3240e00 7,9140e00 7,0673e00 7 9,3741e00 7,9650e00 7,0948e00 8 9,4640e00 8,0584e00 7,1465e00 9 9,5324e00 8,1293e00 7,1857e00 10 9,5764e00 8,1745e00 7,2102e00 11 9,6034e00 8,2018e00 7,2251e00 12 9,6194e00 8,2175e00 7,2332e00 13 9,6369e00 8,2342e00 7,2419e00 14 9,6473e00 8,2434e00 7,2462e00 15 9,6527e00 8,2469e00 7,2471e00 16 9,6558e00 8,2500e00 7,2477e00 17 9,6633e00 8,2494e00 7,2454e00 18 9,6665e00 8,2450e00 7,2395e00 Calculated chemical shifts Point H a H b H c 1 9,0349e00 7,6194e00 6,9071e00 2 9,0943e00 7,6797e00 6,9398e00 3 9,1528e00 7,7391e00 6,9720e00 4 9,2215e00 7,8090e00 7,0099e00 5 9,2771e00 7,8654e00 7,0405e00 6 9,3306e00 7,9198e00 7,0699e00 7 9,3812e00 7,9712e00 7,0978e00 49

8 9,4699e00 8,0613e00 7,1466e00 9 9,5356e00 8,1279e00 7,1828e00 10 9,5773e00 8,1703e00 7,2057e00 11 9,6021e00 8,1955e00 7,2194e00 12 9,6172e00 8,2109e00 7,2277e00 13 9,6338e00 8,2278e00 7,2369e00 14 9,6439e00 8,2380e00 7,2424e00 15 9,6494e00 8,2436e00 7,2454e00 16 9,6552e00 8,2495e00 7,2486e00 17 9,6600e00 8,2544e00 7,2513e00 18 9,6633e00 8,2577e00 7,2531e00 Chemical shifts for each nucleus species H a H b H c TCY037 + Rb 9,0349e00 7,6194e00 6,9071e00 (TCY037 + Rb)TBACl 9,6683e00 8,2628e00 7,2559e00 Converged in 5 iterations with sigma = 6,272131 standard value deviation Comments 1 log beta((tcy037 + Rb)TBACl) 3.8292 0.0239 3.83(2) (a) (b) (c) Fig. S29 R 1 + RbBPh 4 + TBACl titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 50

3.2.19 1 H NMR titration of R 1 + RbBPh 4 + TBABr TCY 037 + RbBPh4 + TBABr_2 Species Log beta TCY037 + Rb TBABr 1 3,2702 1 1 refine Species concentrations/mol dm 3 Point T(TCY037 + Rb) T(TBABr) F(TCY037 + Rb) F(TBABr) species 1 1 2,4977e 03 0,0000e00 2,4977e 03 1,4149e 90 6,5841e 90 2 2,4927e 03 2,4973e 04 2,2904e 03 4,7411e 05 2,0232e 04 3 2,4877e 03 4,9847e 04 2,0911e 03 1,0181e 04 3,9665e 04 4 2,4828e 03 7,4621e 04 1,9009e 03 1,6431e 04 5,8191e 04 5 2,4779e 03 9,9298e 04 1,7210e 03 2,3606e 04 7,5691e 04 6 2,4730e 03 1,2388e 03 1,5524e 03 3,1825e 04 9,2051e 04 7 2,4681e 03 1,4836e 03 1,3964e 03 4,1191e 04 1,0717e 03 8 2,4584e 03 1,9703e 03 1,1246e 03 6,3655e 04 1,3338e 03 9 2,4487e 03 2,4532e 03 9,0731e 04 9,1183e 04 1,5414e 03 10 2,4391e 03 2,9324e 03 7,3976e 04 1,2330e 03 1,6994e 03 11 2,4297e 03 3,4078e 03 6,1288e 04 1,5910e 03 1,8168e 03 12 2,4202e 03 3,8795e 03 5,1693e 04 1,9762e 03 1,9033e 03 13 2,4016e 03 4,8121e 03 3,8664e 04 2,7971e 03 2,0150e 03 14 2,3788e 03 5,9579e 03 2,8980e 04 3,8689e 03 2,0890e 03 15 2,3563e 03 7,0820e 03 2,3025e 04 4,9559e 03 2,1261e 03 16 2,3127e 03 9,2678e 03 1,6217e 04 7,1173e 03 2,1505e 03 17 2,2301e 03 1,3405e 02 1,0132e 04 1,1276e 02 2,1288e 03 18 2,0814e 03 2,0853e 02 5,7688e 05 1,8829e 02 2,0237e 03 Measured chemical shifts Point H a H b H c 1 9,0592e00 7,6453e00 6,9263e00 2 9,0954e00 7,6777e00 6,9487e00 3 9,1305e00 7,7091e00 6,9693e00 4 9,1648e00 7,7394e00 6,9893e00 5 9,1979e00 7,7692e00 7,0092e00 6 9,2272e00 7,7951e00 7,0268e00 7 9,2508e00 7,8159e00 7,0403e00 8 9,2937e00 7,8540e00 7,0658e00 9 9,3280e00 7,8843e00 7,0860e00 10 9,3565e00 7,9097e00 7,1031e00 11 9,3764e00 7,9273e00 7,1149e00 12 9,3935e00 7,9418e00 7,1240e00 13 9,4160e00 7,9614e00 7,1371e00 14 9,4335e00 7,9763e00 7,1468e00 15 9,4450e00 7,9854e00 7,1524e00 16 9,4596e00 7,9967e00 7,1591e00 17 9,4725e00 8,0059e00 7,1647e00 18 9,4820e00 8,0101e00 7,1654e00 Calculated chemical shifts Point H a H b H c 1 9,0632e00 7,6510e00 6,9311e00 2 9,0977e00 7,6811e00 6,9510e00 3 9,1309e00 7,7102e00 6,9703e00 4 9,1627e00 7,7380e00 6,9887e00 5 9,1929e00 7,7644e00 7,0061e00 6 9,2213e00 7,7892e00 7,0225e00 51

7 9,2476e00 7,8122e00 7,0377e00 8 9,2936e00 7,8525e00 7,0643e00 9 9,3305e00 7,8848e00 7,0856e00 10 9,3591e00 7,9097e00 7,1021e00 11 9,3808e00 7,9287e00 7,1147e00 12 9,3972e00 7,9431e00 7,1242e00 13 9,4195e00 7,9626e00 7,1371e00 14 9,4362e00 7,9771e00 7,1467e00 15 9,4464e00 7,9861e00 7,1526e00 16 9,4581e00 7,9963e00 7,1594e00 17 9,4686e00 8,0055e00 7,1654e00 18 9,4761e00 8,0121e00 7,1698e00 Chemical shifts for each nucleus species H a H b H c TCY037 + Rb 9,0632e00 7,6510e00 6,9311e00 (TCY037 + Rb)TBABr 9,4879e00 8,0224e00 7,1766e00 Converged in 5 iterations with sigma = 3,036458 standard value deviation Comments 1 log beta((tcy037 + Rb)TBABr) 3.2702 0.012 3.27(1) (a) (b) (c) Fig. S30 R 1 + RbBPh 4 + TBABr titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 52

3.2.20 1 H NMR titration of R 1 + RbBPh 4 + TBAI TCY 037 + RbBPh4 + TBAI_3 Species Log beta TCY037 + Rb TBAI 1 2,5157 1 1 refine Species concentrations/mol dm 3 Point T(TCY037 + Rb) T(TBAI) F(TCY037 + Rb) F(TBAI) species 1 1 2,4977e 03 0,0000e00 2,4977e 03 2,8344e 90 2,3214e 90 2 2,4927e 03 2,5002e 04 2,3830e 03 1,4035e 04 1,0967e 04 3 2,4877e 03 4,9904e 04 2,2745e 03 2,8584e 04 2,1319e 04 4 2,4828e 03 7,4707e 04 2,1720e 03 4,3631e 04 3,1075e 04 5 2,4779e 03 9,9411e 04 2,0753e 03 5,9156e 04 4,0256e 04 6 2,4730e 03 1,2402e 03 1,9841e 03 7,5135e 04 4,8883e 04 7 2,4681e 03 1,4853e 03 1,8983e 03 9,1545e 04 5,6982e 04 8 2,4584e 03 1,9726e 03 1,7414e 03 1,2556e 03 7,1696e 04 9 2,4487e 03 2,4560e 03 1,6026e 03 1,6100e 03 8,4607e 04 10 2,4391e 03 2,9357e 03 1,4800e 03 1,9765e 03 9,5919e 04 11 2,4297e 03 3,4117e 03 1,3714e 03 2,3534e 03 1,0583e 03 12 2,4202e 03 3,8840e 03 1,2751e 03 2,7388e 03 1,1451e 03 13 2,4016e 03 4,8176e 03 1,1133e 03 3,5293e 03 1,2884e 03 14 2,3788e 03 5,9647e 03 9,5563e 04 4,5415e 03 1,4231e 03 15 2,3563e 03 7,0901e 03 8,3390e 04 5,5677e 03 1,5224e 03 16 2,3127e 03 9,2784e 03 6,6063e 04 7,6263e 03 1,6520e 03 17 2,2301e 03 1,3421e 02 4,6257e 04 1,1653e 02 1,7675e 03 18 2,0814e 03 2,0876e 02 2,8681e 04 1,9082e 02 1,7946e 03 Measured chemical shifts Point H a H b H c 1 9,0555e00 7,6404e00 6,9216e00 2 9,0637e00 7,6481e00 6,9268e00 3 9,0706e00 7,6547e00 6,9314e00 4 9,0776e00 7,6613e00 6,9359e00 5 9,0843e00 7,6675e00 6,9401e00 6 9,0900e00 7,6731e00 6,9438e00 7 9,0954e00 7,6779e00 6,9470e00 8 9,1044e00 7,6866e00 6,9532e00 9 9,1114e00 7,6932e00 6,9578e00 10 9,1191e00 7,7005e00 6,9633e00 11 9,1253e00 7,7064e00 6,9678e00 12 9,1289e00 7,7095e00 6,9688e00 13 9,1368e00 7,7171e00 6,9745e00 14 9,1467e00 7,7268e00 6,9820e00 15 9,1522e00 7,7349e00 6,9852e00 16 9,1637e00 7,7421e00 6,9913e00 17 9,1777e00 7,7553e00 7,0009e00 18 9,1921e00 7,7681e00 7,0086e00 Calculated chemical shifts Point H a H b H c 1 9,0584e00 7,6433e00 6,9236e00 2 9,0651e00 7,6495e00 6,9278e00 3 9,0713e00 7,6554e00 6,9319e00 4 9,0773e00 7,6610e00 6,9358e00 5 9,0829e00 7,6663e00 6,9394e00 6 9,0882e00 7,6713e00 6,9428e00 53

7 9,0932e00 7,6760e00 6,9461e00 8 9,1023e00 7,6847e00 6,9520e00 9 9,1104e00 7,6923e00 6,9572e00 10 9,1176e00 7,6991e00 6,9619e00 11 9,1240e00 7,7051e00 6,9660e00 12 9,1296e00 7,7105e00 6,9697e00 13 9,1392e00 7,7194e00 6,9758e00 14 9,1485e00 7,7282e00 6,9819e00 15 9,1557e00 7,7350e00 6,9865e00 16 9,1659e00 7,7447e00 6,9932e00 17 9,1777e00 7,7558e00 7,0008e00 18 9,1882e00 7,7657e00 7,0076e00 Chemical shifts for each nucleus species H a H b H c TCY037 + Rb 9,0584e00 7,6433e00 6,9236e00 (TCY037 + Rb)TBAI 9,2089e00 7,7853e00 7,0210e00 Converged in 6 iterations with sigma = 1,747633 standard value deviation Comments 1 log beta((tcy037 + Rb)TBAI) 2.5157 0.0173 2.52(2) (a) (b) (c) Fig. S31 R 1 + RbBPh 4 + TBAI titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using 1:1 binding model. 54

TCY 037 + RbBPh4 + TBAI_3 Species Log beta TCY037 + Rb TBAI 1 2,5965 1 1 refine 2 5,2824 2 1 refine Species concentrations/mol dm 3 Point T(TCY037 + Rb) T(TBAI) F(TCY037 + Rb) F(TBAI) species 1 species 2 1 2,4977e 03 0,0000e00 2,4977e 03 2,1808e 90 2,1510e 90 2,6064e 90 2 2,4927e 03 2,5002e 04 2,2457e 03 8,7634e 05 7,7716e 05 8,4667e 05 3 2,4877e 03 4,9904e 04 2,0294e 03 1,9265e 04 1,5439e 04 1,5200e 04 4 2,4828e 03 7,4707e 04 1,8449e 03 3,1381e 04 2,2863e 04 2,0463e 04 5 2,4779e 03 9,9411e 04 1,6879e 03 4,4935e 04 2,9951e 04 2,4525e 04 6 2,4730e 03 1,2402e 03 1,5538e 03 5,9734e 04 3,6654e 04 2,7630e 04 7 2,4681e 03 1,4853e 03 1,4389e 03 7,5591e 04 4,2953e 04 2,9983e 04 8 2,4584e 03 1,9726e 03 1,2535e 03 1,0983e 03 5,4367e 04 3,3060e 04 9 2,4487e 03 2,4560e 03 1,1115e 03 1,4657e 03 6,4337e 04 3,4692e 04 10 2,4391e 03 2,9357e 03 9,9974e 04 1,8507e 03 7,3066e 04 3,5437e 04 11 2,4297e 03 3,4117e 03 9,0959e 04 2,2479e 03 8,0746e 04 3,5631e 04 12 2,4202e 03 3,8840e 03 8,3532e 04 2,6538e 03 8,7542e 04 3,5475e 04 13 2,4016e 03 4,8176e 03 7,2001e 04 3,4818e 03 9,9000e 04 3,4581e 04 14 2,3788e 03 5,9647e 03 6,1628e 04 4,5320e 03 1,1030e 03 3,2976e 04 15 2,3563e 03 7,0901e 03 5,4016e 04 5,5862e 03 1,1916e 03 3,1226e 04 16 2,3127e 03 9,2784e 03 4,3525e 04 7,6797e 03 1,3200e 03 2,7872e 04 17 2,2301e 03 1,3421e 02 3,1615e 04 1,1731e 02 1,4646e 03 2,2464e 04 18 2,0814e 03 2,0876e 02 2,0647e 04 1,9158e 02 1,5620e 03 1,5646e 04 Measured chemical shifts Point U1 U2 C1 1 9,0555e00 7,6404e00 6,9216e00 2 9,0637e00 7,6481e00 6,9268e00 3 9,0706e00 7,6547e00 6,9314e00 4 9,0776e00 7,6613e00 6,9359e00 5 9,0843e00 7,6675e00 6,9401e00 6 9,0900e00 7,6731e00 6,9438e00 7 9,0954e00 7,6779e00 6,9470e00 8 9,1044e00 7,6866e00 6,9532e00 9 9,1114e00 7,6932e00 6,9578e00 10 9,1191e00 7,7005e00 6,9633e00 11 9,1253e00 7,7064e00 6,9678e00 12 9,1289e00 7,7095e00 6,9688e00 13 9,1368e00 7,7171e00 6,9745e00 14 9,1467e00 7,7268e00 6,9820e00 15 9,1522e00 7,7349e00 6,9852e00 16 9,1637e00 7,7421e00 6,9913e00 17 9,1777e00 7,7553e00 7,0009e00 18 9,1921e00 7,7681e00 7,0086e00 Calculated chemical shifts Point U1 U2 C1 1 9,0557e00 7,6403e00 6,9213e00 2 9,0636e00 7,6479e00 6,9266e00 3 9,0710e00 7,6550e00 6,9316e00 4 9,0778e00 7,6615e00 6,9361e00 5 9,0840e00 7,6675e00 6,9402e00 6 9,0897e00 7,6729e00 6,9440e00 7 9,0949e00 7,6778e00 6,9474e00 8 9,1041e00 7,6865e00 6,9534e00 9 9,1118e00 7,6939e00 6,9584e00 10 9,1185e00 7,7001e00 6,9627e00 11 9,1243e00 7,7056e00 6,9665e00 12 9,1294e00 7,7104e00 6,9697e00 13 9,1380e00 7,7185e00 6,9752e00 14 9,1465e00 7,7265e00 6,9807e00 15 9,1534e00 7,7329e00 6,9851e00 55

16 9,1638e00 7,7426e00 6,9917e00 17 9,1773e00 7,7552e00 7,0002e00 18 9,1917e00 7,7685e00 7,0093e00 Chemical shifts for each nucleus species U1 U2 C1 TCY037 + Rb 9,0557e00 7,6403e00 6,9213e00 (TCY037 + Rb)I 9,2295e00 7,8037e00 7,0331e00 (TCY037 + Rb)2I 9,0926e00 7,6779e00 6,9486e00 standard value deviation Comments 1 log beta((tcy037 + Rb)I) 2.5965 0.0986 2.6(1) 2 log beta((tcy037 + Rb)2I) 5.2824 0.2408 5.3(2) Correlation coefficients between stability constants. Numbering as above 2 0.9838 1 logk = 2.6859 ± 0.3336 (a) (b) (c) (d) Fig. S32 R 1 + RbBPh 4 + TBAI titration. Observed and calculated chemical shifts for (a) H a, (b) H b and (c) H c using simultaneous 1:1 and 2:1 binding models. (d) Species distribution as function of guest concentration. 56

3.3 1 H NMR experiment of R 1 + TBABPh 4 Fig. S33 1 H NMR spectra of R 1 (below) and R 1 + 1 eq TBABPh 4 (above) in 9:1 CDCl 3 /DMSO. The comparison shows that there is no interaction between R 1 and BPh 4 anion (*) or TBAcation (**). 57

4. Single crystal structures 4.1 General All single crystal X ray data were collected with Agilent SuperNova, equipped with multilayer optics monochromated dual source (Cu and Mo) and Atlas detector, using Cu Kα (λ = 1.54184 Å) radiation at temperature 123 K. Data acquisitions, reductions, and analytical face index based or multi scan absorption corrections were made using the program CrysAlisPRO [3]. The structures were solved with either ShelXS [4] or Superflip [5] programs and refined on F 2 by full matrix least squares techniques with ShelXL [4] program in Olex2 (v.1.2) [6] program package. The non H atoms were refined anisotropically and all hydrogen positions were calculated using a riding atom model with ShelXL [4] default parameters. 4.2 Crystal data Crystal data for 2: Crystals were grown by slow evaporation of diethyl ether solution. C 16 H 22 N 2 O 10, M = 402.35, yellow block, 0.30 x 0.15 x 0.10 mm 3, monoclinic, space group P2 1 /n, a = 8.06956(13) Å, b = 8.80099(14) Å, c = 26.2340(4) Å, α = 90, β = 96.2340(14), γ = 90, V = 1851.64(5) Å 3, Z = 4, D c = 1.443 g/cm 3, F000 = 848.0, µ = 1.045 mm 1, T = 123.0(1) K, 2θ max = 133.47, 3252 reflections used, 2947 with I o > 2σ(I o ), R int =0.0171, 253 parameters, 0 restraints, GoF = 1.030, R = 0.0321 [I o > 2σ(I o )], wr = 0.0820 (all reflections), 0.25 < ρ < 0.23 e/å 3. CCDC 1408376 Crystal data for 3: Crystals were grown by vapor diffusion of diethyl ether into chloroform solution. C 32 H 52 N 4 O 12, M = 684.77, light violet block, 0.20 x 0.20 x 0.10 mm 3, monoclinic, space group P2 1 /c, a = 8.5947(2) Å, b = 27.2589(18) Å, c = 14.4105(5) Å, α = 90, β = 91.045(3), γ = 90, V = 3375.5(3) Å 3, Z = 4, D c = 1.347 g/cm 3, F000 = 1472, µ = 0.859 mm 1, T = 123.0(1) K, 2θ max = 133.48, 5784 reflections used, 5128 with I o > 2σ(I o ), R int = 0.0349, 465 parameters, 0 restraints, GoF = 1.056, R = 0.0392 [I o > 2σ(I o )], wr = 0.1042 (all reflections), 0.19 < ρ < 0.30 e/å 3. CCDC 1408377 Crystal data for R 1 : R 1 MeOH. Crystals were grown by vapor diffusion of methanol into DMF solution. C 30.5 H 36 N 6 O 12.5, M = 686.65, yellow plate, 0.51 x 0.34 x 0.07 mm 3, monoclinic, space group P2 1 /a, a = 13.8305(2) Å, b = 13.83565(19) Å, c = 17.9254(3) Å, α = 90, β = 96.7387(14), γ = 90, V = 3406.41(9) Å 3, Z = 4, D c = 1.339 g/cm 3, F000 = 1444, µ = 0.893 mm 1, T = 123.0(1) K, 2θ max = 133.49, 5984 reflections used, 5533 with I o > 2σ(I o ), R int = 0.0213, 543 parameters, 100 restraints, GoF = 1.164, R = 11.95 [I o > 2σ(I o )], wr = 32.46 (all reflections), 0.93 < ρ < 0.524 e/å 3. CCDC 1408378 Crystal data for R 1 KF: 2R 1 2KF 2MeOH. Crystals were grown by slow evaporation of acetone solution. C 31 H 38 N 6 O 13 K 1 F 1, M =760.77, yellow block, 0.33 x 0.20 x 0.08 mm 3, monoclinic, space group P2 1 /c, a = 20.1600(5) Å, b = 25.3181(5) Å, c = 14.3227(4) Å, α = 90, β = 58

109.936(3), γ = 90, V = 6872.4(3) Å 3, Z = 8, D c = 1.471 g/cm 3, F000 = 3184, µ = 2.060 mm 1, T = 123.0(1) K, 2θ max = 133.49, 12045 reflections used, 9344 with I o > 2σ(I o ), R int = 0.0429, 953 parameters, 1 restraint, GoF = 1.227, R = 0.1226 [I o > 2σ(I o )], wr = 0.3131 (all reflections), 2.816 < ρ < 0.782 e/å 3. CCDC 1408386 Crystal data for R 1 KCl: 2R 1 2KCl 3MeOH. Crystals were grown by vapor diffusion of diethyl ether into methanol solution. C 63 H 80 N 12 O 27 K 2 Cl 2, M = 1586.49, yellow block, 0.28 x 0.21 x 0.11 mm 3, monoclinic, space group P2 1 /n, a = 15.01363(16) Å, b = 24.43893(19) Å, c = 20.8333(2) Å, α = 90, β = 108.7482(11), γ = 90, V = 7238.50(13) Å 3, Z = 4, D c = 1.456 g/cm 3, F000 = 3320, µ = 2.613 mm 1, T = 123.01(10) K, 2θ max = 133.49, 12732 reflections used, 11259 with I o > 2σ(I o ), R int = 0.0221, 988 parameters, 0 restraints, GoF = 1.018, R = 0.0403 [I o > 2σ(I o )], wr = 0.1106 (all reflections), 0.770 < ρ < 0.521 e/å 3. CCDC 1408379 Crystal data for R 1 KBr_1: 2R 1 2KBr 3MeOH. Crystals were grown by vapor diffusion of diethyl ether into methanol solution. C 63 H 80 N 12 O 27 K 2 Br 2, M = 1675.41, yellow block, 0.32 x 0.19 x 0.10 mm 3, monoclinic, space group P2 1 /n, a = 14.93502(16) Å, b = 24.5596(2) Å, c = 20.95712(19) Å, α = 90, β = 107.6352(10), γ = 90, V = 7325.76(13) Å 3, Z = 4, D c = 1.519 g/cm 3, F000 = 3464, µ = 3.189 mm 1, T = 123.01(10) K, 2θ max = 133.48, 12867 reflections used, 11249 with I o > 2σ(I o ), R int = 0.0193, 1015 parameters, 1 restraints, GoF = 1.026, R = 0.0393 [I o > 2σ(I o )], wr = 0.1043 (all reflections), 0.599 < ρ < 0.730 e/å 3. CCDC 1408380 Crystal data for R 1 KBr_2: R 1 KBr. Crystals were grown by vapor diffusion of diethyl ether into acetone solution. C 30 H 34 N 6 O 12 K 1 Br 1, M =789.64, yellow block, 0.18 x 0.12 x 0.05 mm 3, monoclinic, space group P2 1 /c, a = 11.7776(3) Å, b = 9.0066(2) Å, c = 31.8166(10) Å, α = 90, β = 96.827(3), γ = 90, V = 3351.07(15) Å 3, Z = 4, D c = 1.565 g/cm 3, F000 = 1624, µ = 3.414 mm 1, T = 123.01(10) K, 2θ max = 133.49, 5887 reflections used, 5230 with I o > 2σ(I o ), R int = 0.0343, 481 parameters, 0 restraints, GoF = 1.121, R = 0.0516 [I o > 2σ(I o )], wr = 0.1308 (all reflections), 0.855 < ρ < 0.771e/Å 3. CCDC 1408381 Crystal data for R 1 KI: R 1 KI. Crystals were grown by vapor diffusion of diethyl ether into methanol/acetone solution. C 30 H 34 N 6 O 12 K 1 I 1, M = 836.63, yellow plate, 0.47 x 0.12 x 0.02 mm 3, monoclinic, space group P2 1 /c, a = 11.79438(14) Å, b = 8.89906(10) Å, c = 32.8978(4) Å, α = 90, β = 97.8110(11), γ = 90, V = 3420.88(7) Å 3, Z = 4, D c = 1.624 g/cm 3, F000 = 1696, µ = 9.063 mm 1, T = 123.01(10) K, 2θ max = 133.49, 6011 reflections used, 5566 with I o > 2σ(I o ), R int = 0.0299, 451 parameters, 0 restraints, GoF = 1.044, R = 0.0311 [I o > 2σ(I o )], wr = 0.0847 (all reflections), 0.731 < ρ < 0.484 e/å 3. CCDC 1408387 Crystal data for R 1 RbCl: R 1 RbCl. Crystals were grown by vapor diffusion of diethyl ether into acetone solution. C 30 H 34 N 6 O 12 Rb 1 Cl 1, M = 789.53, yellow block, 0.12 x 0.11 x 0.07 mm 3, monoclinic, space group P2 1 /c, a = 11.80087(19) Å, b = 9.11972(16) Å, c = 31.1833(6) Å, α = 90, β = 96.2885(16), γ = 90, V = 3335.78(10) Å 3, Z = 4, D c = 1.572 g/cm 3, F000 = 1616, µ = 3.411 mm 1, T = 123.01(10) K, 2θ max = 133.50, 5844 reflections used, 5298 with I o > 2σ(I o ), 59

R int = 0.0231, 463 parameters, 0 restraints, GoF = 1.104, R = 0.0475 [I o > 2σ(I o )], wr= 0.1262 (all reflections), 0.877 < ρ < 0.542 e/å 3. CCDC 1408388 Crystal data for R 1 NH 4 Cl: R 1 NH 4 Cl. Crystals were grown by vapor diffusion of diethyl ether into methanol/dmf solution. C 30 H 38 N 6 O 12 Cl 1, M =724.12, yellow block, 0.22 x 0.16 x 0.08 mm 3, monoclinic, space group P2 1 /c, a = 11.79743(16) Å, b = 9.21367(13) Å, c = 30.7165(4) Å, α = 90, β = 95.8401(11), γ = 90, V = 3321.49(8) Å 3, Z = 4, D c = 1.448 g/cm 3, F000 = 1520, µ = 1.664 mm 1, T = 123.00(10) K, 2θ max = 133.49, 5821 reflections used, 5293 with I o > 2σ(I o ), R int = 0.0167, 467 parameters, 1 restraint, GoF = 1.041, R = 0.0313 [I o > 2σ(I o )], wr = 0.0851 (all reflections), 0.339 < ρ < 0.246 e/å 3. CCDC 1408382 Crystal data for R 1 NH 4 Br: R 1 NH 4 Br. Crystals were grown by vapor diffusion of diethyl ether into methanol/dmf solution. C 30 H 38 N 6 O 12 Br 1, M = 768.58, yellow plate, 0.35 x 0.15 x 0.07 mm 3, monoclinic, space group P2 1 /c, a = 11.81208(17) Å, b = 9.17214(14) Å, c = 31.0693(4) Å, α = 90, β = 96.1586(13), γ = 90, V = 3346.68(8) Å 3, Z = 4, D c = 1.525 g/cm 3, F000 = 1592, µ = 2.316 mm 1, T = 123.00(10) K, 2θ max = 133.49, 5845 reflections used, 5467 with I o > 2σ(I o ), R int = 0.0162, 467 parameters, 0 restraints, GoF = 1.050, R = 0.0286 [I o > 2σ(I o )], wr= 0.0736 (all reflections), 0.568 < ρ < 0.433 e/å 3. CCDC 1408389 Crystal data for R 1 KAcO: R 1 KAcO. Crystals were grown by vapor diffusion of diethyl ether into methanol/acetone solution. C 32 H 37 N 6 O 14 K 1, M = 768.77, yellow block, 0.26 x 0.09 x 0.05 mm 3, monoclinic, space group C2/c, a = 20.1842(6) Å, b = 25.0010(6) Å, c = 14.7416(4) Å, α = 90, β = 109.994(3), γ = 90, V = 6990.6(4) Å 3, Z = 8, D c = 1.461 g/cm 3, F000 = 3216, µ = 2.014 mm 1, T = 123.01(10) K, 2θ max = 133.48, 6139 reflections used, 5149 with I o > 2σ(I o ), R int = 0.0215, 479 parameters, 0 restraints, GoF = 1.024, R = 0.0383 [I o > 2σ(I o )], wr = 0.1042 (all reflections), 0.292 < ρ < 0.332 e/å 3. CCDC 1408383 Crystal data for R 1 K 2 CO 3 : 2R 1 K 2 CO 3 3DMF 0.6H 2 O. Crystals were grown by slow evaporation of DMF solution with excess KF present in the solution. C 70 H 90.2 N 15 O 30.6 K 2, M = 1709.57, red block, 0.20 x 0.20 x 0.15 mm 3, monoclinic, space group P2 1 /n, a = 10.28885(14) Å, b = 37.9226(7) Å, c = 21.1223(3) Å, α = 90, β = 103.0744(14), γ = 90, V = 8027.9(2) Å 3, Z =4, D c = 1.414 g/cm 3, F000 = 3592, µ = 1.846 mm 1, T = 123.00(10) K, 2θ max = 133.50, 14054 reflections used, 11653 with I o > 2σ(I o ), R int = 0.0319, 1117 parameters, 6 restraints, GoF = 1.030, R = 0.0490 [I o > 2σ(I o )], wr= 0.1344 (all reflections), 0.891 < ρ < 0.439 e/å 3. CCDC 1408384 Crystal data for R 1 K 2 SO 4 : 4R 1 K 2 SO 4 DMF. Crystals were grown by vapor diffusion of diethyl ether into methanol/dmf solution. C 123 H 143 N 25 O 57 K 4 S 2, M = 3104.14, yellow plate, 0.22 x 0.15 x 0.05 mm 3, triclinic, space group P 1, a = 17.5359(5) Å, b = 19.7413(9) Å, c = 25.8071(7) Å, α = 106.011(3), β = 91.507(2), γ = 115.298(4), V = 7656.3(5) Å 3, Z = 2, D c = 1.346 g/cm 3, F000 = 3240, µ = 2.099 mm 1, T = 123.01(10) K, 2θ max = 133.50, 26575 reflections used, 15961 with I o > 2σ(I o ), R int = 0.0878, 2061 parameters, 171 restraints, GoF = 1.092, R =.0736 [I o > 2σ(I o )], wr= 0.2747 (all reflections), 0.795 < ρ < 0.848 e/å 3. CCDC 1408385 60

These data [CCDC 1408376 1408389] can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 4.3 Single crystal structure of R 1 KF The complex was crystallized by slow evaporation of acetone solution of the complex. The selected bond lengths are: K1 O(crown ether) 2.628(3) 3.013(4) Å; K1 O2A 2.673(4) Å; K1 O6B 2.796(4) Å; K2 O(crown ether) 2.697(4) 2.842(4) Å; K2 O1B 2.644(4) Å; K2 O4A 2.970(4) Å; F1 N1A 2.785(6) Å; F1 N2A 2.720(5) Å; F1 N1B 2.856(6) Å; F1 N2B 2.699(5) Å; F1 O13 2.590(6) Å; F2 N3A 2.741(6) Å; F2 N3B 2.790(6) Å; F2 N4B 2.684(6) Å; F2 O14 2.471(6) Å. The hydrogen bond angles are: N1A H F1 152 o ; N2A H F1 156 o ; N1B H F1 134 o ; N2B H F1 160 o ; O13 H F1 158 o ; N3A H F2 171 o ; N3B H F2 148 o ; N4B H F2 155 o ; O14 H F2 169 o ; N4A H O14 162 o. 61

(a) (b) (c) Fig. S34 X ray structure of R 1 KF. (a) Ball and stick model of the dimer formed by R 1 molecules by coordinative bonds between K1 and O6B and K2 and O4A forming a ureaproton coated binding site for fluoride anions. Fluoride anions are further hydrogen bonded to methanol molecules. Hydrogen bonds are shown in dashed lines. (b) CPK model of the complex. (c) Detailed figure of the hydrogen bonding interactions. 4.4 Single crystal structure of R 1 KBr_1 The complex was crystallized by slow diffusion Et 2 O into CH 3 OH solution of the complex. The selected bond lengths are: K1 O(crown ether) 2.664(2) 2.830(2) Å; K1 O2B 2.650(2) Å; K1 O4B 2.757(2) Å; K2 O(crown ether) 2.683(2) 2.759(3) Å; K2 O1A 2.636(2) Å; Br1 N1A 3.395(3) Å; Br1 N2A 3.369(3) Å; Br1 N1B 3.334(2) Å; Br1 N2B 3.442(2) Å; Br1 O13 3.292(2) Å; Br2 N3A 3.447(2) Å; Br2 N4A 3.282(2) Å; Br2 N4B 3.367(2) Å; Br2 O14 3.366(3) Å. 62

The hydrogen bond angles are: N1A H Br1 158 o ; N2A H Br1 164 o ; N1B H Br1 165 o ; N2B H Br1 158 o ; O13 H Br1 170 o ; N3A H Br2 156 o ; N4A H Br2 163 o ; N4B H Br2 173 o ; O14 H Br2 155 o. (a) (b) (c) Fig. S35 Single crystal structure of R 1 KBr_1. (a) Ball and stick model of the dimer formed by R 1 molecules by coordinative bonds between K1 and O4B forming a urea proton coated binding site for bromide anions. Each bromide anion hydrogen bonds to a methanol molecule. Hydrogen bonds are shown in dashed lines. (b) CPK model of the complex. (c) Detailed figure of the hydrogen bonding interactions. 63

4.5 Single crystal structure of R 1 KI The complex was crystallized by slow diffusion Et 2 O into acetone/ch 3 OH solution of the complex. The selected bond lengths are: K1 O(crown ether) 2.816(2) 2.927(2) Å; K1 O5 2.784(3) Å; K1 I 3.5220(8) Å; N1 I1 3.672(2) Å; N2 I1 3.491(2) Å; N3 O2 2.880(3) Å; N4 O2 2.848(3) Å. The hydrogen bond angles are: N1 H I1 148 o ; N2 H I1 147 o ; N3 H O2 152 o ; N4 H O2 153 o. Fig. S36 X ray structure of R 1 KI. The hydrogen bonding interactions and contact ion pair formed between receptor R 1 with KI and hydrogen bonds to adjacent molecules. Hydrogen bonds are shown in dashed lines. 64

4.6 Single crystal structure of R 1 RbCl The complex was crystallized by slow diffusion Et 2 O into acetone solution of the complex. The selected bond lengths are: Rb1 O(crown ether) 2.840(3) 3.147(3) Å; Rb1 O5 2.873(3) Å; Rb1 Cl1 3.331(1) Å; N1 Cl1 3.320(2) Å; N2 Cl1 3.150(3) Å; N3 O2 2.878(3) Å; N4 O2 2.968(3) Å. The hydrogen bond angles are: N1 H Cl1 148 o ; N2 H Cl1 155 o ; N3 H O2 158 o ; N4 H O2 151 o. Fig. S37 X ray structure of R 1 RbCl. The hydrogen bonding interactions and contact ion pair formed between receptor R 1 with RbCl and hydrogen bonds to adjacent molecules are shown. Hydrogen bonds are shown in dashed lines. 65

4.7 Single crystal structure of R 1 NH 4 Br The complex was crystallized by slow diffusion Et 2 O into CH 3 OH/DMF solution of the complex. The selected bond lengths are: N7 O8 2.857(2) Å; N7 O10 2.821(2) Å; N7 O12 2.959(2) Å; N7 Br1 3.409(2) Å; N1 Br1 3.461(1) Å; N2 Br1 3.297(2) Å; N7 O6 2.908(2) Å; N3 O2 2.905(2) Å; N4 O2 2.982(2) Å. The hydrogen bond angles are: N7 H O8 177 o ; N7 H O10 175 o ; N7 H O12 178 o ; N7 H Br1 162 o ; N1 H Br1 148 o ; N2 H Br1 156 o ; N3 H O2 158 o ; N4 H O2 151 o. Fig. S38 X ray structure of R 1 NH 4 Br. Hydrogen bonds formed between the ammonium cation and R 1 and bromide anions and hydrogen bonds to adjacent receptors are shown. Ammonium cation N7 forms an ion pair with bromide Br1.Hydrogen bonds are shown in dashed lines. 66

4.8 Single crystal structure of R 1 K 2 CO 3 Hydrogen bond lengths and angles formed with CO 3 2 (Fig. 9c and Fig. S11a): N1A O13 2.727(3) Å; N2A O13 3.049(3) Å; N3A O13 2.880(2) Å; N4A O13 3.350(3) Å; N1B O13 3.415(3) Å; N2B O13 2.836(3) Å; N4A O14 2.887(2) Å; N1B O14 2.900(3) Å; N3B O14 2.808(2) Å; O18 O14 2.511(4) Å; N2A O15 3.236(3) Å; N4B O15 2.846(3) Å; O18 O15 3.482(4) Å. N1A H O13 175 o ; N2A H O13 147 o ; N3A H O13 163 o ; N4A H O13 138 o ; N1B H O13 139 o ; N2B H O13 178 o ; N4A H O14 168 o ; N1B H O14 164 o ; N3B H O14 170 o ; O18 H O14 149 o ; N2A H O15 141 o ; N4B H O15 152 o ; O18 H O15 154 o. (a) (b) Fig. S39 (a) Hydrogen bonding interactions involved in carbonate binding by molecules A and B and a water molecule O18. (b) Centrosymmetric dimer of R 1 and R 1 (2 x, 1 y, z) is formed through cation π interactions between potassium K1 and aromatic ring formed by carbons C2A C7A. 67

4.9 Single crystal structure of R 1 K 2 SO 4 Hydrogen bond lengths and angles formed with two SO 4 2 anions (Fig. 7c and Fig. S12): N3B O31 2.835(6) Å; N4B O31 2.855(8) Å; N1A O32 2.774(6) Å; N2B O32 2.930(6) Å; N1B O33 2.866(5) Å; N2B O33 3.311(7) Å; N3C O33 2.810(8) Å; N2A O34 2.856(7) Å; N4C O34 2.89(1) Å; N3A O35 # 2.899(6) Å; N3D O35 # 2.914(5) Å; N4D O35 # 2.865(4) Å; N4A O36 # 2.963(7) Å; N2C O36 # 2.833(8) Å; N1C O37 # 2.912(6) Å; N1D O38 # 2.833(8) Å; N2D O38 # 2.768(5) Å. N3B H O31 156 o ; N4B H O31 154 o ; N1A H O32 174 o ; N2B H O32 148 o ; N1B H O33 160 o ; N2B H O33 145 o ; N3C H O33 168 o ; N2A H O34 160 o ; N4C H O34 155 o ; N3A H O35 # 170 o ; N3D H O35 # 146 o ; N4D H O35 # 142 o ; N3A H O36 # 152 o ; N2C H O36 # 152 o ; N1C H O37 # 165 o ; N1D H O38 # 154 o ; N2D H O38 # 158 o. Fig. S40 The hydrogen bonding interactions between receptors A, B, C and D and two sulphate anions in tetrameric assembly in structure R 1 K 2 SO 4. 68